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Preface

This doctoral thesis lies within the framework of stochastic di¤erential geometry and is struc-
tured in four chapters. Its goal is conveying to the geometric mechanics community the wealth
of global tools available to handle mechanical problems that contain a stochastic component
and that do not seem to have been exploited to the full extent of their potential. After an in-
troductory chapter aimed at recalling the main basics of stochastic calculus both in Euclidean
spaces and manifolds, the new contributions of the thesis are in the subsequent chapters.
In Chapter 2, we use the global stochastic analysis tools introduced by P. A. Meyer and L.

Schwartz to write down a stochastic generalization of the Hamilton equations on a Poisson
manifold that, for exact symplectic manifolds, are characterized by a natural critical action
principle similar to the one encountered in classical mechanics. Several features and examples
in relation with the solution semimartingales of these equations are presented. We extend
then some aspects of the Hamilton-Jacobi theory to the category of stochastic Hamiltonian
dynamical systems. More speci�cally, we show that the stochastic action satis�es the Hamilton-
Jacobi equation when, as in the classical situation, it is written as a function of the con�guration
space using a regular Lagrangian submanifold. Additionally, we will use a variation of the
Hamilton-Jacobi equation to characterize the generating functions of one-parameter groups of
symplectomorphisms that allow to rewrite a given stochastic Hamiltonian system in a form
whose solutions are very easy to �nd; this result recovers in the stochastic context the classical
solution method by reduction to the equilibrium of a Hamiltonian system.
In Chapter 3, we present reduction and reconstruction procedures for the solutions of sym-

metric stochastic di¤erential equations, similar to those available for ordinary di¤erential equa-
tions. Additionally, we use the local tangent-normal decomposition, available when the symme-
try group is proper, to construct local skew-product splittings in a neighborhood of any point in
the open and dense principal orbit type. The general methods introduced are then adapted to
the Hamiltonian case, which is studied with special care and illustrated with several examples.
The Hamiltonian category deserves a separate study since in that situation the presence of
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symmetries implies in most cases the existence of conservation laws, mathematically described
via momentum maps, that should be taken into account in the analysis.
Finally, Chapter 4 proves a version for stochastic di¤erential equations of the Lie-Sche¤ers

Theorem. This result characterizes the existence of nonlinear superposition rules for the general
solution of those equations in terms of the involution properties of the distribution generated
by the vector �elds that de�ne it. When stated in the particular case of standard deterministic
systems, our main theorem improves various aspects of the classical Lie-Sche¤ers result. We
show that the stochastic analog of the classical Lie-Sche¤ers systems can be reduced to the
study of Lie group valued stochastic Lie-Sche¤ers systems; those systems, as well as those
taking values in homogeneous spaces are studied in detail. The developments are illustrated
with several examples.



1
Preliminaries

The �rst chapter of this thesis aims at recalling the essential tools on stochastic calculus that we
are going to use later on. Although the reader is supposed to be familiar with the basic concepts
of probability theory, we have tried to gather most of the basic de�nitions and results about
stochastic processes found in standard textbooks. The idea is, on the one hand, to make this
thesis as self-contained as possible and, on the other, to introduce the references on stochastic
processes and stochastic di¤erential equations that are appropriate for our purposes. We hope
that the readers interested in mechanics who already know very well its geometrical framework
but who have not necessarily worked with stochastic calculus will �nd it useful.
The chapter is structured as follows: in Section 1.1 we recall the de�nition of a random

variable, the di¤erent kinds of convergence of sequences of random variables, and the relations
among them. We also introduce in this section one of the major concepts in probability theory,
that of conditional expectation. In Section 1.2 we switch from random variables to stochastic
processes. We present the most important and extensively studied process, the Brownian mo-
tion, which is a particular example of some processes playing a prominent role in the theory of
stochastic integration, (local) martingales. In addition, other classical properties of processes,
such as being Markov, are also presented. Section 1.3 is devoted to the cornerstone of the
theory of stochastic processes, the (Itô) stochastic integral. The stochastic integral is a gener-
alization of the Riemann-Stieltjes integral for processes whose paths are not of �nite variation.
We carefully introduce the Itô stochastic integral, the quadratic variation of a processes, and
the Stratonovich integral, linked with the Itô integral by means of the quadratic variation of the
process with respect to the semimartingale we integrate. Once stochastic integrals have been
introduced, stochastic di¤erential equations can be de�ned in terms of them and, therefore,
we may talk about stochastic systems as those which evolve in time according to the solutions
of a given stochastic di¤erential equation. As a consequence of the stochastic integration, the
Itô formula gives us the stochastic di¤erential equation ful�lled by a smooth function when
composed with a semimartingale. Finally, we show in Section 1.4 how to generalize the tools
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and concepts of Section 1.3 to the case of manifold valued semimartingales. As we will see,
the geometric structures adapted to stochastic integration are the second order tangent and
cotangent bundles of a manifold. More concretely, we will be able to integrate processes taking
values on the second order cotangent bundle in the Itô sense and those taking values on the
cotangent bundle in the Stratonovich�s. This extended stochastic integral and the notion of
Stratonovich and Schwartz operators will allow us to intrinsically de�ne stochastic di¤erential
equations on manifolds.
A few words about notation before we start. Throughout this chapter the triple (
;F ; P )

will denote a probability space, where F is a �-algebra made out of subsets of 
 and P : F ! R
denotes the probability measure. Whenever that 
 = Rd we will assume that F = B(Rd) is the
Borel �-algebra, that is, the smallest �-algebra containing the open sets of the topology de�ned
from the standard Euclidean distance. The Lebesgue measure on B(Rd) will be denoted by �.
We will say that some property in 
 holds P -a.s. (or �-a.s. in case 
 = Rd) if it holds except
from those ! 2 
 contained in a set of probability (measure) zero.

1.1 Random variables

De�nition 1.1 Let (E; E) be a measurable space. A random variable is a measurable map
X : 
! E. The law of X is the probability measure PX induced by X in (E; E) by

PX(B) := P (f! 2 
 j X(!) 2 Bg):

In general one writes PX(B) = P (fX 2 Bg) and one says the�probability that X sits in B �.
The �-algebra �(X) � F generated by a random variable X : 
 ! (E; E) is the smallest
�-algebra that makes X measurable:

�(X) = fA = X�1(B) 2 F j B 2 Eg:

Classical laws are for example the uniform law, the binomial law, the geometric law, or the
Poisson law among others. Very important for us is the following example.

Example 1.2 : Random variables with a density. Let � and � be two measures on a mea-
surable space (E; E) and suppose that � is �-�nite, that is, there exists a sequence fAngn2N � E
such that E = [n2NAn and �(An) <1 for any n 2 N. We say that � is absolutely continu-
ous with respect to � if for any A 2 B(Rd), �(A) = 0 implies that �(A) = 0. In this context,
the Radon-Nikodym Theorem states that � is absolutely continuous with respect to � if
and only if there exists a �-unique measurable function f : E ! [0;1] such that for any A 2 E

�(A) =

Z
E
fd�

([K78, Chapter VII § 5], [R87, Theorem 6.9]). In concrete examples, (E; E) = (Rd;B(Rd)) and
� is the Lebesgue measure �. If PX is absolutely continuous with respect to the Lebesgue
measure �, then PX(A) =

R
A fd�. The function f is called the density of the law of X or

the probability density function (pdf) of X.
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Example 1.3 Some classical densities:

(i) Gaussian or normal law of mean m 2 R and variance �2 2 R+: usually denoted by
N(m;�2) is the most important law in probability theory. Its pdf is given by

p(x) =
1p
2��2

e�
(x�m)2

2�2 :

(ii) Uniform law on [a; b]: this is a law whose pdf is constant on the whole interval [a; b].
Therefore, p(x) = 1

b�a1[a;b](x).

Let X : 
 ! (R;B(R)) be a real valued random variable. Its moment E[Xp] of order p is
de�ned by

E[Xp] :=

Z


XpdP:

The case p = 1 corresponds to themathematical expectation or expected value ofX. E[Xp]
obviously exists provided that

R

 jXj

pdP <1. If X 2 L2(
;F ; P ) we de�ne the variance of
X by

Var(X) := E
h
(X � E[X])2

i
= E[X2]� (E[X])2:

The standard deviation is given by �X =
p
Var(X). More in general, if X : 
! (E; E) is a

random variable taking values on an arbitrary measurable space and f : E ! R is measurable,
then f(X) 2 L1 (
;F ; P ) if and only if f 2 L1 (E; E ; PX) and the change of variables
formula reads

E[f(X)] =

Z
E
f(x)PX(dx):

In particular, if E = Rn and PX is absolutely continuous with respect to the Lebesgue measure
with density g : Rn ! R+, then

E[f(X)] =

Z
Rn
f(x)g(x)d�:

Example 1.4 Given a Gaussian variable X with law N(m;�2) then

E[X] =

Z
R
x

1p
2��2

e�
(x�m)2

2�2 dx = m;

V ar[X] = E[(X �m)2] =
Z
R
(x�m)2 1p

2��2
e�

(x�m)2

2�2 dx = �2:

Independence

Given two events A;B 2 F , we say that they are independent whenever P (A\B) = P (A)P (B).
When P (B) > 0, this de�nition can be interpreted using the conditional probability induced
by B and de�ned as

P (�jB) = P (� \B)
P (B)

: (1.1)
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(
;F ; P (�jB)) is a new probability space whose measure yields the probability of the events in
F once one knows that B has happened. The events A and B are independent when P (AjB) =
P (A). This motivates the following general de�nition:

De�nition 1.5 Let B1; : : : ;Bn � F be sub �-algebras of F . We say that B1; : : : ;Bn are inde-
pendent when

P (A1 \ : : : \An) = P (A1) � � �P (An);

for any A1 2 B1; : : : ; An 2 Bn. Let (Ei; Ei), i = 1; :::; n, be a family of measurable spaces. We
say that a family of random variables X1; : : : ; Xn, Xi : 
 �! (Ei; Ei), are independent if the
associated �-algebras �(X1); : : : ; �(Xn) are independent.

The independence of a family of random variables X1; : : : ; Xn is equivalent to the condition

P (fX1 2 F1g \ � � � \ fXn 2 Fng) = P (fX1 2 F1g) � � �P (fXn 2 Fng);

for any F1 2 E1; : : : ; Fn 2 En. In other words,

P(X1;:::;Xn) = PX1 
 � � � 
 PXn :

In that case, given a family of measurable functions fi : (Ei; Ei) �! R:

E

"
nY
i=1

fi(Xi)

#
=

nY
i=1

E[fi(Xi)]:

Additionally, if each random variable Xi takes values in the real line and it is absolutely
continuous with pdf pi, then the random variable (X1; : : : ; Xn) is absolutely continuous with a
pdf p given by

p(x1; : : : ; xn) =
nY
i=1

pi(xi)

1.1.1 Convergence of random variables

Given a sequence of random variables fXngn2N in the probability space (
;F ; P ) there are
several notions of convergence that are relevant in the context of probability theory:

(i) Almost sure (a.s.) convergence: we say that Xn
a:s:�! X whenever

P
�
f! 2 
 j lim

n!1
Xn(!) = X(!)g

�
= 1:

(ii) Lp convergence: Xn
Lp�! X whenever lim

n!1
E[jXn �Xjp] = 0.

(iii) Convergence in probability: Xn
P�! X whenever for any � > 0:

lim
n!1

P (fjXn �Xj > �g) = 0:
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(iv) Convergence in law: consider C0b (R
d) the continuous bounded functions in Rd with the

norm
k'k = sup

x2Rd
j'(x)j:

We say that a sequence f�ngn2N of probability measures on Rd converges to � if for any
' 2 C0b (Rd) Z

'd�n
n!1�!

Z
'd�:

We say that a sequence of random variables fXngn2N with values in Rd converges in law
to the random variable X (we write Xn

l�! X) whenever PXn
n!1�! PX . This amounts

to saying that for any ' 2 C0b (Rd):

E['(Xn)]
n!1�! E['(X)]:

It is worth mentioning that if the random variables Xn have a density pn, there exists
a function p such that pn(x) ! p(x) �-a.s. On the other hand, if there exists a function
q � 0 in L1(Rd; �) such that jpn(x)j � q(x) �-a.s. and the limit p(x) := limn!1 pn(x)
exists �-a.s., then fXngn2N converges in law to the law p(x)d�. This is a straightforward
consequence of the Dominated Convergence Theorem.

These four notions of convergence are not independent. For example, the Lp-convergence
implies the convergence in probability. Indeed, applying Chebyshev�s inequality yields

P (fjXn �Xj > "g) � 1

"p
E[jXn �Xjp]:

On the other hand, almost sure convergence implies the convergence in probability. However,
convergence in probability only implies the existence of a subsequence which converges almost

surely. By the dominated convergence theorem, Xn
a:s:�! X implies Xn

Lp�! X, p � 1, if the
random variables Xn satisfy jXnj � Y a.s. for a �xed nonnegative random variable Y possessing
a �nite moment of order p. Finally, convergence in probability implies convergence in law, the
reciprocal being also true when the limit is constant. See [GS01, Section 7.2] for a proof of
theses implications.

Applications: We brie�y recall two well known results about the convergence of the average
of a sequence of independent random variables. Their proof can be found in [GS01, Section
5.10].

(i) (Strong) Law of Large Numbers: let fXngn2N be a sequence of independent random
variables in L1(
;F ; P ) that share the same law. Then

1

n
(X1 + � � �+Xn)

a:s:�! E[X1]:

(ii) Central Limit Theorem: let fXngn2N be a sequence of independent random variables
in L2(
;F ; P ) that share the same law. Let �2 = V ar(X1). Then

1p
n
(X1 + � � �+Xn � nE[X1])

l�! N(0; �2):
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1.1.2 Conditional expectations

We showed in the expression (1.1) how to construct out of a given event B 2 F such that
P (B) > 0 a new probability space (
;F ; P (�jB)) that allows us to measure the probability
of the other events subjected to the condition that B has happened. Given a random variable
X 2 L1(
;F ; P ), one can compute the expected value of X subjected to the condition that
the event B has taken place by computing its expectation with respect to the measure P (�jB).
More speci�cally, one obtains the conditional expectation of X with respect to the event B

E[XjB] := E[X1B]

P (B)
:

One may want to generalize this notion now only de�ned for a single event to a family of
them. Thus, let B � F be a sub �-algebra and X 2 L1(
;F ; P ). For any B 2 B, the function
� (B) := E[X1B] de�nes a �-additive set function on B which is clearly absolutely continuous
with respect to P . The Radon-Nikodym Theorem guarantees in this situation the existence of
a P -unique function E[XjB] : 
! [0;1] such that

�(B) =

Z
B
E[XjB](!)dP (!):

The random variable E[XjB] is called the conditional expectation with respect to a �-algebra
B.

Theorem 1.6 (Conditional expectation) Let (
;F ; P ) be a probability space. Let B � F
be a sub �-algebra and X 2 L1(
;F ; P ). There exists a unique random variable E[XjB] 2
L1(
;B; P ) such that for any B 2 B

E[X1B] = E[E[XjB]1B]: (1.2)

Equivalently E[XjB] can be characterized by saying that for any bounded and B-measurable
random variable Z

E[XZ] = E[E[XjB]Z]: (1.3)

Remark 1.7 If B is the �-algebra generated by a random variable Y we will write

E[XjB] = E[Xj�(Y )] = E[XjY ]:

Remark 1.8 The L2 case admits an interesting geometric interpretation. Let hX;Y i = E[XY ]
the Euclidean product in L2, where X;Y 2 L2(
;F ; P ). If B � F is a sub �-algebra then
L2(
;B; P ) is a closed subspace of L2(
;F ; P ). In this situation, the conditional expectation
E[XjB] is the orthogonal projection of X on L2(
;B; P ) and hence E[XjB] can be interpreted
as the best approximation of X (in the L2 norm) by a B-measurable random variable. In fact,
if Y 2 L2(
;B; P ), this result comes from the straightforward computation

kX � Y kL2 = E[(X � Y )2] = E[X2] + E[Y 2]� 2E[XY ]
= E[X2] + E[Y 2]� 2E[E[XjB]Y ]
= E[X2]� E[E[XjB]2] + E[(Y � E[XjB])2]
� E[X2]� E[E[XjB]2]; (1.4)
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where in the second line (1.3) has been used. Since the orthogonal projection minimizes the
norm kX � Y kL2 , this projection is Y = E[XjB] because only in this case the inequality in the
last line of (1.4) is actually an equality.

Elementary properties of the conditional expectation

Let X : 
! R denote an arbitrary random variable. Then,

(i) If X is B-measurable, E[XjB] = X.

(ii) The map X 7�! E[XjB] is linear.

(iii) A random variable and its conditional expectation have the same expectation:

E[E[XjB]] = E[X]:

This follows from (1.2) with B = 
.

(iv) If X and B are independent, that is, if �(X) and B are independent, then E[XjB] = E[X].
Indeed, the constant E[X] is clearly B-measurable and for any B 2 B we have

E[X1B] = E[X]E[1B] = E[E[X]1B]

therefore E[XjB] = E[X] by (1.2). In general, two sub �-algebras B1 and B2 are inde-
pendent if and only if for any B2-measurable random variable X

E[XjB1] = E[X]: (1.5)

This implies in particular that if two random variables X and Y are independent then

E[XjY ] = E[X]; (1.6)

but the converse is not true. It can be shown that the random variables measurable
with respect to �(X) are those of the form h(X), with h : R ! R a measurable map.
Consequently, by (1.5), X and Y are independent if and only if E[h(X)jY ] = E[h(X)]
for any h, which obviously implies (1.6) but not the other way around.

(v) If X;Y are real random variables and X � Y , then E[XjB] � E[Y jB] a.s.. Taking
Y = jXj, this monotone property implies that jE[XjB]j � E[jXjjB] a.s.. More generally,
Jensen�s inequality also holds. That is, if ' is a convex function such that E[j'(X)j] <1,
then

' (E[XjB]) � E['(X)jB]:

(vi) If X;Y are real valued random variables and Y is B-measurable and bounded, then

E[Y XjB] = Y E[XjB]: (1.7)

Indeed, (1.2) implies that for any bounded and B-measurable random variable E [E[XjB]Y ]
= E[XY ] as can be easily checked approximating Y by a suitable sequence of B-measurable
elementary process. (1.7) stems immediately from this fact.

(vii) If B1 and B2 are sub �-algebras such that B1 � B2, then

E[E[XjB2]jB1] = E[XjB1]:
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1.2 Stochastic processes

A stochastic process is a sequence of random variables that evolve in time. In this section
(
;F ; P ) will be a probability space, (E; E) a measurable space, and T a set of time indices
(it may represent the sets N, R, Z, or Rd). A mapping X : T � 
 ! E is called a stochastic
process if Xt : 
! E is a random variable for any t 2 T .
The term stochastic process is sometimes reserved to the case in which T = R. When T = N

or Z (respectively, T = f1; : : : ; Ng one uses the term time series (respectively, random
vector). The case T = Rd corresponds to the so called random �elds. In this thesis, however,
we are only going to deal with the case T = R+ or R.

1.2.1 The law of a stochastic process. Continuous processes

The ideas in the following paragraph allow us to code stochastic processes as random variables
and hence to apply all the notions that we have previously learnt for these objects. Let ET :=
ff : T ! Eg the space of all the maps from T to E. A measurable �nite cylinder set is a
set C � ET of the form

CAt1;:::;tn := ff : T ! E j (f(t1); :::; f(tn)) 2 Ag

for some �xed sequence ft1; :::; tng � T , n 2 N, and some �xed A 2 E . We will denote the
family of all measurable cylinder sets by C. In this context, the product �-algebra E
T is the
one generated by the measurable �nite cylinders sets. That is, E
T := � (C). Given a stochastic
process X : T �
! E, we will denote by X : 
! ET be the map that assigns to each ! 2 

the path fXt(!) j t 2 Tg 2 ET .

Proposition 1.9 X : T � 
! E is a stochastic process if and only if X : 
! (ET ; E
T ) is
a random variable.

Using this proposition, we rephrase for stochastic processes what we introduced before for
random variables. More speci�cally, the law of a stochastic process X : T � 
! E is the
law PX of the random variable X : 
 ! (ET ; E
T ). For example, if CAt1;:::;tn is a measurable
�nite cylinder set, then

PX(C) = P ((Xt1 ; : : : ; Xtn) 2 At1 � � � � �Atn):

It is worth noticing that given a probability measure Q on (ET ; E
T ) there exists at least one
stochastic process that has it as a law: indeed, the canonical process X : 
�R �! E de�ned
on (
 = ET ; E
T ) by Xt(!) = !t is such that PX = Q.
In order to introduce continuous processes, we are going to suppose in the following para-

graphs that (E; E) is a metric space with distance function d, E = B(E) is the Borel �-algebra,
and T = R, R+, or the interval [a; b]. Let C0(T;E) denote the space of continuous maps
from T to E. We say that the stochastic process X : T � 
 ! E is continuous if its paths
fXt(!) j t 2 Tg are continuous for any ! 2 
 a.s. and, therefore, X : 
! C0(T;E).
The set C0(T;E) has a natural topology given by the uniform convergence over compact

sets (also called compact convergence) and hence a natural Borel �-algebra B(C0(T;E))
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which, in principle, di¤ers from the product �-algebra B(E)
T . Recall that the topology of the
compact convergence is a metric topology with distance function given by

dC(f; g) =
1X
n=1

1

2n

��
sup
0�t�n

d(f(t); g(t))

�
^ 1
�
; f; g 2 C0(T;E):

It is not di¢ cult to check that, if T is compact, the compact topology coincides with the
topology given by the norm of the uniform convergence:

kf � gk1 = max
t2T

fd(f(t); g(t))g:

Nevertheless, B(C0(T;E)) � B(E)
T . Indeed, we can consider the Borel �nite cylinder
sets, which are sets in ET of the form�

C0
�A
t1;:::;tn

:= ff 2 C0(T;E) j (f(t1); :::; f(tn)) 2 Ag

for some sequence t1 � t2 � ::: � tn and some A 2 B(E). If C0 denotes the set of all the Borel
�nite cylinder sets, then clearly �

�
C0
�
� B(E)
T from the de�nition of the product �-algebra

B(E)
T . What is less obvious is that �
�
C0
�
= B(C0(T;E)) (see [IW89, Chapter I, Proposition

4.1]), which proves the assertion B(C0(T;E)) � B(E)
T .
UCP convergence. The ucp convergence is the analog of convergence in probability when
stochastic processes are coded as random variables and will play a prominent role in the theory
of stochastic integration. More speci�cally, let fXngn2N be a sequence of processes. We say
that fXngn2N converges uniformly on compacts in probability (ucp) to a process X
whenever for any " > 0 and any t 2 R+,

P

��
sup
0�s�t

jXn �Xjs
�
> "

�
�!
n!1

0:

1.2.2 Brownian motion

Brownian motion is probably the most important continuous process in stochastic calculus
and the most used to model the stochastic behavior of real systems arising from very di¤erent
disciplines such as statistical physics or �nance. Some of the seminal works on Brownian motions
were those by Brown (1827), Bachelier (1900), Einstein (1905), and Wiener (1925). We say that
a Rd-valued process B : R+ � 
 ! Rd is a Brownian motion with initial law � if for any
partition 0 = t0 < t1 < t2 < � � � < tn = t of the interval [0; t], the random variables Bti �Bti�1
are mutually independent, i = 1; :::; n, PBt0 = �, and PBti�Bti�1 is absolutely continuous with
respect to the Lebesgue measure with Gaussian pdf

1

(2�(ti � ti�1))d=2
e
� kxk2
2(ti�ti�1) :

If d = 1, this means that Bti�Bti�1 � N(0; ti�ti�1). Whenever the initial law � is not speci�ed
it will implicitly assumed that B0 = 0 a.s.. IfW

�
Rd
�
:= f! : R+ ! Rd j ! continuousg, then the
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probability law P �B on
�
W
�
Rd
�
;B
�
W
�
Rd
���

induced by a Brownian motion �B : 
!W
�
Rd
�

with initial law � is called theWiener measure with initial distribution �. By [IW89, Chapter
I, Theorem 7.1], the Wiener measure PW� exists on

�
W
�
Rd
�
;B
�
W
�
Rd
���

for any initial dis-
tribution � which implies, in turn, that the canonical process on

�
W
�
Rd
�
;B
�
W
�
Rd
��
; PW�

�
is a Brownian motion. In other words, Brownian motions do exist. We will come back later
on the problem of de�ning a Brownian motion once Markov processes have been introduced.
Some of the most relevant properties of Brownian motions are the following:

(i) The autocovariance of a real Brownian motion (B0 = 0) is given by E[BtBs] = min(s; t)
([O03, Lemma 6.2.6]). Indeed, E[B2t ] = t from the very de�nition of Brownian motion. If
s < t,

E[BtBs] = E[(Bt �Bs)Bs] + E[B2s ]:
But E[(Bt � Bs)Bs] = E[Bt � Bs]E[Bs] because Bt � Bs is independent of Bs and
E[Bs] = 0. Hence

E[BtBs] = E[B2s ] = s:

(ii) If B is a Brownian motion, then so are ([K97, Theorem 2.1], [KS91, Chapter 2 Lemma
9.4]):

(a) Xt = a�1Ba2t, with a 6= 0 (Brownian rescaling property).
(b) Xt = tB1=t, with t > 0 and X(0) = 0 (time inversion).

(c) Xt = Bt+t0 �Bt0 , t � 0. It is immediate to see that Bt+t0 �Bt0 ful�lls the de�nition
of a Brownian motion.

(iii) The paths of the Brownian motion are nowhere di¤erentiable ([PWZ33], [KS91, Section
2.9 D]). This is a remarkable property that prevents us from de�ning any natural notion
of velocity or derivative associated to a given Brownian motion.

p-variation. LetXt : 
! R be a continuous stochastic process. The p-th variation [X;X](p)t (!)
of the path X(!) : R+ ! R is de�ned by

[X;X]
(p)
t (!) = lim

�tk!0

X
tk�t

jXtk+1(!)�Xtk(!)jp; (1.8)

provided this limit exits. The process associated with p = 1 is referred to as the total variation;
the case p = 2 is called the quadratic variation.
A result of Lévy shows that the total variation of the paths of the Brownian motion are +1

on every time interval. This feature of the Brownian motion makes non-trivial the integration
theory that uses it as integrator (recall that the Riemann-Stieltjes is de�ned only for integrators
with bounded variation). The ultimate reason why the stochastic integral that we will introduce
later on works is the fact that the Brownian motion has �nite quadratic variation. Integration
with respect to processes with �nite p-variation, p > 2, is the subject of the so-called Rough
Paths Theory ([CLT04]), which lies beyond the scope of this thesis. The next theorem gives
an explicit expression for the quadratic variation of a (one-dimensional) Brownian motion.
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Theorem 1.10 Let B : 
 � R+ ! R a real Brownian motion and let f�ngn2N be a sequence
of partitions of the interval [0; t], that is, 0 = tn0 � tn1 � ::: � tnkn = t, such that k�nk =
maxi2f1;:::;kng jtni � tni�1j ! 0 as n ! 1. Let �nB :=

P
ti2�n

�
Bti+1 �Bti

�2. Then [B;B](2)t =
limn!1 �nB = t in L2 (
;F ; P ).

Proof. We have

�nB � t =
X
ti2�n

n�
Bti+1 �Bti

�2 � (ti+1 � ti)o =: kn�1X
i=0

Yi

where Yi :=
�
Bti+1 �Bti

�2 � (ti+1 � ti) are independent random variables with zero mean.
Then,

E
h
(�nB � t)2

i
= E

24 kn�1X
i=0

Yi

!235 = kn�1X
i=0

E
�
Y 2i
�
:

Next observe that
�
Bti+1 �Bti

�2.
(ti+1 � ti) has the same distribution as Z2, where Z is a

Gaussian with 0 mean and variance 1. Therefore,

E
h
(�nB � t)2

i
=

kn�1X
i=0

E

"�
Yi

(ti+1 � ti)
(ti+1 � ti)

�2#

= E
h�
Z2 � 1

�2i kn�1X
i=0

(ti+1 � ti)2

� E
h�
Z2 � 1

�2i k�nk t,
which tends to 0 as n tends to 1.

Remark 1.11 One can also prove that [B;B](2)t = t a.s. ([P05, Chapter I Theorem 28], [CW90,
Theorem 6.1]). Morevoer, the Levy�s characterization of Brownian motion (Theorem 1.31)
claims that [B;B](2)t = t characterizes uniquely Brownian motions among those continuous
processes which have the additional property of being local martingales (see Subsection 1.2.3).

1.2.3 Filtrations, martingales, stopping times, and Markov processes

Martingales and Markov processes are some of the most important classes of stochastic processes.
In order to de�ne them we need the notion of �ltration. In this subsection, the time parameter
space T will be either R+ or N.

De�nition 1.12 A �ltration of the measurable space (
;F) is an increasing sequence F =
fFtgt2T of sub �-algebras of F , that is, Fs � Ft if s � t. We will usually assume that F0
contains all the negligible events (complete �ltration) and that the map t 7�! Ft is right-
continuous, that is, Ft =

T
�>0Ft+�. A stochastic process X : T � 
 �! E is said to be

adapted to the �ltration F when Xt : 
! E is Ft-measurable for any t 2 R+. The �ltration
FX induced by the process X is the minimal �ltration with respect to which X is adapted; more
speci�cally FXt = � (Xs j s � t) for any t 2 R+.
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Filtrations are used to model the information available at a given time. In the case of FX ,
the �-algebra FXt represents the information obtained by observing the values taken by X
between the instants 0 and t.

De�nition 1.13 A real-valued martingale X : T � 
! Rd is a stochastic process such that
for every pair t; s 2 T such that s � t, we have:

(i) X is Ft-adapted, that is, Xt is Ft-measurable.

(ii) Xs = E[Xt j Fs].

(iii) Xt is integrable: E[jXtj] < +1.

For any p 2 [1;1),X is called a Lp-martingale wheneverX is a martingale andXt 2 Lp(
; P )
for each t. If supt2R+ E[jXtjp] <1, we say that X is Lp-bounded.
When the �ltration F is interpreted as the amount of information available at any given

time, martingales encode the notion of fair game. One feature that makes this plausible is that
martingales have constant expectation; taking expected values on both sides of the equality
X0 = E[XtjF0], we actually obtain that E[X0] = E[Xt].

Examples 1.14

(i) Random walk. Let T = N and let f�ngn2N be a sequence of independent integrable
random variables that share the same law and that have zero mean. Then, the associated
random walk process Sn := �1+ � � �+ �n is a martingale for its own �ltration FSn = �(�i j
1 � i � n). Indeed, each Sn is integrable and

E[Sn+1jFSn ] = E[Sn + �n+1jFSn ] = Sn + E[�n+1] = Sn;

where we have used linearity and independence.

(ii) The Brownian motion. The Brownian motion B is a martingale with respect to its own
�ltration FB. By de�nition, Bt �Bs is independent of FBs for any 0 � s < t and hence

E[BtjFBs ] = E[Bs +Bt �BsjFBs ] = Bs + E[Bt �Bs] = Bs:

We are going to recall now one of the most important concepts in stochastic calculus in-
trinsically linked with �ltrations, that of stopping time. Stopping times are random variables
which give us information about the time at which something happens. For instance, the time
at which a given process leaves an open set or exceeds some bound are examples of stopping
times. In addition, we want the answer to these sort of questions to be adapted or in accor-
dance with the amount of information available about the process at a certain instant. Thus,
we de�ne:

De�nition 1.15 A random variable � : 
 ! [0;+1] is called a stopping time with respect
to the �ltration fFtgt2T if for every t � 0 the set f! j �(!) � tg belongs to Ft. Given a stopping
time � , we de�ne

F� = f� 2 F j � \ f� � tg 2 Ft for any t 2 Tg :
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Given an adapted process X, it can be shown that the random variable X� is F� -measurable.
We de�ne the stopped process X� as

X�
t := Xt^� := Xt1ft��g +X�1ft>�g:

The next proposition provides us with a huge amount of stopping times. In particular, all the
stopping times we are going to use in this thesis will be of such form.

Proposition 1.16 ([P05, Chapter I Theorem 3]) Let X be a stochastic process adapted
to fFtgt2T and let � � Rd a Borel set. For any ! 2 
, let

� (!) := infft > 0 j Xt 2 �g

the hitting time of � for X. If the paths of X are right-continuous and have left-limits a.s.,
then � is a stopping time.

If instead of � � Rd we consider its complementary set �c = Rdn�, then � in Proposition 1.16
is referred to as the exit time of �.
It is customary in stochastic calculus to say that some properties hold locally. The notion

of local applied to stochastic processes has a quite di¤erent meaning than that one uses in
geometry, where properties hold locally if they hold on an open neighborhood. Hence, we say
that a stochastic process X : T � 
 ! Rd satis�es some property locally if there exists a
non-decreasing sequence of stopping times f�ngn2N such that limn!1 �n = 1 a.s. and X�n

satis�es that property for any n 2 N. For example, we will say that X : T �
! Rd is a local
martingale or locally bounded if there exist a non-decreasing sequence of stopping times
f�ngn2N such that X�n is a martingale or bounded for any n 2 N respectively.

Homogeneous Markov processes

Let
�

; fFtgt2R+ ; P

�
be a standard �ltered probability space and let (E; E) be a measurable

space. A function p : R+ � E � E ! [0; 1] is called a transition function provided that

(i) pt(x; �) is a probability measure on E for any t 2 R+ and any x 2 E.

(ii) pt(�; A) is E=B([0; 1])-measurable for any t 2 R+ and any A 2 E .

(iii) For any t; s 2 R+, any x 2 S, and any A 2 E ,

pt+s(x;A) =

Z
S
pt(x; dy)ps(y;A): (1.9)

The relationship (1.9) is known as the Chapman-Kolmogorov equation. It says that the
probability of being in A at time t+s starting from x is equal to the sum of all the probabilities of
being at an intermediate point y at time t to be, s units of time later, in A. A stochastic process
X de�ned on

�

; fFtgt2R+ ; P

�
and taking values in (E; E) is a temporally homogeneous

Markov process with transition function p : R+ � E � E ! [0; 1] if it is adapted and

E[f(Xt)jFs] =
Z
S
pt�s(Xs; dy)f(y) (1.10)
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for any 0 � s < t and any f : E ! [0;1] such that f is E=B([0;1])-measurable. Two Markov
processes with the same state space (E; E) are said to be equivalent if they have the same
transition function. It is a cornerstone result in the theory of Markov processes that, given
a transition function p on a measurable space (E; E) and a probability measure � on (E; E),
there always exists a �ltered probability space

�

; fFtgt2R+ ; P�

�
and an adapted stochastic

process X such that X has � as initial law and (1.10) holds providing E is �-compact and E is
the topological �-algebra of Borel sets ([BG68, Chapter I]). Recall that a topological space is
called �-compact if it is the union of countable many compact subsets. The existence of Markov
processes is based on the famous Kolmogorov�s Extension Theorem. When E is a topological
space, 
 is usually taken as the set of all continuous paths or all right continuous paths with
left limits if, for example, the Markov process X is continuous or right continuous with left
limits respectively.
Let �x(�) be the measure such that �x(A) = 1 if x 2 A, A 2 E , and 0 otherwise. Let P x

denote the probability associated to � = �x(�) and Ex[�] the expectation carried out under this
law. Observe that (1.10) can be rewritten as

E[f(Xt)jFs] = EXs [f(Xt�s)] (1.11)

for any 0 � s < t. Let now f : E ! [0;1] E=B([0;1])-measurable and take t 2 R+. We de�ne

(Ptf)(x) :=

Z
E
pt(x; dy)f(y) = Ex[f(Xt)]:

fPtgt2R+ is called the transition semigroup of the Markov process X because P0f = f and
Pt+sf = Pt(Psf) if, in addition, f 2 L1(E). In this latter case, fPtgt2R+ is a contraction
semigroup. That is, kPtfk1 � kfk1.
Example 1.17 Let (E; E) = (Rn;B(Rn)) and

pt(x; dy) =
1

(2�t)n=2
e�

kx�yk2
2t dy;

where dy stands for the Lebesgue measure of Rn. The corresponding Markov process associated
to its transition function and � = �x(�) is the Brownian motion starting at x 2 Rn. As we saw
in subsection 1.2.2, in this case 
 is C0 (R+;Rn), the space of all continuous paths from R+ to
Rn.

The property (1.11) conveys the idea that the law of Xt conditioned to knowing all the past
up to time s (modeled by Fs) depends only on the value Xs. Equivalently, one can say that
a Markov process depends on the past only through the present. A deterministic analog of the
Markov processes are the solutions x(t) of a �rst order di¤erential equation which are fully
determined by their value at any time t, say t = 0.

1.3 Stochastic integration and stochastic di¤erential equations

One of the goals of this section is giving a meaning to the expressionZ t

0
�(s; !)dBs: (1.12)
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As we already noted, the Brownian motion has in�nite total variation and hence the classical
theory of (Riemann-Stieltjes) integration is not valid. The integral (1.12) was �rst de�ned by
Wiener in 1934 for deterministic integrands, that is, � = �(t). The general stochastic case
� = �(t; !) was introduced by Itô in the 40�s.
The price to pay for having an integral at this level of generality is that there are choices

involved: there is not a unique stochastic integral. In order to illustrate this point we outline
the strategy for the de�nition of the integral so that we can pinpoint what the di¢ culties are.
Take the function �(u; !) := X(!)1(s;t](u), for some random variable X. A natural choice for

the value of the integral (1.12) in this case is X(!)(Bt(!)� Bs(!)). If we require the integral
to satisfy the usual linearity properties, the integral should be worthZ t

0
�(s; !)dBs =

n�1X
i=0

Xi(!)(Bti+1(!)�Bti(!));

whenever

�(u; !) :=
n�1X
i=0

Xi(!)1(ti;ti+1](u): (1.13)

The strategy to de�ne the integral for a general function � consists roughly of �nding an
approximating sequence f�ngn2N made of functions of the kind (1.13) and then settingZ

�dB = lim
n!1

Z
�ndB:

The main di¢ culty in properly stating this de�nition consists in the fact that the value of the
integral may depend on the choice of approximating sequence and therefore we have to be very
speci�c in this particular point. For instance, take the function �(t; !) = Bt(!)1[0;T ](t). This
function can be approximated by the following two natural sequences of functions, namely

�n(t) =
n�1X
i=0

Bti+11(ti;ti+1]; and  n(t) =
n�1X
i=0

Bti1(ti;ti+1]:

The choice of one sequence or the other leads to a di¤erent de�nition of the integral. Indeed,Z
�ndB �

Z
 ndB =

n�1X
i=0

(Bti+1 �Bti)2:

This expression tends to the quadratic variation of the Brownian motion as the diameter of
the partition goes to zero which, as we saw in Theorem 1.10, [B;B](2)t = t. The Itô integral
consists in taking f ngn2N as approximating sequence. This sequence has the feature of being
non-anticipative and adapted.

1.3.1 The Itô stochastic integral with respect to a semimartingale

The construction of the stochastic integral that we will present in this section is more general
than (1.12) in the sense that we will have as integrator not just the Brownian motion, but an
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arbitrary semimartingale. Semimartingales are the most general and natural setup for stochastic
integration and di¤erentiation, in the sense that stochastic di¤erential equations formulated
using semimartingales have semimartingales as solutions. We start with several de�nitions. All
along this subsection we will consider real valued processes.
We say that the stochastic process X : R+ � 
 ! R has �nite variation whenever it is

adapted and has bounded total variation on compact intervals of R+. More explicitly, a process
X has �nite variation if for each �xed ! 2 
 the path t 7�! Xt(!) has bounded total variation
on compact intervals of R+. That is, the supremum sup

�Pp
i=1 jXti(!)�Xti�1(!)j

	
over all

the partitions 0 = t0 < t1 < � � � < tp = t of the interval [0; t] is �nite for any t 2 R+. This is
equivalent to the existence of a signed measure �! on R+ such that, assuming X0 = 0, is given
by

Xt (!) = �! ([0; t]) = sup

(
pX
i=1

jXti(!)�Xti�1(!)j
)
. (1.14)

We can now introduce the processes that we are going to use as integrators in the stochastic
integral, namely, semimartingales.

De�nition 1.18 A continuous semimartingale is the sum of a continuous local martingale
and a process with �nite variation.

It can be proved that a given continuous semimartingale has a unique decomposition of the
form

X = X0 + V +M; (1.15)

with X0 the initial value of X, V a �nite variation process, and M a local continuous semi-
martingale provided both V and M are null at time equal to zero ([P05, Chapter III Theorem
2]). It is worth noting that if we remove the hypothesis of X being continuous, then the de-
composition (1.15) may not be unique.
We proceed by presenting the processes that will be used as integrands in the stochastic

integral, namely, the càglàd processes. Let L the space of processesX : R+�
! R whose paths
are left-continuous and have right limits. They are usually called càglàd processes which is the
French acronym for left-continuous with right limits. We denote by D the space of processes
whose paths are right-continuous and have left limits. They are usually called càdlàg. The ucp
topology on D yields a complete and metrizable space using

d (X;Y ) =

1X
n=1

1

2n
E

�
min

�
1; sup
0�s�n

jXs � Ysj
��

:

De�nition 1.19 We say that a stochastic process H 2 L is simple predictable if it can be
expressed as

H = H01f0g +

p�1X
i=1

Hi1(� i;� i+1]; (1.16)

where 0 � �1 � � � � � �p�1 � �p are stopping times, H0 and Hi are F0-measurable and F� i-
measurable random variables respectively such that jH0j < 1 and jHij < 1 a.s. for all i,
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1(� i;� i+1] is the characteristic function of the set f(t; !) 2 R+ � 
 j t 2 (� i (!) ; � i+1 (!)]g, and
1f0g that of f(t; !) 2 R+ � 
 j t = 0g. The collection of simple predictable processes is denoted
by S.

The Itô integral is de�ned �rst for integrands that are simple predictable processes S. Since
S is dense in L under the ucp topology, the continuity of the de�nition of the integral allows
the extension of Itô integral to any càglàd process. We explicitly state the needed chain of
de�nitions and results.

De�nition 1.20 Let H 2 S be a simple predictable process and X a (continuous) semimartin-
gale. De�ne the linear map JX : S �! D as

H �X :=

Z
HdX :=

p�1X
i=1

Hi(X
� i+1 �X� i): (1.17)

where H = H01f0g+
Pp�1

i=1 Hi1(� i;� i+1] is given as in (1.16). JX (H) is called the Itô stochastic
integral of H with respect to X.

Proposition 1.21 S is dense in L under the ucp topology.

Proof. Let Y 2 L be a process and �n = inf ft : jYtj > ng a sequence of stopping times. Observe
that �n ! 1 a.s.. Then Y n = Y �n1f�n>0g 2 bL converge to Y in ucp, where bL denotes the
set of bounded càglàd processes. Indeed,

P

��
sup
0�s�t

jY n
s � Ysj > "

��
� P (f�n = 0g) + P (f�n < tg) :

Observe that
�
�n+1 = 0

	
� f�n = 0g and

lim
n!1

f�n = 0g =
1\
n=1

f�n = 0g = f! : jY0 (!)j � n; 8n 2 Ng

which has zero probability. Therefore P ff�n = 0gg ! 0 as n!1. In addition, P (f�n < tg)!
0 as n !1 because �n !1 a.s.. Hence, bL is dense in L, so we may suppose that Y 2 bL.
De�ne Zt = limu!t

u>t
Yu so that Z 2 D. For " > 0, we de�ne

� "0 = 0;

� "n+1 = inf
�
t : t > � "n and

��Zt � Z�"n�� > "
	
:

Since Z is càdlàg, then � "n are stopping times converging to 1 a.s. as n ! 1. Let Z" =P
n Z�"n1[�"n;�"n+1)

. It is immediate to see that jZ � Z"j � " for any t 2 R+ and any ! 2 
, so
Z" converge uniformly to Z as "! 0. Let

U " = Y01f0g +
1X
j=0

Z�"j1(�"j ;�"j+1]
2 bL:
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Then, U " converges to Y01f0g + Z� = Y in ucp as "! 0, where Z� := limu!t
u<t

Zu. Indeed, for

any (t; !) 2 R+�
, t belongs to a unique interval
�
� "j0 (!) ; �

"
j0+1

(!)
i
for some j0. Furthermore,

if t 2
�
� "j0 (!) ; �

"
j0+1

(!)
i
then, from the de�nition of the stopping times � "j ,���Zs (!)� Z�"j0 (!) (!)��� � "

a.s. for any s < t with s 2
�
� "j0 (!) ; �

"
j0+1

(!)
i
. Hence it also holds that���(Z�)s (!)� Z�"j0 (!) (!)��� � "

with s satisfying the same hypotheses. This implies that
�
sup0�s�t jU "s � (Z�)sj > "

	
has prob-

ability zero. Finally, de�ne Y n;" 2 S as

Y n;" = Y01f0g +
nX
j=0

Z�"j1(�"j^n;�"j+1^n]
;

which can be made arbitrary close to Y 2 bL taking " small and n large enough.
In the sequel we will exchangeably use the symbols H � X and

R
HdX to denote the Itô

stochastic integral.

Theorem 1.22 If X is a semimartingale, then JX : Sucp �! Ducp is continuous.

Remark 1.23 P. E. Protter introduces semimartingales as the processes for which JX :
Sucp �! Ducp is continuous. Had we taken his approach, the previous theorem would be empty
of content. He shows later on that semimartingales, that is, process for which JX : Sucp �! Ducp
is continuous, admit a decomposition as in (1.15) ([P05, Chapter III, Theorem 1]).

De�nition 1.24 Let X be a (continuous) semimartingale. The linear map

JX : Lucp �! Ducp

obtained as the extension by density of JX : Sucp �! Ducp is called the Itô integral.

Given any stopping time � we de�neZ �

0
Y dX := (Y �X)� :

It can be shown that (1[0;� ]Y ) � X = (Y � X)� = Y � X� . If there exists a stopping time �X
such that the semimartingale X is de�ned only on the stochastic intervals [0; �X), then we may
de�ne the Itô integral of Y with respect to X on any interval [0; � ] such that � < �X by means
of Y �X� .

Remark 1.25 Given the integrator semimartingale X, there are a few considerations on par-
ticular cases that deserve being pointed out:
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(i) Suppose that X has paths of �nite total variation on compact subsets of R+ (that is,
M = 0 in the decomposition (1.15)). In this situation, the stochastic integral

R
HdX has

paths of �nite total variation on compact subsets of R+ and it is indistinguishable from
the Riemann-Stieltjes integral, computed path by path ([P05, Chapter II Theorem 17]).

(ii) If X is a local martingale, then
R
HdX is also a local martingale ([P05, Chapter III

Theorem 33]).

(iii) A corollary of the previous two points is that the stochastic integral with respect to a
semimartingale is a semimartingale.

(iv) Brownian motions and the Martingale Representation Theorem. Suppose that X = B, a
real valued Brownian motion. Then, the integral

R
HdB is a local martingale. Conversely,

the Martingale Representation Theorem ([O03, Theorem 4.3.4]) asserts that given an
arbitrary L2-martingale M with respect to the canonical �ltration FB induced by the
Brownian motion B, there exists a unique Ft-adapted process H such that E[

R t
0 H

2
s ds] <

1 and

Mt = E[M0] +

Z t

0
HsdBs:

We now show how the Itô integral can be approximated by �nite sums that replace the
original integrand by a simple predictable process that tends to it in a sense that we make
precise in the following de�nition.

De�nition 1.26 A sequence f�ngn2N of random partitions converging to the identity is a
sequence where each �n is a �nite family of stopping times f�nj gj=0;:::;kn such that

1. 0 � �n0 � �n1 � ::: � �nkn.

2. limn!1 �nkn =1 a.s.

3. k�nk = supk
���nk+1 � �nk ��! 0 a.s. as n!1.

Proposition 1.27 (Approximation property, [P05, Chapter II Theorem 21]) Let X
be a semimartingale and Y a process in L. Let f�ngn2N be a sequence of random partitions
converging to the identity. Consider

Y �n =

kn�1X
i=0

Y�ni 1(�ni ;�ni+1]
:

Then, as n!1,

Z t

0
Y �ndX =

kn�1X
i=0

Y�ni (X
�ni+1
t �X�ni

t ) �!ucp

Z t

0
Y dX: (1.18)
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Alternative approach: Itô integral with respect to L2-martingales

We are now going to brie�y summarize an alternative approach to the Itô integral of a process
with respect to a semimartingale that some authors use (see for example [CW90], [LG97],
and [IW89]). In the following paragraphs, however, we are not going to deal with the most
general case and we are going to assume that the semimartingale X = X0 + V +M admits
a decomposition (1.15) where the local martingale M is actually a L2-martingale. Since the
integral with respect to the �nite variation process V may be de�ned in terms of the Riemann-
Stieltjes integral, as far as the de�nition of the integral with respect to X is concerned we only
need to deal with the L2-martingale M .
Let R the family of sets of R+ �
 the form f0g �A0 and (s; t]�As, where s < t, A0 2 F0,

and As 2 Fs. R is called the family of predictable rectangles. The �-algebra of [0; T ] � 

generated by R is called the predictable �-algebra and is denoted by P. LetMrc

2 denote the
space of L2 (
; P ) right-continuous martingales M : R+ � 
! R. Given M 2 Mrc

2 , we de�ne
a set function �M on R by �M ((s; t]�As) = E[1As (Mt �Ms)

2] for As 2 Fs and s < t � T ,
and �M (f0g �A0) = 0 for A0 2 F0. If M is right-continuous L2-martingale then �M extends
to a unique measure on P, called the Doléans measure ([CW90, Section 2.8]). We will continue
denoting this measure by �M . It can be proved ([CW90, Theorem 4.2]) that, for any U 2 P,

�M (U) = E

�Z T

0
1Ud [M;M ]s

�
; (1.19)

where [M;M ] : R+�
! R is the quadratic variation ofM (see the next subsection 1.3.2) and
the integral in the right hand side of (1.19) is a pathwise integral which must be understood
in the Riemann-Stieltjes sense.
We will say that a process H is a R-simple process process if it can be written as a �nite

linear combination of indicator functions of predictable rectangles. That is, if H can be written
as

H =
mX
k=1

dk1f0g�Ak0
+

pX
i=1

ci1(si;ti]�Ai (1.20)

with ci 2 R, Ai 2 Fsi , si < ti in R+ for 1 � i � p, p 2 N, and dk 2 R, Ak0 2 F0 for 1 � k � m,
m 2 N. The Itô integral

R
HdM is then naturally de�ned asZ

HdM :=

pX
i=1

ci1Ai (Mti �Msi) :

It can be checked that the Itô integral does not depend on the particular representation (1.20)
of H. Moreover, if E denotes the space of R-simple process, the map E 3 H 7!

R
HdM satis�es

the isometry

E

"�Z
HdM

�2#
=

Z
R+�


H2d�M :

On the other hand, E is dense in the Hilbert space L2 (R+ � 
;P; �M ) ([CW90, Lemma 2.4]). If
we regard L2 (R+ � 
;P; �M ) and L2 (
;F ; P ) as Hilbert spaces, then the map H 7!

R
HdM is
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a linear isometry from the dense subspace E of L2 (R+ � 
;P; �M ) into L2 (
;F ; P ) ; and hence
can be uniquely extended to a linear isometry from L2 (R+ � 
;P; �M ) into L2 (
;F ; P ). For
H 2 L2 (R+ � 
;P; �M ), we de�ne

R
HdM as the image of H under this isometry. As usual,

the expression
R t
0 HdM denotes

R
1[0;t]HdM .

1.3.2 The quadratic variation and the Stratonovich integral

All along this section X : R+�
! R will be a (continuous) semimartingale such that X0 = 0
a.s. In order to simplify the notation, the symbol [X;X] will denote the quadratic variation
[X;X](2) introduced in (1.8). However, we are no longer going to consider the quadratic vari-
ation as a quantity computed path-by-path but as a process properly introduced in terms
of stochastic integrals. In other words, the quadratic variation will be a process as a whole.
Concretely,

De�nition 1.28 Let X : R+�
! R be a càglàd semimartingale. The quadratic variation
process of X, denoted by [X;X]t�0, is de�ned as

[X;X] = X2 � 2
Z
XdX:

Apparently, this de�nition seems to have nothing in common with the notion of the quadratic
variation of a path we gave in (1.8). However, the next proposition shows that the two de�nitions
are actually closer to each other than we might have thought at �rst sight. In particular, both
coincide if the limit in (1.8) is properly taken.

Proposition 1.29 Let f�ngn2N be a sequence of random partitions tending to the identity as
in De�nition 1.26. Then

[X;X] = X2
0 + lim

n!1
ucp

kn�1X
i=0

�
X�ni+1 �X�ni

�2
: (1.21)

Additionally, [X;X] is an increasing process.

Proof. Let f�ngn2N be a sequence of stopping times converging to 1 a.s.. First of all, observe
that if Z is any real process, then Z�n !ucp Z as n!1. Indeed, if s 2 [0; t] and " > 0, then

fjZ�n � Zjs > "g � f�n < sg � f�n < tg :

Hence

P

��
sup
0�s�t

jZ�n � Zjs > "

��
� P (f�n < tg)

for any t 2 R+. In addition, P (f�n < tg) ! 0 in probability as n ! 1 because �n ! 1 a.s..
Once we have made this observation, it is immediate to see that the telescopic sum

�
X2
��nkn = kn�1X

i=0

n�
X2
��ni+1 � �X2

��ni o ;
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converges in ucp to X2 �X2
0 because �

n
kn
!1 a.s. as n!1. Now, the sum

kn�1X
i=0

X�ni

�
X�ni+1 �X�ni

�
converges in ucp to

R
XdX by (1.18). Since b2�a2�2a (b� a) = (b� a)2 andX�ni

�
X�ni+1 �X�ni

�
= X�ni

�
X�ni+1 �X�ni

�
, we have

kn�1X
i=0

�
X�ni+1 �X�ni

�2
=

kn�1X
i=0

n�
X2
��ni+1 � �X2

��ni � 2X�ni
�
X�ni+1 �X�ni

�o
=

kn�1X
i=0

n�
X2
��ni+1 � �X2

��ni o� 2 kn�1X
i=0

X�ni
�
X�ni+1 �X�ni

�
�!
ucp

X2 �X2
0 � 2

Z
XdX:

Finally, note that if s < t, then the approximating sums (1.21) include more non-negative
terms, so [X;X] is non-decreasing (see [P05, Chapter II Theorem 22]).

Corollary 1.30 If X is a continuous semimartingale and has paths of �nite variation then
[X;X] = X2

0 .

Proof. We have

kn�1X
i=0

�
X�ni+1 �X�ni

�2
t
� sup

i=0;:::;kn�1

��X�ni+1 �X�ni
��
t

kn�1X
i=0

��X�ni+1 �X�ni
��
t

� sup
i=0;:::;kn�1

��X�ni+1 �X�ni
��
t
� ([0; t])

where � ([0; t]) is the total variation of X on the interval [0; t] introduced in (1.14). But

sup
i=0;:::;kn�1

��X�ni+1 �X�ni
��
t

tends to 0 as k�nk ! 0 because X is continuous, and therefore uniformly continuous, on [0; t].

We now state Levy�s characterization of Brownian motion for the sake of completeness:

Theorem 1.31 (Levy�s Theorem) A stochastic process X : R+ � 
 ! R is a standard
Brownian motion if and only if it is a continuous local martingale and [X;X]t = t.

The next proposition is a consequence of the de�nition of the stochastic integral and the
representation of the quadratic variation of a semimartingale as the limit of the approximative
sums in Proposition 1.29. It will be useful in order to prove Itô�s formula. See [P05, Chapter
II Theorem 30] for its proof.
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Proposition 1.32 Let f�ngn2N be a sequence of random partitions tending to the identity as
in De�nition 1.26, Y a càglàd adapted process, and X a càglàd semimartingales. ThenZ

Ysd[X;X]s = lim
n!1
ucp

kn�1X
i=0

Y�ni
�
X�ni+1 �X�ni

�2
:

De�nition 1.33 Let X, Y be two continuous semimartingales such that X0 = Y0 = 0. The
quadratic covariation of X and Y is de�ned by

[X;Y ] =
1

2
([X + Y;X + Y ]� [X;X]� [Y; Y ]) : (1.22)

Equivalently,

[X;Y ] := XY �
Z
XdY �

Z
Y dX: (1.23)

The paths of the quadratic covariation [X;Y ] of two continuous semimartingales have �-
nite total variation. Moreover, for any sequence of random partitions tending to the identity
f�ngn2N, we have

[X;Y ] = lim
n!1
ucp

kn�1X
i=0

�
X�ni+1 �X�ni

� �
Y �ni+1 � Y �ni

�
(1.24)

([P05, Chapter II Theorem 23]). Observe that the quadratic covariation is the process we
have to add to the usual integration by parts formula in the context of Itô integrals, which
consequently no longer holds. In order to remedy this situation, the Stratonovich integral arises.

De�nition 1.34 Given X and Y two semimartingales we de�ne the Stratonovich integral
of Y along X as Z

Y �X =

Z
Y dX +

1

2
[Y;X]:

Using the limit expressions for the Itô integral and for the quadratic variation, we have
that, for any sequence of random partitions tending to the identity f�ngn2N, the Stratonovich
integral can be written asZ

Y �X = lim
n!1
ucp

kn�1X
i=0

�
Y �ni+1 + Y �ni

�
2

�
X�ni+1 �X�ni

�
(1.25)

([P05, Chapter V Theorem 26]). In other words, the di¤erence between the Itô and the
Stratonovich integrals can be expressed by saying that the former is obtained by taking a
lower endpoint approximation of the integrand on (�ni ; �

n
i+1] while the latter uses the middle

point.

Remark 1.35 (Integration by parts) From the de�nition of the Stratonovich integral is
immediate to check that Z

Y �X = Y X �
Z
X�Y:

That is, the Stratonovich integral satis�es the usual integration by parts formula.
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1.3.3 The Itô formula

The Itô formula is the cornerstone of stochastic calculus and represents the analog of the chain
rule in the context of Itô integration.

Theorem 1.36 (Itô formula) Let X1; : : : ; Xp be p continuous semimartingales and f 2
C2(Rp). Then,

f(X1
t ; : : : ; X

p
t ) = f(X1

0 ; : : : ; X
p
0 ) +

pX
i=1

Z t

0

@f

@xi
(X1

s ; : : : ; X
p
s )dX

i
s

+
1

2

pX
i;j=1

Z t

0

@2f

@xi@xj
(X1

s ; : : : ; X
p
s )d[X

i; Xj ]s: (1.26)

Proof. (Sketch) We are going to prove only the case p = 1. Consider f�ngn2N a sequence of
nested deterministic partitions of [0; t] tending to the identity. That is, �n is a family of �nite
times such that 0 = tn0 � tn1 � ::: � tnkn = t and k�nk ! 0 as n!1. Then,

f (Xt)� f (X0) =
kn�1X
i=0

�
f
�
Xtni+1

�
� f

�
Xtni

��
:

Using Taylor�s formula, we have

f
�
Xtni+1

�
� f

�
Xtni

�
= f 0

�
Xtni

� �
Xtni+1

�Xtni

�
+
1

2
f
00 �
Xtni

� �
Xtni+1

�Xtni

�2
+R

�
Xtni

; Xtni+1

�
(1.27)

where jR (x; y)j � r (jx� yj) (x � y)2 and r : R ! R is an increasing function such that
limu!0 r(u) = 0. Equation (1.27) is valid for any f 2 C2 (R) de�ned on a compact set. Since
there is no reason for Xt to be contained in a compact set, we de�ne the stopping times

�m = inf ft : jXtj � mg :

Then the process X�m is bounded by m and, if Itô�s formula is valid for X�m for each m, then
it is also valid for X. Therefore, we may assume without loss of generality that X takes values
on a compact set.
On the one hand, we have that

lim
n!1

kn�1X
i=0

f 0
�
Xtni

� �
Xtni+1

�Xtni

�
=

Z t

0
f 0 (X) dX

in probability by Proposition 1.27. On the other hand,

lim
n!1

kn�1X
i=0

f
00 �
Xtni

� �
Xtni+1

�Xtni

�2
=

Z t

0
f 00 (X) d [X;X]
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in probability by 1.32. It remains to consider the third sum
Pkn�1

i=0 R(Xtni
; Xtni+1

). This sum is
bounded above by

sup
i=0;:::;kn�1

r
����Xtni+1

�Xtni

���� kn�1X
i=0

�
Xtni+1

�Xtni

�2!

and since
Pkn�1

i=0 (Xtni+1
�Xtni

)2 converges in probability to [X;X]t, the last term will tend to

0 if limn!1 supi=0;:::;kn�1 r(
���Xtni+1

�Xtni

���) = 0. However, the path Xs is a continuous function

on [0; t] and hence uniformly continuous. Since limn!1 supi=0;:::;kn�1

���Xtni+1
�Xtni

��� = 0 by

hypothesis, the result follows from the properties of r.

Sometimes (1.26) is presented using a symbolic di¤erential notation, namely:

df(X1
t ; : : : ; X

p
t ) =

pX
i=1

@f

@xi
(X1

s ; : : : ; X
p
s )dX

i
s +

1

2

pX
i;j=1

@2f

@xi@xj
(X1

s ; : : : ; X
p
s )d[X

i; Xj ]s: (1.28)

In this expression one sees that the di¤erence with the chain rule of standard calculus lies in the
second term of (1.28) that involves the quadratic variation and that disappears for processes
with �nite total variation. This hence allows us to visualize Itô calculus as a generalization of
standard calculus. When we will later on work globally on manifolds, formula (1.28) will force
us to use the second order tangent bundle instead of the standard tangent bundle.
The analog of equality (1.26) for the Stratonovich integral is

f(X1
t ; : : : ; X

p
t ) = f(X1

0 ; : : : ; X
p
0 ) +

pX
i=1

Z t

0

@f

@xi
(X1

s ; : : : ; X
p
s )�X

i
s

or, in di¤erential notation,

df(X1
t ; : : : ; X

p
t ) =

pX
i=1

@f

@xi
(X1

s ; : : : ; X
p
s )�X

i
s

which coincides with the standard chain rule.

1.3.4 Stochastic di¤erential equations

Let X = (X1; : : : ; Xp) be p real valued continuous semimartingales and f : R+�Rq ! Rq a
smooth function. A (strong) solution of the Itô stochastic di¤ erential equation

d�i =

pX
j=1

f ij(t;�)dX
j (1.29)

with initial condition the random vector �0 = (�10; : : : ;�
q
0) is a stochastic process �t =

(�1t ; : : : ;�
q
t ) such that

�it � �i0 =
pX
j=1

Z t

0
f ij(t;�)dX

j :
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There is an existence and uniqueness theorem for the solutions of (1.29) which appears in
the literature formulated with a great variety of slightly di¤erent statements, depending on the
hypotheses one imposes on the de�ning function f : R+�Rq ! Rq. Usually, f is only assumed
to be locally Lipschitz. Recall that a function f : R+ � Rq ! Rq is Lipschitz if there exists a
�nite constant K such that

(i) kf (t; x)� f (t; y)k � K kx� yk, for each t 2 R+, and x; y 2 Rq

(ii) t 7! f (t; x) is right continuous with left limits (càdlàg) for each x 2 Rq.

The function f is said to be locally Lipschitz if there exists and increasing sequence of open
sets �k such that

S
k �k = Rq and f is Lipschitz with a constant Kk on each �k. For example, if

f has continuous but not necessarily bounded derivatives then f is locally Lipschitz. However,
we suppose f is di¤erentiable in (1.29) because we prefer to stay within the category of C1

functions when considering stochastic di¤erential equations on manifolds. When f : R+�Rq !
Rq is only locally Lipschitz, the solutions of (1.29) are de�ned up to an explosion time. More
explicitly,

Theorem 1.37 ([P05, Chapter V Theorem 38 and 39]) For any x 2 Rq, there exists a
stopping time �(x; �) : 
! R+ and a unique time-continuous solution X(t; !; x) of (1.29) with
initial condition x de�ned on the time interval [0; �(x; !)). Additionally, lim supt!�(x;!) kXt(!)k
= 1 a.s. on f� < 1g and X is smooth in x on the open set fx j �(x; !) > tg. Finally, the
solution X is a semimartingale.

Had we taken as initial condition in Theorem 1.37 any F0-measurable random variable X0
instead of X0 = x 2 Rq a.s., Theorem 1.37 would remain true. Obviously, an analogous result
can be formulated for Stratonovich stochastic di¤erential equations.

Examples 1.38

(i) The Langevin equation provides a model for the motion of a particle subjected to
damping caused by microscopic collisions. Let V the velocity of the particle in question;
the Langevin equation (Langevin (1908)) is:

dVt = �bVtdt+ �dBt:

The solution of the Langevin equation is given by the Ornstein-Uhlenbeck process

Vt = e�btV0 +

Z t

0
e�b(t�s)�dBs:

(ii) The geometric Brownian motion is used as a model for the behavior of the underlying
asset in the Black-Scholes formula for the price of an option:

dXt = �Xtdt+ �XtdBt:

Its solution is given by

Xt = X0 exp

�
�t� �2

2
t+ �Bt

�
for any F0-measurable random variable X0.
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SDEs and partial di¤erential equations. The Feynman-Kac formula

Let B be a d-dimensional Brownian motion and V0; V1; : : : ; Vd : Rn ! Rn a collection of Lip-
schitz autonomous vector �elds in Rn with Lipschitz partial derivatives. Consider the associated
(Stratonovich) stochastic di¤erential equation

�Xt = V0(Xt)dt+
dX
i=1

Vi(Xt)�B
i
t: (1.30)

The strong solutions of (1.30) are called di¤usions. It can be shown that these solutions have
moments of every order, have no explosions (that is, � (x; �) = 1 for any x 2 Rq), and are
homogeneous Markov processes ([P05, Chapter V Theorem 32], [O03, Theorem 7.1.2]). This
allows us to associate a transformation semigroup Pt to the stochastic di¤erential equation
(1.30) that acts on the space of measurable functions f : Rn ! R:

(Ptf) (x) := E[f(Xx
t )]; (1.31)

where Xx
t is the (unique) solution of (1.30) such that X

x
0 = x, a.s.. If C0(Rn) denotes the

separable Banach space of real valued functions that tend to zero at in�nity endowed with the
k � k1 norm, then Pt is a continuous semigroup made of contractions of (C0(Rn); k � k1), i.e.,
kPtfk1 � kfk1, and the map (t; f) 7! Ptf is continuous.
The in�nitesimal generator L of the transformation semigroup Pt is de�ned by

Lf := lim
t!0

1

t
(Ptf � f) :

and can be explicitly written down in terms of the vector �elds that determine the stochastic
di¤erential equation, namely:

Lf = V0[f ] +
1

2

dX
i=1

Vi[Vi[f ]] (1.32)

By [Y71, Chapter IX Theorem 3.1], the domain Dom(L) of de�nition of L is a dense subspace
of (C0(Rn); k � k1) and

d

dt
Ptf = PtLf = LPtf (1.33)

for any f 2 Dom(L). This equation and (1.31) show that u(t; x) = E[f(Xx
t )] = Ptf(x) is a

solution of the second order, parabolic, linear partial di¤erential equation�
@
@tu = Lu

u(0; x) = f(x)
(1.34)

with initial condition f 2 C0(Rn). This statement provides a probabilistic interpretation of the
solutions of the partial di¤erential equation (1.34) in terms of an expectation. This is of much
importance at the time of numerically computing those solutions using Montecarlo methods.
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Example 1.39 The heat equation. Suppose that Xx
t : R+ � 
 ! Rd is a d-dimensional

Brownian motion starting at x 2 Rd. That is, in our usual notation, Xx
t = x+Bt with B0 = 0.

The in�nitesimal generator associated to its transition semigroup is just the Laplacian, L = �.
Consequently, in view of (1.34), u(t; x) = E[f(Xx

t )] = Ex[f(Bt)] is a solution of the heat
equation

@

@t
u = �u

with initial f 2 C0 (Rn) condition at time t = 0.

The previous example is the simplest particular case of the Feynman-Kac representation
formula which, under certain technical hypotheses, provides solutions to the Cauchy problems

� @
@tu�(t; x) = �u� � k(x)u� + g(t; x); t 2 [0; T ]; x 2 Rn; (1.35)

restricted to u+ (0; x) = f(x) at time t = 0 for the forward equation (sing + in (1.35)) or
u� (T; x) = f(x) at terminal time t = T for the backward equation (sing � in (1.35)). For
example, if B denotes an d-dimensional Brownian motion, the function u� solution of backward
heat equation admits the stochastic representation

u(t; x) = Ex
�
f (BT�t) e

�
R T�t
0 k(s;Xt;x

s )ds+

Z T�t

0
g(t+ u;Bu) e

�
R u
0 k(Bs)dsdu

�
(1.36)

t 2 [0; T ], x 2 Rd, provided that f : Rd ! R, k : Rd ! R, and g : [0; T ] � Rd ! R are
continuous, u� : [0; T ]� Rd ! R is continuous and of class C1;2 on [0; T )� Rn; and

max
0�t�T

ju� (t; x)j+ max
0�t�T

jg (t; x)j � K eakxk
2

for some constants K > 0 and 0 < a < 1=(2Td) (see [KS91, Chapter 4 Theorem 4.2]). (1.36) is
known as the Feynman-Kac representation formula. Other versions of the Feynman-Kac
representation formula can be found in the literature (see for instance [O03, Theorem 8.2.1]).

Hypoelliptic di¤usions and the Kolmogorov-Fokker-Planck equations

A stochastic process Xx with initial condition x is called hypoelliptic when, for each time t > 0
for which Xx is de�ned, the law of Xx

t is absolutely continuous with respect to the Lebesgue
measure and the corresponding probability density function pt(x; y) is a smooth function on y
and t. A stochastic di¤erential equation is called hypoelliptic when each of its solutions of the
form Xx is hypoelliptic and the density pt(x; y) is smooth on all its entries.
Hypoellipticity is usually very hard to check and it is one of the main subjects of the so

called Malliavin calculus. There exist su¢ cient conditions for hypoellipticity, the most famous
of them being Hörmander�s condition. Hörmander�s result says that if the vector �elds that
generate the stochastic di¤erential equation (1.30) are such that the Lie algebra generated by
the family

ffVigi=1;:::;d; f[Vi; Vj ]gi;j=0;:::;d; f[[Vj ; Vj ] ; Vk]gi;j;k=0;:::;d; : : :g
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spans the whole space Rn at each point x 2 Rn, then the associated di¤usion is hypoelliptic.
If the spanning condition holds only at the point x, then only the process Xx is hypoelliptic
([N95, Theorem 2.3.2 and 2.3.3]).
When the di¤usion is hypoelliptic, the equation (1.33) can be used to write down the di¤er-

ential equation that determines the time evolution of the pdf pt(x; y). Indeed, endow the space
of smooth compactly supported functions Cc(Rn) with the inner product de�ned by

hf; gi =
Z
Rn
f(y)g(y)dy:

Since we are considering a hypoelliptic di¤usion, we can write (1.31) as

(Ptf) (x) := E[f(Xx
t )] =

Z
Rn
f(y)pt(x; y)dy:

Now, for any f 2 Cc(Rn), we have that
d

dt
(Ptf) (x) =

Z
Rn
f(y)

@

@t
pt(x; y)dy = h

@

@t
pt(x; �); fi:

On the other hand,

(Pt(Lf)) (x) =

Z
Rn
Lf(y)pt(x; y)dy = hpt(x; �); Lfi = hL�pt(x; �); fi:

If we now use (1.33) and the fact that the last two equalities are valid for any f 2 Cc(Rn), we
conclude that

@

@t
pt(x; y) = L�pt(x; y);

which is known as the forward Kolmogorov or Fokker-Planck equation for the time
evolution of the pdf pt(x; y). In this expression, L� denotes the adjoint operator of L.

1.4 Manifold valued semimartingales and SDEs

All along this section M will denote a �nite dimensional, second-countable, locally compact
Hausdor¤ (and hence paracompact) manifold. The content of this section is mainly based on
the excellent book by M. Émery [E89] which, in contrast with other references, gathers the
essential tools of stochastic di¤erential geometry using a more modern geometrical language.

De�nition 1.40 A continuous M -valued stochastic process � de�ned on the �ltered probability
space (
;F ; P; fFtgt�0) is called a semimartingale if, for any f 2 C1 (M), the process f ��
is a real valued semimartingale.

If M and N are two manifolds and � :M ! N a smooth mapping between them, it is clear
that if � is a M -valued semimartingale, then � �� is a N -valued semimartingale. The property
of being a semimartingale can be localized in the sense that one can �nd a family of charts that
covers the manifold such that, roughly speaking, the M -valued process � is a semimartingale
whenever its restrictions to the charts are (real valued) semimartingales of the type previously
studied. We now make this statement more precise.
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De�nition 1.41 A stopping time � is said to be predictable if there exists an increasing
sequence f�ngn2N of stopping times such that �n ! � a.s..

The main tool in proving our statement is the following proposition, which states that given
a M -valued continuous process and an open covering of M , one can construct a family of
stopping times that can be used to con�ne the process to the open sets of the covering.

Proposition 1.42 Let fUkgk2N be a countable open covering of coordinate neighborhoods of
M and � an adapted and continuous M -valued process de�ned on [0; �), with � a predictable
stopping time. Then, there exist predictable stopping times �n with �0 = 0, �n � �n+1 and
supn �n = � a.s. such that, on each of the sets [�n; �n+1] \ f�n+1 > �ng, � takes its values in
one set Uk(n).

Proof. Denote by E the set of all predictable stopping times � for which there exist a �nite
sequence of predictable stopping times 0 = �0 � �1 � ::: � �p = � � � with the same
property as in the statement: � takes its values in Uk(n) on the interval [�n; �n+1]\f�n+1 > �ng,
n = 1; :::; p. The proof will be broken down into four steps.

1. E 6= ;. Take U1 2 fUkgk2N and consider V an open set such that V � U1. De�ne �0 = 0
and

�1 = inf ft > 0; �t =2 V g :

Obviously, �1 = 0 on f�0 =2 V g by continuity of the process �. It is a well know result
that �1 is a stopping time if � is adapted. Moreover, it is predictable. To see this, we
can build an increasing sequence of nested closed sets fDngn2N such that Dn � V for
any n 2 N and d (@Dn; @V ) �! 0 as n ! 1, where d (�; �) is the distance induced on V
from the Euclidean one on Rm by means of the coordinate homeomorphism. Finally, the
process � takes its values in V � U1 on the set [�0; �1] \ f�1 > �0g. So � = �1 2 E.

2. The essential supremum R of E exists. Recall that if fZj : j 2 Ig is a family of random
variables de�ned on (
;F ; P ), where the index set I may be arbitrary, then there exists
a countable subset J of I such that the random variable Z� : 
! [0;1] de�ned by Z� =
sup�2J Z� is the essential supremum. That is, satis�es the following two properties:
(i) P (fZj � Z�g) = 1 for each j 2 I; (ii) If eZ : 
 ! [0;1] is another random variable
satisfying all the previous identities in place of Z�, then P (fZ� � eZg) = 1. The random
variable Z� is called the essential supremum of fZj : j 2 Ig relative to P . It is determined
by the properties (i) and (ii) uniquely up to a P-null set (see [BP06] and [F06]). In the
present situation I = E. So the essential supremum R of E exists. Moreover, R may
be written as R = sup�2J �� for a countable family f��g�2J of stopping times. Using a
bijection map � : N! J if necessary, we may replace J with N and write R = supn2N �n.
Hence R is again a stopping time. Explicitly, being R the supremum of f�ngn2N, it
holds that fR > tg = [n2N f�n > tg and since each f�n > tg belongs to Ft, so does
fR > tg. Actually, R is predictable, since it may be expressed as R = limk e�k, wheree�k = maxf�1; :::; �kg.
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3. The essential supremum R of E is � a.s.. Suppose this is not the case. That is, P (fR < �g)
> 0. Observe that R is �nite on the set A := fR < �g. Consequently, �R is well de�ned
on A. There must exist a Uk such that

P (A \ f�R 2 Ukg) > 0;

because if P (A \ f�R 2 Ukg) = 0 for any k 2 N, then

0 < P (A) = P (A \ f�R 2Mg) �
X
k2N

P (A \ f�R 2 Ukg) = 0;

which is clearly a contradiction. Indeed, as Uk is an open coordinate neighborhood, there
must exist another open set V such that V ( Uk and

P (A \ f�R 2 V g) > 0:

De�ne the stopping time S as follows:

S =

�
R if R =1 or �R =2 V
inf ft > R : �t =2 V g if �R 2 V:

Then, S has non-zero probability of exceeding R and S is predictable because, on the
one hand, R was already predictable and, on the other hand, exit stopping times from
open sets are predictable. Since R is the essential supremum of E, there exists a sequence
f�jgj2N � E such that �j ! R a.s. as j !1. De�ne fe�jgj2N as e�j = �j ^ S. It is clear
that e�j 2 E because if f� jigi=0;:::;pj are such that 0 = � j0 � � j1 � ::: � � jp = �j and the
property of the statement holds, then 0 = � j0 ^ S � � j1 ^ S � ::: � � jp ^ S = e�j and
the property keeps holding for this new sequence. But now e�j ! S a.s. as j !1, which
contradicts the fact that R is the essential supremum. Therefore R = � a.s..

4. To sum up, E contains a sequence f�jgj2N such that �j ! � a.s.. In order to prove the
statement of the proposition, it su¢ ces to interpolate this sequence by inserting between
�j and �j+1 the predictable stopping times

� (j+1)0 _ �j ; :::; � (j+1)p _ �j
where, as in the previous point, � (j+1)0 ; :::; � (j+1)p are given such that 0 = � (j+1)0 �
� (j+1)1 � ::: � � (j+1)p = �j+1 2 E.

We �nish this brief introduction on manifold valued semimartingales by stating a couple of
results that, essentially, show that the property of being a semimartingale is local ([E89, page
23]).

Proposition 1.43 Let � : R+ � 
 ! M be a M -valued process and fUkgk2N a countable
family of coordinate neighborhoods that cover M , with coordinate maps

�
Uk;x

i
k; i = 1; :::;m

	
.

Let f�ngn2N be the sequence of stopping times given by Proposition 1.42. Then,

� is an M -valued semimartingale() xik(n) � Y
n is a real valued semimartingale.

Proposition 1.44 Let � be a M -valued semimartingale and N � M a regular submanifold
such that � takes its values on N . Then � is a N -valued semimartingale.
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1.4.1 The quadratic variations of a M-valued semimartingale

As we saw when dealing with real valued processes, the quadratic variation is a tool of para-
mount importance. Since the de�nition that we introduced involves the sum and the multi-
plication of real numbers, it cannot be trivially rephrased for manifold valued processes. This
di¢ culty is solved by replacing the multiplication by the use of a bilinear form on the manifold;
obviously, this yields a di¤erent quadratic variation for each choice of bilinear form.

Theorem 1.45 (The quadratic variation) Let � be a continuousM -valued semimartingale.
There exists a unique linear mapping

b 7�!
Z
bhd�; d�i

from the space of bilinear forms T 2 (M) on M to the space of real valued continuous processes
with �nite total variation that is uniquely determined by the following two properties: for any
f; g 2 C1 (M) and any b 2 T 2 (M),Z

(fb) hd�; d�i =

Z
(f � �) d

�Z
bhd�; d�i

�
(1.37a)Z

(df 
 dg) hd�; d�i = hf � �; g � �i: (1.37b)

The real valued process
R
bhd�; d�i is called the b-quadratic variation of � or the integral

of b along �. We need some auxiliary lemmas before the proof of this theorem.

Lemma 1.46 ([E89, Lemma 2.23]) There exist a natural number n � dim (M) and a �nite
family of functions

�
h1; :::; hn

	
� C1 (M) such that every bilinear form b 2 T 2 (M) can be

expressed as a �nite sum

b =

nX
i;j=1

bijdh
i 
 dhj ; (1.38)

where bij 2 C1 (M) are n2 functions that depend on b.

Proof. By Whitney�s theorem, M can be imbedded in Rn for some n 2 N. In this context,
there exist n smooth functions

�
h1; :::; hn

	
� C1 (M), a partition of the unity (�k)k2K , and a

family (Jk)k2K of subsets of f1; :::; ng such that, for each k, the family (hi)i2Jk is a system of
local coordinates in a neighborhood of the support of �k. If b 2 T 2 (M), then �kb is a bilinear
form compactly supported on a neighborhood with local coordinates (hi)i2Jk . Therefore, it can
be written as �kb =

P
i;j2Jk bkijdh

i
dhj , where supp (bkij) � supp (�k). The lemma is proved
by setting bij =

P
k bkij (locally �nite sum).

Lemma 1.47 (from [E89, Lemma 3.10]) Let � be a continuous M -valued semimartingale.
Let uj, f j, and gj, j = 1; :::; r, be a �nite family of functions on M such that the bilinear formPr

j=1 ujdf
j 
 dgj is identically zero. Then,

nX
j=1

Z
(uj � �) d

�
f j � �; gj � �

�
= 0:
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Proof. Let fUkgk2N be a countable coordinate neighborhood covering of M and f�ngn2N the
stopping time sequence associated to � and subordinated to fUkgk2N given by Proposition 1.42.
Observe that �� is de�ned on the whole interval [0;1), so supn �n =1. Using the Proposition
A.2 in the appendix,

rX
j=1

Z
(uj � �) d

�
f j � �; gj � �

�
= lim

ucp
n!1

n�1X
i=1

rX
j=1

Z
1(� i;� i+1] (uj � �) d

�
f j � �; gj � �

�
:

Now, on (� i; � i+1], � takes values on (Uk(i);x
j
k(i); j = 1; :::;m), soZ

1(� i;� i+1] (uj � �) d
�
f j � �; gj � �

�
=

mX
r;s=1

Z
1(� i;� i+1]

 
uj

@f j

@xrk(i)

@gj

@xsk(i)

!
(�) d

h
xrk(i) (�) ; x

s
k(i) (�)

i
:

Since
Pr

j=1 uj
@fj

@xr
k(i)

@gj

@xs
k(i)

= 0 on Uk(i) by hypothesis, we conclude

rX
j=1

Z
(uj � �) d

�
f j � �; gj � �

�
= 0:

Proof (of Theorem 1.45).
Let b 2 T 2 (M). By Lemma 1.46, b can be written as a �nite sum b =

Pn
i;j=1 bijdh

i 
 dhj
for some functions hi; hj 2 C1 (M) ; i; j 2 f1; :::; ng. If (1.37a) and (1.37b) must hold then,
necessarily, Z

bhd�; d�i =
nX

ij=1

Z
bij (�) dhhi � �; hj � �i: (1.39)

Equation (1.39) allows to de�ne the integral
R
b (d�; d�) in a unique way. Nevertheless, we need

to check that this de�nition does not depend on the particular decomposition
Pn

i;j=1 bijdh
i 


dhj of the bilinear form b 2 T 2 (M). But this is exactly the content of Lemma 1.47.

Remark 1.48 It can be also checked that the b-quadratic variation of � depends only on the
symmetric part of b. Therefore, if b is antisymmetric,

R
bhd�; d�i = 0.

1.4.2 Second order vectors and forms

As we announced when we presented the Itô formula, the new terms that appear in the Itô
stochastic version of the chain rule require, when we move onto stochastic global analysis, the
use of geometric structures that generalize those used in the standard calculus on manifolds.
The most important of these generalized structures are the second order bundles and their
associated sections, the so-called second order forms and vectors �elds.
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De�nition 1.49 Let p 2 M . A tangent vector at p of order two with no constant
term is a di¤erential operator L : C1 (M) �! R that satis�es L

�
f3
�
(p) = 3f (p)L

�
f2
�
(p)�

3f2 (p)L [f ] (p). The vector space of tangent vectors of order two at p will be denoted by �pM .
The manifold �M :=

S
p2M �pM is referred to as the second order tangent bundle of M .

A vector �eld of order two is a smooth section of the bundle �M !M . We denote the set
of vector �elds order two by X2(M).

Remark 1.50 Note that the (�rst order) tangent bundle TM of M is contained in �M . That
is, a vector �eld Y 2 X(M) is a vector �eld of order two. Indeed, if f 2 C1 (M) and applying
the Leibniz rule,

3fY
�
f2
�
� 3f2Y [f ] = 6f2Y [f ]� 3f2Y [f ] = 3f2Y [f ] = Y

�
f3
�
:

The following lemma provides various equivalent characterizations of the notion of second
order vector �eld.

Lemma 1.51 The following statements are equivalent:

(i) L 2 X2(M) is a vector �elds of order 2.

(ii) L : C1 (M) ! C1 (M) is a R-lineal di¤erential operator of order (at most) 2 with no
constant term. Equivalently, on any local coordinate neighborhood

�
U ;xi; i = 1; :::;m

�
, L

can be written as

L =
mX
i=1

li
@

@xi
+

mX
i;j=1

lij
@2

@xi@xj

where li; lij 2 C1 (U) ; i; j = 1; :::;m and lij = lji.

(iii) For any smooth map F =
�
f1; :::; fn

�
:M ! Rn and � : Rn ! R,

L [� � F ] = @�

@xi
(F )L

�
f i
�
+

@2�

@xi@xj
(F )�L

�
f i; f j

�
;

where �L
�
f i; f j

�
= 1

2

�
L
�
f if j

�
� f iL

�
f j
�
� f jL

�
f i
��
is the so called �carré du champs�.

(iv) L [1] = 0 and if f 2 C1 (M) is such that f (p) = 0 at p 2M , then L
�
f3
�
(p) = 0.

Proof. The only non-trivial implication is 4) 1, which we are going to prove explicitly. The
rest are left to the reader. Let f; g; h 2 C1 (M). The polarization formula

6fgh = (f + g + h)3 � (g + h)3 � (f + h)3 � (f + g)3 + f3 + g3 + h3

and the hypothesis in (iv) give L [fgh] (p) = 0 if f (p) = g (p) = h (p) = 0 at some p 2 M .
This implies that L is local. That is, if f 2 C1 (M) vanishes in a neighborhood U of p, taking
g = h such that g (p) = 0 and gjMnD = 1 outside a closed set p 2 D � U , we see that
f = fgh and L [f ] (p) = 0. Let now p 2 M be a point and f 2 C1 (M) an arbitrary function.
Take local coordinates

�
Up;x

i; i = 1; :::;m
�
on a neighborhood Up of p such that x (p) = 0. Let
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ef : x (Up) � Rm ! R be the smooth function de�ned by the relation f = x � ef . Now, in Rm,
we can write ef (x)� ef (0) = mX

i=1

xi
@ ef
@xi

(0) +
mX

i;j=1

xixjhij (x) ;

where hij (x) =
R 1
0 (1� t)

@2 ef
@xi@xj

(tx) dt is a smooth function on Rm such that hij (0) = 1
2

@2 ef
@xi@xj

(0).
Furthermore,

ef (x)� ef (0) = mX
i=1

xi
@ ef
@xi

(0) +

mX
i;j=1

xixj
1

2

@2 ef
@xi@xj

(0)

+

mX
i;j=1

xixj

 
hij (x)�

1

2

@2 ef
@xi@xj

(0)

!
:

Therefore, applying L to this last relationship

L [f ] (p) =
mX
i=1

L
�
xi
�
(p)

@ ef
@xi

(0) +
mX

i;j=1

1

2
L
�
xixj

�
(p)

@2 ef
@xi@xj

(0)

+
mX

i;j=1

L

"
xixj

 
hij (x)�

1

2

@2 ef
@xi@xj

(0)

!#
(p) :

The last term vanishes because each of the three functions that make it up vanish at p. There-
fore,

L [f ] (p) =

mX
i=1

li (p)
@ ef
@xi

(0) +

mX
i;j=1

lij (p)
@2 ef

@xi@xj
(0)

is a second order di¤erential operator at p with no constant term. Its coe¢ cients are li (p) =
L
�
xi
�
(p) and lij (p) = 1

2L
�
xixj

�
(p).

If
�
�xi; i = 1; :::;m

�
and

�
xj ; j = 1; :::;m

�
are local charts on U � M; the change of coordi-

nates formula for L 2 X2(U) is

�li =
mX
k=1

lk
@�xi

@xk
+

mX
k;j=1

lkj
@�xi

@xk@xj
; (1.40a)

�lij =
mX

l;r=1

lrs
@�xj

@xr
@�xi

@xs
: (1.40b)

Equation (1.40a) shows that
Pm

i=1 l
i @
@xi
, that might be expected to be the �rst order part of L,

does not transform as a tensor and hence it is not intrinsically de�ned: tangent vectors of order 2
have no intrinsic �rst order part. On the other hand, (1.40b) satis�es the change of coordinates
formula for two times contravariant tensor �elds. This shows that we can intrinsically associate
to every L 2 X2(M) a symmetric tensor L̂ 2 X(M)
X(M). Moreover, for any f; g 2 C1 (M),

L̂ (df;dg) = �L (f; g) . (1.41)
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Since any element T2 (M) is uniquely de�ned by its action on pairs (df;dg) of exact one forms,
(1.41) fully characterizes L̂.
Concerning the vector �elds of order two, it can be proved that any X 2 X2 (M) may be

written as a �nite sum of second order vector �elds of the type Y Z and W , where Y; Z;W 2
X (M).

De�nition 1.52 Let M , N be two manifolds and � :M ! N a smooth map. For any p 2M ,
we de�ne the second order tangent map at p

�p� : �pM �! ��(p)N

as �p� (L) [f ] = L [f � �], where f 2 C1 (N). The restriction of �p� to TpM clearly coincides
with Tp�.

Second order forms are smooth sections of the cotangent bundle of order two, de�ned as
��M :=

S
p2M ��pM , where �

�
pM is the dual of �pM , p 2 M . The set of second order forms is

denoted by 
2 (M).

De�nition 1.53 Let f; g; h 2 C1(M) and L 2 X2(M). We de�ne d2f 2 
2(M) by d2f(L) :=
L[f ], and df � dg 2 
2(M) as df � dg[L] := �L (f; g) = 1

2 (L [fg]� fL [g]� fL [f ]).

It is easy to show that

df � dg [ZY ] = 1

2
(Z [f ]Y [g] + Z [g]Y [f ]) ; (1.42a)

df � dg [W ] = 0 (1.42b)

for any Y; Z;W 2 X(M).
More generally, let �p; �p 2 T �pM and choose f; g 2 C1 (M) two functions such that df(p) =

�p and dg(p) = �p. It is easy to check that (df �dg)(p) does not depend on the particular choice
of f and g above and hence we can write �p ��p to denote (df �dg)(p). We de�ne � �� 2 
2(M)
for any �; � 2 
(M) as

(� � �) (p) := �(p) � �(p):

This product is Abelian and C1 (M)-bilinear. Furthermore, every second order form can be
locally written as a �nite sum of forms of the type df � dg and d2h.

Theorem 1.54 There exists a unique linear mapping d2 : 
 (M)! 
2 (M) that veri�es

d2 (df) = d2f

d2 (f�) = df � �+ fd2�;

where f 2 C1 (M) and � 2 
 (M).

Proof. Whitney�s Embedding Theorem guarantees that any one-form � 2 
 (M) can be writ-
ten as a �nite sum

� =
nX
i=1

fidh
i (1.43)
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for a �nite family of functions ffi; hi; i = 1; :::; ng ; n � m. If d2 exists, d2� is necessarily equal
to

d2� =
nX
i=1

�
dfi � dhi + fid2hi

�
; (1.44)

which establishes the uniqueness. In order to prove the existence, we have to verify that
the result obtained in (1.44) does not depend on the particular decomposition (1.43) of �.
This is equivalent to showing that, if � =

Pn
i=1 fidh

i = 0, then the second order form
� =

Pn
i=1

�
dfi � dhi + fid2hi

�
vanishes. That is, we have to check that � (X) = 0, where

X 2 X2 (M) is any second order vector �eld of the form Y Z or W , Y; Z;W 2 X (M). By
(1.42b),

� (W ) =

nX
i=1

fid2h
i (W ) = � (W ) = 0. (1.45)

On the other hand, since Y Z � ZY = [Y; Z] is a vector �eld of order one, (1.45) implies that
� (Y Z) = � (ZY ). Therefore,

2� (Y Z) = � (Y Z + ZY )
(1:42a)
=

nX
i=1

�
Y [fi]Z

�
hi
�
+ Y

�
hi
�
Z [fi] + fiY Z

�
hi
�
+ hiZY [fi]

�
=

nX
i=1

�
Y
�
fiZ

�
hi
��
+ Z

�
fiY

�
hi
���

= Y [� (Z)] + Z [� (Y )] = 0:

1.4.3 Itô and Stratonovich integrals

De�nition 1.55 Let � : R+ � 
 ! ��M be a process. One says that � is locally bounded
if the set f�s : 0 � s � tg is relatively compact in ��M for any t and any ! a.s.. We will say
that � covers (or is over) � : R+ � 
! M if ���M (�) = �, where ���M : ��M ! M is the
canonical projection.

Theorem 1.56 ([E89, Theorem 6.24]) Let � : R+ � 
 ! M be a continuous semimartin-
gale. There exists a unique linear map � 7!

R
h�; d�i from the space of predictable, ��M -valued

processes � over � to the space of real valued continuous semimartingales that is uniquely de-
termined by the equalities Z

hd2f � �; d�i = f (�)� f (�0) ; (1.46a)Z
hK�; d�i =

Z
Kd

�Z
h�; d�i

�
; (1.46b)

for any f 2 C1 (M) and any locally bounded, predictable real process K.

De�nition 1.57 The real valued semimartingale
R
h�; d�i is called the Itô integral of the

process � along �. Usually, � = � � � for some � 2 
2 (M). In this case, we simply writeR
h�; d�i and we will call it the Itô integral of the form � along �.
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The proof of Theorem 1.56 follows the same pattern as the de�nition of the b-quadratic
variation in Theorem 1.45. Equations (1.46a) and (1.46b) determine uniquely the value of the
integral since by Whitney�s Embedding Theorem it can be proved that any continuous locally
bounded process � : R+ � 
! ��M over � can be written as a �nite sum

�t (!) =

rX
�=1

(K�)t (!) d2g
� (�t (!)) ; (1.47)

where
�
g�;� = 1; :::; r

	
� C1 (M) is a �nite family of smooth functions and fK�;� = 1; :::; rg

is a �nite family of predictable, locally bounded real valued processes. The proof is completed
by showing that the resulting expression does not depend on the particular decomposition
(1.47) chosen for �.

Proposition 1.58 The Itô integral has the following properties:

(i) Let � :M ! N be a smooth mapping between two manifolds M and N: Let � : R+�
!
M be a semimartingale and � : R+ � 
 ! ��N a continuous ��N valued process over
� � �. Then, Z

h�; d (� � �)i =
Z
h��� (�) ; d�i :

(ii) For any f; g 2 C1 (M), Z
hdf � dg; d�i = 1

2
[f � �; g � �]: (1.48)

(iii) If � : R+�
!M is a deterministic smooth curve,
R
h�; d�i =

R D
R (�)

�
_�
�
; dt
E
; where

R : ��M ! T �M is the dual of the inclusion map TM ! �M .

Proof. (i) It su¢ ces to verify that the linear mapping I� : � 7!
R
h��� (�) ; d�i has the prop-

erties Id2f = f (� � �)� f (� � �0) and IK� =
R
KdI� for any f 2 C1 (N) and any continuous

real valued process K. The second property is obvious and the �rst one is a consequence of the
fact that d2 (f � �) = ��� (d2f). (ii) Using the equivalent expression (1.23) for the quadratic

variation of two real processes and the de�nition of df � dg, we haveZ
hdf � dg; d�i =

Z �
1

2
(d2 (fg)� fd2g � gd2f) ; d�

�
=
1

2

�
fg � �� fg � �0 �

Z
(f � �) d (g � �)�

Z
(g � �) d (f � �)

�
=
1

2
[f � �; g � �]:

(iii) The proof consists just of checking that, if � is a deterministic smooth curve, the de�nitionZ
h�; d�i =

Z D
R(�)( _�); dt

E
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veri�es (1.46a) and (1.46b). The �rst equality follows from the fact that R (d2f) = df and the
second one is obvious.

The Stratonovich integral is de�ned for processes that take values in the ordinary cotangent
bundle T �M . It is completely characterized by two relationships equivalent to (1.46a) and
(1.46b) with the operator d2 replaced by the ordinary external di¤erential d.

Theorem 1.59 Let � : R+ � 
 ! M be a semimartingale. There exists a unique linear map
� 7!

R
h�; ��i from the space of continuous, T �M -valued semimartingales � over � to the space

of real valued continuous semimartingales that is uniquely determined by the equalitiesZ
hdf � �; ��i = f (�)� f (�0) ; (1.49a)Z
hK�; ��i =

Z
K�

�Z
h�; ��i

�
; (1.49b)

for any f 2 C1 (M) and any continuous real semimartingale K. The real valued semimartin-
gale

R
h�; ��i is called the Stratonovich integral of the process � along �. Usually, � = ���

for some � 2 
 (M). In this case, we simply write
R
h�; ��i and we will call it the Stratonovich

integral of the form � along �.

The proof of Theorem 1.59 consists, once more, of using Whitney�s Embedding Theorem to
write down the continuous locally bounded process � : R+�
! T �M over � as the �nite sum

�t (!) =
rX

�=1

(K�)t (!)dg
� (�t (!)) ; (1.50)

where
�
g�;� = 1; :::; r

	
� C1 (M) is a �nite family of smooth functions and fK�;� = 1; :::; rg

is a �nite family of continuous, locally bounded real valued processes. The uniqueness of the
Stratonovich integral follows from using (1.49a) and (1.49b) on the decomposition (1.50). The
existence follows from showing that the resulting expression is independent of the particular
decomposition (1.50) of �.
When we integrate forms instead of arbitrary T �M or ��M valued processes over �, the

operator d2 yields a convenient relation between the Itô and the Stratonovich integrals.

Proposition 1.60 Let � : R+ � 
 ! M be a semimartingale and � 2 
(M) a one-form.
Then, Z

h�; ��i =
Z
hd2�; d�i: (1.51)

Proof. We start as in (1.43) by writing

� =
nX
i=1

fidh
i (1.52)

for a �nite family of functions ffi; hi; i = 1; :::; ng ; n � m. Then, on one handZ
h�; ��i =

nX
i=1

Z
hfidhi; ��i =

nX
i=1

Z
fi�

�Z
hdhi; ��i

�
=

nX
i=1

Z
fi(�)�h

i(�):
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On the other handZ
hd2�; d�i =

nX
i=1

Z
hd2
�
fidh

i
�
; d�i =

nX
i=1

Z
hdfi � dhi + fid2hi; d�i

=
1

2

nX
i=1

[fi � �; hi � �] +
nX
i=1

Z
fi(�)dh

i(�) =

nX
i=1

Z
fi(�)�h

i(�);

as required.

Remark 1.61 The Itô and Stratonovich integrals for real valued processes introduced in de-
�nitions 1.24 and 1.34 can be recovered from the theorems-de�nition 1.56 and 1.59 by taking
in (1.46b) (respectively (1.49b)) a real valued semimartingale X : R+ � 
 ! R as �, another
real valued semimartingale Y as K, and � := d2t � X (respectively � := dt � X). With those
choices, by (1.46a) (respectively (1.49a)) we have thatZ

hK�; d�i =
Z
Y d

�Z
hd2t �X; dXi

�
=

Z
Y d (X �X0) =

Z
Y dX;Z

hK�; ��i =
Z
Y �

�Z
hdt �X; �Xi

�
=

Z
Y � (X �X0) =

Z
Y �X:

1.4.4 Stochastic di¤erential equations on manifolds

We start by de�ning the Stratonovich stochastic di¤erential equations. This concept is based
on the Stratonovich integral of forms over a semimartingale and on the notion of Stratonovich
operator that we now introduce.

De�nition 1.62 Let M and N be two manifolds. A Stratonovich operator from M to N
is a family fS(x; y)gx2M;y2N of maps such that S(x; y) : TxM ! TyN is a linear mapping that
depends smoothly on its two entries. Equivalently, we require that

S : TM �N �! TN

is a smooth map.

Let S�(x; y) : T �yN ! T �xM be the adjoint of S(x; y). Let X be a M -valued semimartingale.

De�nition 1.63 We say that a N -valued semimartingale Y is a solution of the the Stratonovich
stochastic di¤ erential equation

�Y = S(X;Y )�X (1.53)

if, for any � 2 
(N), the following equality between Stratonovich integrals holds:Z
h�; �Y i =

Z
hS�(X;Y )�; �Xi:
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It can be shown that given a semimartingale X in M , a F0-measurable random variable Y0,
and a Stratonovich operator S from M to N , there are a predictable (and hence progressively
measurable) stopping time � and a solution Y of (1.53) with initial condition Y0 de�ned on
the set f(t; !) 2 R+ � 
 j t 2 [0; �(!))g that has the following maximality and uniqueness
property: if � 0 is another stopping time such that � 0 < � and Y 0 is another solution de�ned on
f(t; !) 2 R+ � 
 j t 2 [0; � 0(!))g, then Y 0 and Y coincide in this set. Moreover, if � is �nite,
then Y explodes at time �. This means that the path (Yt)t2[0;�) is not contained in any compact
subset of N ([E89, Theorem 7.21]).
Stochastic di¤erential equations from the Itô integration point of view require the notion of

a Schwartz operator whose construction we now brie�y review.

De�nition 1.64 Let M , N be two manifolds. Given x 2 M and y 2 N , a linear map from
�xM into �yN is called a Schwartz morphism whenever f(TxM) � TyN and [f(L) =
(f jTxM 
 f jTxM ) (bL), for any L 2 �xM . The symbol bL 2 TxM 
 TxM denotes the unique
symmetric element that is intrinsically attached to L 2 �xM (Eq. (1.41)). A Schwartz oper-
ator from M to N is a family ff(x; y)gx2M;y2N such that f(x; y) : �xM ! �yN is a Schwartz
operator that depends smoothly on its two entries. That is,

f : �M �N �! �N

is a smooth map.

Let f�(x; y) : ��yN ! ��xM be the adjoint of f(x; y) and X a M -valued semimartingale.

De�nition 1.65 We say that a N -valued semimartingale is a solution of the Itô stochastic
di¤ erential equation

dY = f(X;Y )dX (1.54)

if, for any � 2 
2(N), the following equality between Itô integrals holds:Z
h�; dY i =

Z
hf�(X;Y )�; dXi:

Analogously, there is an existence and uniqueness result for the solutions of these stochastic
di¤erential equations analogous to that one available for Stratonovich di¤erential equations
([E89, Theorem 6.41]).
Given a Stratonovich operator S from M to N , there exists a unique Schwartz operator

f : �M �N ! �N associated to S and de�ned as follows. Let (t) = (x(t); y(t)) 2M �N be a
smooth curve that veri�es S(x(t); y(t))( _x(t)) = _y(t) for all t. We de�ne f(x(t); y(t))

�
L�x(t)

�
:=�

L�y(t)
�
, where the second order di¤erential operators

�
L�x(t)

�
2 �x(t)M and

�
L�y(t)

�
2 �y(t)N

are de�ned as
�
L�x(t)

�
[h] := d2

dt2
h (x (t)) and

�
L�y(t)

�
[g] := d2

dt2
g (y (t)) for any h 2 C1(M) and

g 2 C1 (N). This relation completely determines f since the vectors of the form L�x(t) span
�x(t)M . Moreover, the Itô and Stratonovich equations �Y = S(X;Y )�X and dY = f(X;Y )dX
are equivalent: they have the same solutions for the same initial F0-measurable random variables
Y0.
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2
Stochastic Hamiltonian dynamical systems

The generalization of classical mechanics to the context of stochastic dynamics has been an
active research subject ever since K. Itô introduced the theory of stochastic di¤erential equa-
tions in the 1950s (see for instance [N67, B81, Y81, YZ82, MZ84, TZ97, TZ97a, A03, CD06,
BO07, BO07a], and references therein). The motivations behind some pieces of work related to
this �eld lay in the hope that a suitable stochastic generalization of classical mechanics should
provide an explanation of the intrinsically random e¤ects exhibited by quantum mechanics
within the context of the theory of di¤usions . In other instances the goal is establishing a
framework adapted to the handling of mechanical systems subjected to random perturbations
or whose parameters are not precisely determined and are hence modeled as realizations of a
random variable.
Most of the pieces of work in the �rst category use a class of processes that have a stochastic

derivative introduced in [N67] and that has been subsequently re�ned over the years. This
derivative can be used to formulate a real valued action and various associated variational
principles whose extremals are the processes of interest.
The approach followed in this chapter is closer to the one introduced in [B81] in which the

action has its image in the space of real valued processes and the variations are taken in the
space of processes with values in the phase space of the system that we are modeling. Our work
in this chapter can be actually seen as a generalization of some of the results in [B81] in the
following directions:

(i) We make extensive use of the global stochastic analysis tools introduced by P. A. Meyer
[M81, M82] and L. Schwartz [S82] to handle non-Euclidean phase spaces. This feature
not only widens the spectrum of systems that can be handled but it is also of paramount
importance at the time of reducing them with respect to the symmetries that they may
eventually have (see Chapter 3); indeed, the orbit spaces obtained after reduction are
generically non-Euclidean, even if the original phase space is.
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(ii) The stochastic dynamical components of the system are modeled by continuous semi-
martingales and are not limited to Brownian motion.

(iii) We handle stochastic Hamiltonian systems on Poisson manifolds and not only on sym-
plectic manifolds.

(iv) The variational principle that we propose in Theorem 2.34 is not just satis�ed by the
stochastic Hamiltonian equations (as in [B81]) but fully characterizes them.

There are various reasons that have lead us to consider these generalized Hamiltonian sys-
tems. First, even though the laws that govern the dynamics of classical mechanical systems are,
in principle, completely known, the �nite precision of experimental measurements yields im-
possible the estimation of the parameters of a particular given one with total accuracy. Second,
the modeling of complex physical systems involves most of the time simplifying assumptions
or idealizations of parts of the system, some of which could be included in the description as
a stochastic component; this modeling philosophy has been extremely successful in the social
sciences [BJ76]. Third, even if the model and the parameters of the system are known with
complete accuracy, the solutions of the associated di¤erential equations may be of great com-
plexity and exhibit high sensitivity to the initial conditions hence making the probabilistic
treatment and description of the solutions appropriate. Finally, we will see (Subsection 2.2.3)
how stochastic Hamiltonian modeling of microscopic systems can be used to model dissipation
and macroscopic damping.
This chapter is structured as follows: in Section 2.1 we introduce the stochastic Hamilton

equations with phase space a given Poisson manifold and we study some of the fundamental
properties of the solution semimartingales like, for instance, the preservation of symplectic
leaves or the characterization of the conserved quantities. This section contains a discussion on
two notions on non-linear stability, almost sure Lyapunov stability and stability in probability,
that reduce in the deterministic setup to the standard de�nition of Lyapunov stability. We
formulate criteria that generalize to the Hamiltonian stochastic context the standard energy
methods to conclude the stability of a Hamiltonian equilibrium using existing conservation
laws. More speci�cally, there are two di¤erent natural notions of conserved quantity in the
stochastic context that, via a stochastic Dirichlet criterion (Theorem 2.15) allow one to conclude
the di¤erent kinds of stability that we have mentioned above. Section 2.2 contains several
examples: in the �rst one we show how the systems studied by Bismut in [B81] fall in the
category introduced in Section 2.1. We also see that a damped oscillator can be described as
the average motion of the solution semimartingale of a natural stochastic Hamiltonian system,
and that Brownian motion in a manifold is the projection onto the base space of very simple
Hamiltonian stochastic semimartingale de�ned on the cotangent bundle of the manifold or
of its orthonormal frame bundle, depending on the availability or not of a parallelization for
the manifold in question. Section 2.3 is dedicated to showing that the stochastic Hamilton
equations are characterized by a critical action principle that generalizes the one found in the
treatment of deterministic systems. In order to make this part more readable, the proofs of
most of the technical results needed to prove the theorems in this section have been included
separately at the end of the chapter. Finally, we show in Section 2.4 that the stochastic action
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satis�es a generalized version of the Hamilton-Jacobi equation when written as a function of
the con�guration space using a Lagrangian submanifold (see Theorem 2.39). As an application
of the results in this section we show in Example 2.41 how the exponential of the expectation of
the so called projected stochastic action can be used to construct solutions of the heat equation
corrected with a potential, in a way that strongly resembles the Feynman-Kac formula.
This chapter is a transcription of the two papers [LO07] and [LO08b] written by the author

of this thesis in collaboration with Juan Pablo Ortega.

Conventions: All the manifolds will be �nite dimensional, second-countable, locally compact,
and Hausdor¤ (and hence paracompact).

2.1 The stochastic Hamilton equations

In this section we present a natural generalization of the standard Hamilton equations in
the stochastic context. Even though the arguments gathered in the following paragraphs as
motivation for these equations are of formal nature, we will see later on that, as it was already
the case for the standard Hamilton equations, they satisfy a natural variational principle.
We recall that a symplectic manifold is a pair (M; !), where M is a manifold and ! 2


2(M) is a closed non-degenerate two-form on M , that is, d! = 0 and, for every m 2M , the
map v 2 TmM 7! !(m)(v; �) 2 T �mM is a linear isomorphism between the tangent space TmM
to M at m and the cotangent space T �mM . Using the nondegeneracy of the symplectic form !,
one can associate each function h 2 C1(M) a vector �eld Xh 2 X(M), de�ned by the equality

iXh! = dh: (2.1)

We will say that Xh is the Hamiltonian vector �eld associated to the Hamiltonian func-
tion h. The expression (2.1) is referred to as the Hamilton equations.
A Poisson manifold is a pair (M; f�; �g), where M is a manifold and f�; �g is a bilinear

operation on C1(M) such that (C1(M); f�; �g) is a Lie algebra and f�; �g is a derivation (that
is, the Leibniz identity holds) in each argument. The functions in the center C(M) of the
Lie algebra (C1(M); f�; �g) are called Casimir functions. From the natural isomorphism
between derivations on C1(M) and vector �elds on M it follows that each h 2 C1(M)
induces a vector �eld on M via the expression Xh = f�; hg, called the Hamiltonian vector
�eld associated to the Hamiltonian function h. Hamilton�s equations _z = Xh(z) can be
equivalently written in Poisson bracket form as _f = ff; hg, for any f 2 C1(M). The derivation
property of the Poisson bracket implies that for any two functions f; g 2 C1(M), the value
of the bracket ff; gg(z) at an arbitrary point z 2 M (and therefore Xf (z) as well), depends
on f only through df(z) which allows us to de�ne a contravariant antisymmetric two�tensor
B 2 �2(M) by B(z)(�z; �z) = ff; gg(z), where df(z) = �z 2 T �zM and dg(z) = �z 2 T �zM .
This tensor is called the Poisson tensor of M . The vector bundle map B] : T �M ! TM
naturally associated to B is de�ned by B(z)(�z; �z) = h�z; B](�z)i.
We start by rewriting the solutions of the standard Hamilton equations in a form that we will

be able to mimic in the stochastic di¤erential equations context. All the necessary prerequisites
on stochastic calculus on manifolds have already been introduced in Chapter 1.
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Proposition 2.1 Let (M;!) be a symplectic manifold and h 2 C1(M). The smooth curve
 : [0; T ] ! M is an integral curve of the Hamiltonian vector �eld Xh if and only if for any
� 2 
(M) and for any t 2 [0; T ]Z

j[0;t]
� = �

Z t

0
dh(!](�)) � (s)ds; (2.2)

where !] : T �M ! TM is the vector bundle isomorphism induced by !. More generally, if M
is a Poisson manifold with bracket f�; �g then the same result holds with (2.2) replaced byZ

j[0;t]
� = �

Z t

0
dh(B](�)) � (s)ds; (2.3)

Proof. Since in the symplectic case !] = B], it su¢ ces to prove (2.3). As (2.3) holds for any
t 2 [0; T ], we can take derivatives with respect to t on both sides and we obtain the equivalent
form

h�((t)); _(t)i = �hdh((t)); B]((t))(�((t)))i: (2.4)

Let f 2 C1(M) be such that df((t)) = �((t)). Then (2.4) can be rewritten as

hdf((t)); _(t)i = �hdh((t)); B]((t))(df((t)))i = ff; hg((t));

which is equivalent to _(t) = Xh((t)), as required.

We will now introduce the stochastic Hamilton equations by mimicking in the context of
Stratonovich integration the integral expressions (2.2) and (2.3). In the next de�nition we will
use the following notation: let f :M !W be a di¤erentiable function that takes values on the
vector space W . We de�ne the di¤ erential df : TM !W as the map given by df = p2 �Tf ,
where Tf : TM ! TW = W �W is the tangent map of f and p2 : W �W ! W is the
projection onto the second factor. IfW = R this de�nition coincides with the usual di¤erential.
If fe1; : : : ; eng is a basis of W and f =

Pn
i=1 f

iei then df =
Pn

i=1 df
i 
 ei.

De�nition 2.2 Let (M; f�; �g) be a Poisson manifold, X : R+�
! V a semimartingale that
takes values on the vector space V with X0 = 0, and h : M ! V � a smooth function. Let
f�1; : : : ; �rg be a basis of V � and h =

Pr
i=1 hi�

i. The Hamilton equations with stochastic
component X, and Hamiltonian function h are the Stratonovich stochastic di¤erential
equation

��h = H(X;�)�X; (2.5)

de�ned by the Stratonovich operator H(v; z) : TvV ! TzM given by

H(v; z)(u) :=

rX
j=1

h�j ; uiXhj (z): (2.6)



2.1 The stochastic Hamilton equations 47

The dual Stratonovich operator H�(v; z) : T �zM ! T �v V of H(v; z) is given by H
�(v; z)(�z) =

�dh(z) � B](z)(�z). Hence, the results quoted in Subsection 1.4.4 show that for any F0 mea-
surable random variable �0, there exists a unique semimartingale �h such that �h0 = �0 and a
maximal stopping time �h that solve (2.5), that is, for any � 2 
(M),Z

h�; ��hi = �
Z
hdh(B](�))(�h); �Xi: (2.7)

We will refer to �h as theHamiltonian semimartingale associated to h with initial condition
�0.

Remark 2.3 The stochastic component X encodes the random behavior exhibited by the
stochastic Hamiltonian system that we are modeling and the Hamiltonian function h speci�es
how it embeds in its phase space. Unlike the situation encountered in the deterministic setup we
allow the Hamiltonian function to be vector valued in order to accommodate higher dimensional
stochastic dynamics.

Remark 2.4 The generalization of Hamilton�s equations proposed in De�nition 2.2 by using a
Stratonovich operator is inspired by one of the transfer principles presented in [E90] to provide
stochastic versions of ordinary di¤erential equations. This procedure can be also used to carry
out a similar generalization of the equations induced by a Leibniz bracket (see [OP04]).

Remark 2.5 Stratonovich versus Itô integration: at the time of proposing the equations
in De�nition 2.2 a choice has been made, namely, we have chosen Stratonovich integration
instead of Itô or other kinds of stochastic integration. The option that we took is motivated
by the fact that by using Stratonovich integration, most of the geometric features underly-
ing classical deterministic Hamiltonian mechanics are preserved in the stochastic context (see
the next section). Additionally, from the mathematical point of view, this choice is the most
economical one in the sense that the classical geometric ingredients of Hamiltonian mechanics
plus a noise semimartingale su¢ ce to construct the equations; had we used Itô integration we
would have had to provide a Schwartz operator (see Subsection 1.4.4) and the construction of
such an object via a transfer principle like in [E90] involves the choice of a connection. The use
of Itô integration in the modeling of physical phenomena is sometimes preferred because the
de�nition of this integral is not anticipative, that is, it does not assume any knowledge about
the behavior of the system in future times. Even though we have used Stratonovich integration
to write down our equations, we also share this feature because the equations in De�nition 2.2
can be naturally translated to the Itô framework (see Proposition 2.8). This is a particular case
of a more general fact since given any Stratonovich stochastic di¤erential equation there always
exists an equivalent Itô stochastic di¤erential equation, in the sense that both equations have
the same solutions. Note that the converse is in general not true.

2.1.1 Elementary properties of the stochastic Hamilton�s equations

Proposition 2.6 Let (M; f�; �g) be a Poisson manifold, X : R+ � 
 ! V a semimartingale
that takes values on the vector space V with X0 = 0 and h : M ! V � a smooth function. Let
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�0 be a F0 measurable random variable and �h the Hamiltonian semimartingale associated to
h with initial condition �0. Let �h be the corresponding maximal stopping time. Then, for any
stopping time � < �h, the Hamiltonian semimartingale �h satis�es

f(�h� )� f(�h0) =
rX
j=1

Z �

0
ff; hjg(�h)�Xj ; (2.8)

where fhjgj2f1;:::;rg and fXjgj2f1;:::;rg are the components of h and X with respect to two given
dual bases fe1; : : : ; erg and f�1; : : : ; �rg of V and V �, respectively. Expression (2.8) can be
rewritten in di¤erential notation as

�f(�h) =

rX
j=1

ff; hjg(�h)�Xj :

Proof. It su¢ ces to take � = df in (2.7). Indeed, by (1.49a)Z �

0
hdf; ��hi = f(�h� )� f(�h0):

At the same time

�
Z �

0
hdh(B](df))(�h); �Xi = �

rX
j=1

Z �

0
h(dhj 
 �j(B](df)))(�h); �Xi

=

rX
j=1

Z �

0
hff; hjg(�h)�j ; �Xi:

By (1.49b) this equals
Pr

j=1

R �
0 ff; hjg(�

h)�
�R
h�j ; �Xi

�
. Given that

R
h�j ; �Xi = Xj �Xj

0 , the
equality follows.

Remark 2.7 Notice that if in De�nition 2.2 we take V � = R, h 2 C1(M), andX : R+�
! R
the deterministic process given by (t; !) 7�! t, then the stochastic Hamilton equations (2.7)
reduce to Z

h�; ��hi =
Z
h�;Xhi(�ht )dt: (2.9)

A straightforward application of (2.8) shows that �ht (!) is necessarily a di¤erentiable curve,
for any ! 2 
, and hence the Riemann-Stieltjes integral in the left hand side of (2.9) reduces,
when evaluated at a given ! 2 
, to a Riemann integral identical to the one in the left hand
side of (2.3), hence proving that (2.9) reduces to the standard Hamilton equations. Indeed, let
�ht0(!) 2M be an arbitrary point in the curve �ht (!), let U be a coordinate patch around �

h
t0(!)

with coordinates fx1; : : : ; xng, and let x(t) = (x1(t); : : : ; xn(t)) be the expression of �ht (!) in
these coordinates. Then by (2.8), for h 2 R su¢ ciently small, and i 2 f1; : : : ; ng,

xi(t0 + h)� xi(t0) =
Z t0+h

t0

fxi; hg(x(t))dt:
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Hence, by the Fundamental Theorem of Calculus, xi(t) is di¤erentiable at t0, with derivative

_xi(t0) = lim
�!0

1

�

�
xi(t0 + �)� xi(t0)

�
= lim

�!0

1

�

�Z t0+�

t0

fxi; hg(x(t))dt
�
= fxi; hg(x(t0));

as required.

The following proposition provides an equivalent expression of the Stochastic Hamilton equa-
tions in the Itô form (see Subsection 1.4.4).

Proposition 2.8 The stochastic Hamilton�s equations in De�nition 2.2 admit an equivalent
description using Itô integration by using the Schwartz operator H(v;m) : � vV ! �mM nat-
urally associated to the Hamiltonian Stratonovich operator H and that can be described as
follows. Let L 2 � vM be a second order vector and f 2 C1 (M) arbitrary, then

H (v;m) (L) [f ] =
*

rX
i;j=1

ff; hjg(m)�j + fff; hjg; hig(m)�i � �j ; L
+
:

Moreover, expression (2.8) in the Itô representation is given by

f(�h� )� f(�h0) =
rX
j=1

Z �

0
ff; hjg (�h)dXj +

1

2

rX
j;i=1

Z �

0
fff; hjg ; hig (�h)d

�
Xj ; X i

�
: (2.10)

We will refer to H as the Hamiltonian Schwartz operator associated to h.

Proof. According to the remarks made in Subsection 1.4.4, the Schwartz operator H naturally
associated to H is constructed as follows. For any second order vector L�v 2 � vM associated to
the acceleration of a curve v (t) in V such that v (0) = v we de�ne H (v;m) (L�v) := L �m(0) 2
�mM , where m (t) is a curve in M such that m (0) = m and _m (t) = H (v (t) ;m (t)) _v (t), for t
in a neighborhood of 0: Consequently,

H (v;m) (L�v) [f ] =
d2

dt2

����
t=0

f (m (t)) =
d

dt

����
t=0

hdf(m(t)); _m(t)i

=
d

dt

����
t=0

hdf(m(t));H(v(t);m(t)) _v(t)i

=
d

dt

����
t=0

rX
j=1

h�j ; _v(t)ihdf(m(t)); Xhj (m(t))i =
d

dt

����
t=0

rX
j=1

h�j ; _v(t)iff; hjg(m(t))

=
rX
j=1

h�j ; �v(0)iff; hjg(m) + h�j ; _v(0)ihdff; hjg(m); _m(0)i

=
rX
j=1

h�j ; �v(0)iff; hjg(m) + h�j ; _v(0)i
rX
i=1

h�i; _v(0)ifff; hjg; hig(m)

=

*
rX

i;j=1

ff; hjg(m)�j + fff; hjg; hig(m)�i � �j ; L�v

+
:
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In order to establish (2.10) we need to calculate H� (v;m) (d2f(m)) for a second order form
d2f(m) 2 ��mM at m 2M; f 2 C1 (M). Since H� (v;m) (d2f(m)) is fully characterized by its
action on elements of the form L�v 2 �vV for some curve v (t) in V such that v (0) = v, we have

hH� (v;m) (d2f(m)); L�vi = hd2f(m);H (v;m) (L�v)i = H (v;m) (L�v) [f ]

=

*
rX

i;j=1

ff; hjg(m)�j + fff; hjg; hig(m)�i � �j ; L�v

+
:

Consequently, H� (v;m) (d2f(m)) =
Pr

i;j=1ff; hjg(m)�j + fff; hjg; hig(m)�i � �j . Hence, if �h
is the Hamiltonian semimartingale associated to h with initial condition �0, � < �h is any
stopping time, and f 2 C1(M), we have by (1.46a), (1.46b), and (1.48)

f(�h� )� f(�h0) =
Z �

0

D
d2f; d�

h
E
=

Z �

0

D
H�(X;�h)(d2f); dX

E
=

rX
j=1

Z �

0

D
ff; hjg (�h)�j ; dX

E
+

rX
j;i=1

Z �

0

D
fff; hjg ; hig (�h)�i � �j ; dX

E
=

rX
j=1

Z �

0
ff; hjg (�h)dXj +

1

2

rX
j;i=1

Z �

0
fff; hjg ; hig (�h)d

�
Xi; Xj

�
:

Proposition 2.9 (Preservation of the symplectic leaves by Hamiltonian semimartin-
gales) In the setup of De�nition 2.2, let L be a symplectic leaf of (M;!) and �h a Hamiltonian
semimartingale with initial condition �0(!) = Z0, where Z0 is a random variable such that
Z0(!) 2 L for all ! 2 
. Then, there exists a stopping time �hL � �h such that for any stopping
time � < �hL we have that �

h
� 2 L. If the symplectic leaf L is a closed subset of M then �hL = �h.

Proof. Expression (2.6) shows that for any z 2 L, the Stratonovich operator H(v; z) takes
values in the characteristic distribution associated to the Poisson structure (M; f�; �g), that
is, in the tangent space TL of L. Consequently, H induces another Stratonovich operator
HL(v; z) : TvV ! TzL, v 2 V , z 2 L, obtained from H by restriction of its range. It is clear
that if i : L ,!M is the inclusion then

H�
L(v; z) � T �z i = H�(v; z): (2.11)

Let �hL be the semimartingale in L that is a solution of the Stratonovich stochastic di¤erential
equation

��hL = HL(X;�
h
L)�X (2.12)

with initial condition �0. We now show that � := i � �hL is a solution of

�� = H(X;�)�X:

The uniqueness of the solution of a stochastic di¤erential equation will guarantee in that
situation that �h necessarily coincides with �, in the times in which both are de�ned. More
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speci�cally, �h = � up to �hL, with �
h
L the maximal stopping time associated to the solution of

(2.12), with initial condition �0 (!) = Z0 2 L; this will prove the statement. Indeed, for any
� 2 
(M), Z

h�; ��i =
Z
h�; �(i � �hL)i =

Z
hT �i � �; ��hLi:

Since �hL satis�es (2.12) and T
�i � � 2 
(L), by (2.11) this equalsZ

hH�
L(X;�

h
L)(T

�i � �); �Xi =
Z
hH�(X; i � �hL)(�); �Xi =

Z
hH�(X;�)(�); �Xi;

that is, �� = H(X;�)�X, as required. The statement on the equality �hL = �h under the
hypothesis that the symplectic leaf L is closed is a consequence of [E82, Theorem 3 page 123].

Proposition 2.10 (The stochastic Hamilton equations in Darboux-Weinstein coor-
dinates) Let (M; f�; �g) be a Poisson manifold and �h be a solution of the Hamilton equations
(2.5) with initial condition x0 2 M . There exists an open neighborhood U of x0 in M and a
stopping time �U such that �ht (!) 2 U , for any ! 2 
 and any t � �U (!). Moreover, U admits
local Darboux coordinates (q1; : : : ; qn; p1; : : : ; pn; z1; : : : ; zl) in which (2.8) takes the form

qi(�h� )� qi(�h0) =
rX
j=1

Z �

0

@hj
@pi

�Xj ;

pi(�
h
� )� pi(�h0) = �

rX
j=1

Z �

0

@hj
@qi

�Xj ;

zi(�
h
� )� zi(�h0) =

rX
j=1

Z �

0
fzi; hjgT �Xj ;

where f�; �gT is the transverse Poisson structure of (M; f�; �g) at x0.

Proof. Let U be an open neighborhood of x0 in M for which Darboux coordinates can be
chosen. De�ne �U = inft�0f�ht 2 U cg (�U is the exit time of U). It is a standard fact in
the theory of stochastic processes that �U is a stopping time. The proposition follows by
writing (2.8) for the Darboux-Weinstein coordinate functions (q1; : : : ; qn; p1; : : : ; pn; z1; : : : ; zl).

Let � :M �
! [0;1] be the map such that, for any z 2M; � (z) is the maximal stopping
time associated to the solution of the stochastic Hamilton equations (2.5) with initial condition
�0 = z a.s.. Let ' be the �ow of (2.5), that is, for any z 2 M , ' (z) : [0; � (z)) ! M is the
solution semimartingale of (2.5) with initial condition z. The map z 2 M 7�! 't(z; !) 2 M is
a local di¤eomorphism of M , for each t � 0 and almost all ! 2 
 in which this map is de�ned
(see [IW89]). In the following result, we show that, in the symplectic context, Hamiltonian
�ows preserve the symplectic form and hence the associated volume form � = ! ^ n::: ^ !. This
has already been shown for Hamiltonian di¤usions (see Example 2.2.1) by Bismut [B81].
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Theorem 2.11 (Stochastic Liouville�s Theorem) Let (M;!) be a symplectic manifold,
X : R+ � 
 ! V � a semimartingale, and h : M ! V � a Hamiltonian function. Let ' be the
associated Hamiltonian �ow. Then, for any z 2M and any (t; �) 2 [0; � (z)),

'�t (z; �)! = !:

Proof. By [K81, Theorem 3.3] (see also [W80]), given an arbitrary form � 2 
k (M) and
z 2M , the process ' (z)� � satis�es the following stochastic di¤erential equation:

' (z)� � = � (z) +
rX
j=1

Z
' (z)�

�
$Xhj�

�
�Xj :

In particular, if � = ! then $Xhj! = 0 for any j 2 f1; :::; rg, and hence the result follows.

2.1.2 Conserved quantities and stability

Conservation laws in Hamiltonian mechanics are extremely important since they make easier
the integration of the systems that have them and, in some instances, provide qualitative
information about the dynamics. A particular case of this is their use in concluding the nonlinear
stability of certain equilibrium solutions using Dirichlet type criteria that we will generalize to
the stochastic setup using the following de�nitions.

De�nition 2.12 A function f 2 C1 (M) is said to be a strongly (respectively, weakly)
conserved quantity of the stochastic Hamiltonian system associated to h :M ! V � if for any
solution �h of the stochastic Hamilton equations (2.5) we have that f(�h) = f(�h0) (respectively,
E[f(�h� )] = E[f(�h0)], for any stopping time �).

Notice that strongly conserved quantities are obviously weakly conserved and that the two
de�nitions coincide for deterministic systems with the standard de�nition of conserved quantity.
The following result provides in the stochastic setup an analogue of the classical characterization
of the conserved quantities in terms of Poisson involution properties.

Proposition 2.13 Let (M; f�; �g) be a Poisson manifold, X : R+ � 
 ! V a semimartingale
that takes values on the vector space V such that X0 = 0, and h : M ! V � and f 2 C1(M)
two smooth functions. If ff; hjg = 0 for every component hj of h then f is a strongly conserved
quantity of the stochastic Hamilton equations (2.5). Conversely, suppose that the semimartin-
gale X =

Pr
j=1X

j�j is such that
�
Xi; Xj

�
= 0 if i 6= j. If f is a strongly conserved quantity

then ff; hjg = 0, for any j 2 f1; :::; rg such that
�
Xj ; Xj

�
is an strictly increasing process at 0.

The last condition means that there exists A 2 F and � > 0 with P (A) > 0 such that for any
t < � and ! 2 A we have [Xj ; Xj ]t(!) > [X

j ; Xj ]0(!), for all j 2 f1; :::; rg.

Proof. Let �h be the Hamiltonian semimartingale associated to h with initial condition �h0 .
As we saw in (2.10),

f(�h) = f(�h0) +
rX
j=1

Z
ff; hjg (�h)dXj +

1

2

rX
j;i=1

Z
fff; hjg ; hig (�h)d

�
Xi; Xj

�
: (2.13)
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If ff; hjg = 0 for every component hj of h then all the integrals in the previous expression
vanish and therefore f(�h) = f(�h0) which implies that f is a strongly conserved quantity
of the Hamiltonian stochastic equations associated to h. Conversely, suppose now that f is a
strongly conserved quantity. This implies that for any initial condition �h0 , the semimartingale
f(�h) is actually time independent and hence of �nite variation. Equivalently, the (unique)
decomposition of f(�h) into two processes, one of �nite variation plus a local martingale, only
has the �rst term. In order to isolate the local martingale term of f

�
�h
�
recall �rst that

the quadratic variations
�
Xi; Xj

�
have �nite variation and that the integral with respect to a

�nite variation process has �nite variation (see [LG97, Proposition 4.3]). Consequently, the last
summand in (2.13) has �nite variation. As to the second summand, letM j and Aj , j = 1; : : : ; r,
local martingales and �nite variation processes, respectively, such that Xj = Aj +M j . Then,Z

ff; hjg (�h)dXj =

Z
ff; hjg (�h)dM j +

Z
ff; hjg (�h)dAj :

Given that for each j,
R
ff; hjg (�h)dAj is a �nite variation process and

R
ff; hjg (�h)dM j is a

local martingale (see [P05, Theorem 29, page 128]) we conclude that Z :=
Pr

j=1

R
ff; hjg (�h)dM j

is the local martingale term of f(�h) and hence equal to zero. We notice now that any contin-
uous local martingale Z : R+ � 
 ! R is also a local L2 (
)-martingale. Indeed, consider the
sequence of stopping times �n = finf t � 0 j jZtj = ng, n 2 N. Then E[(Z�n)2t ] � E

�
n2
�
= n2,

for all t 2 R+. Hence, Z�
n 2 L2 (
) for any n. In addition, E[(Z�

n
)2t ] = E

��
Z�

n
; Z�

n�
t

�
(see [P05, Corollary 3, page 73]). On the other hand by Proposition A.1,

Z�
n
=

0@ rX
j=1

Z
ff; hjg (�h)dM j

1A�n

=

rX
j=1

Z
1[0;�n] ff; hjg (�h)dM j :

Thus, by [P05, Theorem 29, page 75] and the hypothesis
�
Xi; Xj

�
= 0 if i 6= j,

E
h�
Z�

n�2
t

i
= E

��
Z�

n
; Z�

n�
t

�
=

rX
j;i=1

E

��Z
1[0;�n] ff; hjg (�h)dM j ;

Z
1[0;�n] ff; hig (�h)dM i

�
t

�

=

rX
j;i=1

E

��Z
1[0;�n] (ff; hjg ff; hig) (�h)d

�
M j ;M i

��
t

�

=

rX
j;i=1

E

��Z
1[0;�n] (ff; hjg ff; hig) (�h)d

�
Xj ; X i

��
t

�

=

rX
j=1

E

��Z
1[0;�n] ff; hjg2 (�h)d

�
Xj ; Xj

��
t

�
:

Since
�
Xj ; Xj

�
is an increasing process of �nite variation then

R
1[0;�n] ff; hjg2 (�h)d

�
Xj ; Xj

�
is a Riemann-Stieltjes integral and hence for any ! 2 
�Z

1[0;�n] ff; hjg2 (�h)d
�
Xj ; Xj

��
(!) =

Z
1[0;�n(!)] ff; hjg2 (�h (!))d

��
Xj ; Xj

�
(!)
�
:
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As
�
Xj ; Xj

�
(!) is an increasing function of t 2 R+, then for any j 2 f1; : : : ; rg

E

�Z
1[0;�n] ff; hjg2 (�h)d

�
Xj ; Xj

��
� 0: (2.14)

Additionally, since E[(Z�
n
)2t ] = 0, we necessarily have that the inequality in (2.14) is actually

an equality. Hence, Z t

0
1[0;�n] ff; hjg2 (�h)d

�
Xj ; Xj

�
= 0: (2.15)

Suppose now that [Xj ; Xj ] is strictly increasing at 0 for a particular j: Hence, there exists
A 2 F with P (A) > 0, and � > 0 such that [Xj ; Xj ]t (!) > [X

j ; Xj ]0 (!) for any t < �: Take
now a �xed ! 2 A. Since �n ! 1 a.s., we can take n large enough to ensure that �n (!) > t;
where t 2 [0; �). Thus, we may suppose that 1[0;�n] (t; !) = 1: As

�
Xj ; Xj

�
(!) is an strictly

increasing process at zero
R t
0 ff; hjg

2 ��h (!)� d �Xj ; Xj
�
(!) > 0 unless ff; hjg2

�
�h (!)

�
= 0

in a neighborhood [0;e�!) of 0 contained in [0; �). In principle e�! > 0 might depend on ! 2 A;
so the values of t 2 [0; �) for which ff; hjg2

�
�ht (!)

�
= 0 for any ! 2 A are those verifying

0 � t � inf!2A e�!: In any case (2.15) allows us to conclude that ff; hjg2 ��h0 (!)� = 0 for any
! 2 A: Finally, consider any �h solution to the Stochastic Hamilton equations with constant
initial condition �h0 = m 2M an arbitrary point. Then, for any ! 2 A;

0 = ff; hjg2
�
�h0 (!)

�
= ff; hjg2 (m) :

Since m 2M is arbitrary we can conclude that ff; hjg = 0.
We now use the conserved quantities of a system in order to formulate su¢ cient Dirichlet

type stability criteria. Even though the statements that follow are enunciated for processes that
are not necessarily Hamiltonian, it is for these systems that the criteria are potentially most
useful. We start by spelling out the kind of nonlinear stability that we are after.

De�nition 2.14 Let M be a manifold and let

�� = e(X;�)�X (2.16)

be a Stratonovich stochastic di¤erential equation whose solutions � : R�
!M take values on
M . Given x 2M and s 2 R, denote by �s;x the unique solution of (2.16) such that �s;xs (!) = x,
for all ! 2 
. Suppose that the point z0 2M is an equilibrium of (2.16), that is, the constant
process �t(!) := z0, for all t 2 R and ! 2 
, is a solution of (2.16). Then we say that the
equilibrium z0 is

(i) Almost surely (Lyapunov) stable when for any open neighborhood U of z0 there exists
another neighborhood V � U of z0 such that for any z 2 V we have �0;z � U , a.s.

(ii) Stable in probability. For any s � 0 and � > 0

lim
x!z0

P

�
sup
t>s

d (�s;xt ; z0) > �

�
= 0;

where d : M �M ! R is any distance function that generates the manifold topology of
M .
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Theorem 2.15 (Stochastic Dirichlet�s Criterion) Suppose that we are in the setup of the
previous de�nition and assume that there exists a function f 2 C1(M) such that df(z0) =
0 and that the quadratic form d2f(z0) is (positive or negative) de�nite. If f is a strongly
(respectively, weakly) conserved quantity for the solutions of (2.16) then the equilibrium z0 is
almost surely stable (respectively, stable in probability).

Proof. Since the stability of the equilibrium z0 is a local statement, we can work in a chart
of M around z0 with coordinates (x1; : : : ; xn) in which z0 is modeled by the origin. Moreover,
using the Morse lemma and the hypotheses on the function f , and assuming without loss
of generality that f(z0) = 0, we choose the coordinates (x1; : : : ; xn) so that f(x1; : : : ; xn) =
x21 + � � � + x2n. Hence, in the de�nition of stability in probability, we can use the distance
function d(x; z0) = f(x). Suppose now that f is a strongly conserved quantity and let U be
an open neighborhood of z0. Let r > 0 be such that V := f�1([0; r]) � U . Let z 2 V with
f(z) = r0. As f is a strongly conserved quantity f(�0;z) = r0 � r and hence �0;z � U , as
required. In order to study the case in which f is a weakly conserved quantity, let � > 0
and let U� be the ball of radius � around z0. Then, for any x 2 U� and s 2 R+, let �U� be
the �rst exit time of �s;x with respect to U�. Notice �rst that if ! 2 
 belongs to the set
f! 2 
 j sup0�s<t d (�

s;x
t ; z0) > �g = f! 2 
 j sup0�s<t f (�

s;x
t ) > �2g, then �U�(!) � t and

hence the stopped process (�s;x)�U� satis�es that

f
�
(�s;x)

�U�
t (!)

�
= f

�
�s;x�U� (!)

(!)
�
= �2;

for those values of !. This ensures that

�21f!2
jsup0�s<t d(�
s;x
t ;z0)>�g � f

�
(�s;x)

�U�
t

�
:

Taking expectations in both sides of this inequality we obtain

P

�
sup
0�s<t

d (�s;xt ; z0) > �

�
�
E[f

�
(�s;x)

�U�
t

�
]

�2
:

Since by hypothesis f is a weakly conserved quantity, we can rewrite the right hand side of this
inequality as

E[f
�
(�s;x)

�U�
t

�
]

�2
=
E
h
f
�
�s;x�U�^t

�i
�2

=
E[f(�s;xs )]

�2
=
f(x)

�2
;

and we can therefore conclude that

P

�
sup
0�s<t

d (�s;xt ; z0) > �

�
� f(x)

�2
: (2.17)

Taking the limit x! z0 in this expression and recalling that f(z0) = 0, the result follows.

A careful inspection of the proof that we just carried out reveals that in order for (2.17) to
hold, it would su¢ ce to have E[f (�� )] � E[f (�0)], for any stopping time � and any solution
�, instead of the equality guaranteed by the weak conservation condition. This motivates the
next de�nition.
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De�nition 2.16 Suppose that we are in the setup of De�nition 2.14. Let U be an open neigh-
borhood of the equilibrium z0 and let V : U ! R be a continuous function. We say that V is a
Lyapunov function for the equilibrium z0 if V (z0) = 0, V (z) > 0 for any z 2 U n fz0g, and

E[V (�� )] � E[V (�0)]; (2.18)

for any stopping time � � �U smaller than the �rst exit time from U and any solution � of
(2.16).

This de�nition generalizes to the stochastic context the standard notion of Lyapunov function
that one encounters in dynamical systems theory. If (2.16) is the stochastic di¤erential equation
associated to an Itô di¤usion and the Lyapunov function is twice di¤erentiable, the inequality
(2.18) can be ensured by requiring that A[V ](z) � 0, for any z 2 U n fz0g, where A is the
in�nitesimal generator of the di¤usion, and by using Dynkin�s formula.

Theorem 2.17 (Stochastic Lyapunov�s Theorem) Let z0 2M be an equilibrium solution
of the stochastic di¤erential equation (2.16) and let V : U ! R be a continuous Lyapunov
function for z0. Then z0 is stable in probability.

Proof. Let U� be the ball of radius � around z0 and let V� := infx2UnU� V (x). Using the same
notation as in the previous theorem we denote, for any x 2 U� and s 2 R+, �U� as the �rst
exit time of �s;x with respect to U�. Using the same approach as above we notice that if ! 2 

belongs to the set f! 2 
 j sup0�s<t d (�

s;x
t ; z0) > �g, then �U�(!) � t and hence the stopped

process (�s;x)�U� satis�es that

V
�
(�s;x)

�U�
t (!)

�
= V

�
�s;x�U� (!)

(!)
�
� V�;

for those values of !, since �s;x�U� (!)
(!) belongs to the boundary of U�. This ensures that

V�1f!2
jsup0�s<t d(�
s;x
t ;z0)>�g � V

�
(�s;x)

�U�
t

�
:

Taking expectations in both sides of this inequality we obtain

P

�
sup
0�s<t

d (�s;xt ; z0) > �

�
�
E[V

�
(�s;x)

�U�
t

�
]

V�
:

We now use that V being a Lyapunov function satis�es (2.18) and hence

E[V
�
(�s;x)

�U�
t

�
]

V�
=
E
h
V
�
�s;x�U�^t

�i
V�

� E[V (�s;xs )]

V�
=
V (x)

V�
:

We can therefore conclude that

P

�
sup
0�s<t

d (�s;xt ; z0) > �

�
� V (x)

V�
:

Taking the limit x! z0 in this expression and recalling that V (z0) = 0, the result follows.

Remark 2.18 This theorem has been proved by Gihman [G96] and Hasminskii [H80] for Itô
di¤usions.
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2.2 Examples

2.2.1 Stochastic perturbation of a Hamiltonian mechanical system and Bismut�s
Hamiltonian di¤usions

Let (M; f�; �g) be a Poisson manifold and hj 2 C1 (M), j = 0; :::; r, smooth functions. Let
h : M �! Rr+1 be the Hamiltonian function m 7�! (h0 (m) ; : : : ; hr (m)), and consider the
semimartingale X : R+ � 
 ! Rr+1 given by (t; !) 7�!

�
t; B1t (!) ; : : : ; B

r
t (!)

�
, where Bj ;

j = 1; :::; r, are r-independent Brownian motions. Lévy�s characterization of Brownian motion
shows (see for instance [P05, Theorem 40, page 87]) that [Bj ; Bi]t = t�ji. In this setup, the
equation (2.8) reads

f(�h� )� f(�h0) =
Z �

0
ff; h0g (�h)dt+

rX
j=1

Z �

0
ff; hjg (�h)�Bj (2.19)

for any f 2 C1 (M). According to (2.10), the equivalent Itô version of this equation is

f(�h� )� f(�h0) =
Z �

0
ff; h0g (�h)dt+

rX
j=1

Z �

0
ff; hjg (�h)dBj +

Z �

0
fff; hjg ; hjg(�h)dt:

Equation (2.19) may be interpreted as a stochastic perturbation of the classical Hamilton
equations associated to h0, that is,

d(f � )
dt

(t) = ff; h0g ( (t)) :

by the r Brownian motions Bj . These equations have been studied by Bismut in [B81] in the
particular case in which the Poisson manifold (M; f�; �g) is just the symplectic Euclidean space
R2n with the canonical symplectic form. He refers to these particular processes asHamiltonian
di¤usions.
If we apply Proposition 2.13 to the stochastic Hamiltonian system (2.2.1), we obtain a gener-

alization to Poisson manifolds of a result originally formulated by Bismut (see [B81, Théorèmes
4.1 and 4.2, page 231]) for Hamiltonian di¤usions. See also [M99].

Proposition 2.19 Consider the stochastic Hamiltonian system introduced in (2.2.1). Then
f 2 C1 (M) is a conserved quantity if and only if

ff; h0g = ff; h1g = : : : = ff; hrg = 0: (2.20)

Proof. If (2.20) holds then f is clearly a conserved quantity by Proposition 2.13. Conversely,
notice that as [Bi; Bj ] = t�ij , i; j 2 f1; : : : ; rg, and X0(t; !) = t is a �nite variation process
then [Xi; Xj ] = 0 for any i; j 2 f0; 1; : : : ; rg such that i 6= j. Consequently, by Proposition
2.13, if f is a conserved quantity then

ff; h1g = : : : = ff; hrg = 0: (2.21)
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Moreover, (2.19) reduces to Z �

0
ff; h0g (�h)dt = 0;

for any Hamiltonian semimartingale �h and any stopping time � � �h. Suppose that ff; h0g (m0) >
0 for some m0 2 M . By continuity there exists a compact neighborhood U of m0 such that
ff; h0gjU > 0: Take �h the Hamiltonian semimartingale with initial condition �h0 = m0; and
let � be the �rst exit time of U for �h. Then, de�ning � := � ^ �;Z �

0
ff; h0g (�h)dt �

Z �

0
min fff; h0g (m) j m 2 Ug dt > 0;

which contradicts (2.21). Therefore, ff; h0g = 0 also, as required.

Remark 2.20 Notice that, unlike what happens for standard deterministic Hamiltonian sys-
tems, the energy h0 of a Hamiltonian di¤usion does not need to be conserved if the other
components of the Hamiltonian are not involution with h0. This is a general fact about sto-
chastic Hamiltonian systems that makes them useful in the modeling of dissipative phenomena.
We see more of this in the next example.

2.2.2 Integrable stochastic Hamiltonian dynamical systems

Let (M;!) be a 2n-dimensional manifold, X : R+�
! V a semimartingale, and h :M ! V �

such that h =
Pr

i=1 hi�
i, with

�
�1; :::; �r

	
a basis of V �. Let H be the associated Stratonovich

operator in (2.6).
Suppose that there exists a family of functions ffr+1; :::; fng � C1 (M) such that the

n-functions ff1 := h1; :::; fr := hr; fr+1; :::; fng � C1 (M) are in Poisson involution, that is,
ffi; fjg = 0, for any i; j 2 f1; :::; ng. Moreover, assume that F := (f1; :::; fn) satis�es the
hypotheses of the Liouville-Arnold Theorem [A89]: F has compact and connected �bers and
its components are independent. In this setup, we will say that the stochastic Hamiltonian
dynamical system associated to H is integrable.
As it was already the case for standard (Liouville-Arnold) integrable systems, there is

a symplectomorphism that takes (M;!) to
�
Tn � Rn;

Pn
i=1 d�

i ^ dIi
�
and for which F �

F (I1; :::; In). In particular, in the action-angle coordinates
�
I1; :::; In; �

1; :::; �n
�
, hj � hj (I1; :::; In)

with j 2 f1; :::; rg. In other words, the components of the Hamiltonian function depend only
on the actions I := (I1; :::; In). Therefore, for any random variable �0 and any i 2 f1; :::; ng

Ii (�)� Ii (�0) =
rX
j=1

Z
fIi; hj (I)g (�) �Xj = 0 (2.22a)

�i (�)� �i (�0) =
rX
j=1

Z �
�i; hj (I)

	
(�) �Xj =

rX
j=1

Z
@hj
@Ii

(�) �Xj : (2.22b)

Consequently, the tori determined by �xing I = constant are left invariant by the stochastic �ow
associated to (2.22). In particular, as the paths of the solutions are contained in compact sets,
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the stochastic �ow is de�ned for any time and the �ow is complete. Moreover, the restriction
of this stochastic di¤erential equation to the torus given by say, I0, yields the solution

�i (�)� �i (�0) =
rX
j=1

!j (I0)X
j ; (2.23)

where !j (I0) :=
@hj
@Ii
(I0) and where we have assumed that X0 = 0. Expression (2.23) clearly

resembles the integration that can be carried out for deterministic integrable systems.
Additionally, the Haar measure d�1 ^ ::: ^ d�n on each invariant torus is left invariant by

the stochastic �ow (see Theorem 2.11 and [Li08]). Therefore, if we can ensure that there exists
a unique invariant measure � (for instance, if (2.23) de�nes a non-degenerate di¤usion on the
torus Tn, the invariant measure is unique up to a multiplicative constant by the compactness
of Tn (see [IW89, Proposition 4.5])) then � coincides necessarily with the Haar measure.

2.2.3 The Langevin equation and viscous damping

Hamiltonian stochastic di¤erential equations can be used to model dissipation phenomena. The
simplest example in this context is the damping force experienced by a particle in motion in a
viscous �uid. This dissipative phenomenon is usually modeled using a force in Newton�s second
law that depends linearly on the velocity of the particle (see for instance [LL76, §25]). The
standard microscopic description of this motion is carried out using the Langevin stochastic
di¤erential equation (also called the Orstein-Uhlenbeck equation) that says that the velocity
_q(t) of the particle with mass m is a stochastic process that solves the stochastic di¤erential
equation

md _q(t) = �� _q(t)dt+ bdBt; (2.24)

where � > 0 is the damping coe¢ cient, b is a constant, and Bt is a Brownian motion. A
common physical interpretation for this equation (see [CH06]) is that the Brownian motion
models random instantaneous bursts of momentum that are added to the particle by collision
with lighter particles, while the mean e¤ect of the collisions is the slowing down of the particle.
This fact is mathematically described by saying that the expected value qe := E[q] of the
process q determined by (2.24) satis�es the ordinary di¤erential equation �qe = �� _qe. Even
though this description is accurate it is not fully satisfactory given that it does not provide any
information about the mechanism that links the presence of the Brownian perturbation to the
emergence of damping in the equation. In order for the physical explanation to be complete, a
relation between the coe¢ cients b and � should be provided in such a way that the damping
vanishes when the Brownian collisions disappear, that is, � = 0 when b = 0.
We now show that the motion of a particle of mass m in one dimension subjected to viscous

damping with coe¢ cient � and to a harmonic potential with Hooke constant k is a Hamiltonian
stochastic di¤erential equation. More explicitly, we will give a stochastic Hamiltonian system
such that the expected value qe of its solution semimartingales satis�es the ordinary di¤erential
equation of the damped harmonic oscillator, that is,

m �qe(t) = �� _qe(t)� kqe(t): (2.25)
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This description provides a mathematical mechanism by which the stochastic perturbations in
the system generate an average damping.
Consider R2 with its canonical symplectic form and let X : R+ � 
 ! R be the real

semimartingale given by Xt (!) = (t+ �Bt (!)) with � 2 R and Bt a Brownian motion. Let
now h : R2 ! R be the energy of a harmonic oscillator, that is, h (q; p) := 1

2mp
2 + 1

2�q
2. By

(2.10), the solution semimartingales �h of the Hamiltonian stochastic equations associated to
h and X satisfy

q(�h)� q(�h0) =
1

2m

Z �
2p(�ht )� �2�q(�ht )

�
dt+

�

m

Z
p(�ht )dBt; (2.26)

p(�h)� p(�h0) = �
�

2m

Z �
�2p(�ht ) + 2mq(�

h
t )
�
dt� ��

Z
q(�ht )dBt: (2.27)

Given that E
�R
p(�ht )dBt

�
= E

�R
q(�ht )dBt

�
= 0, if we denote

qe (t) := E
h
q(�ht )

i
, pe (t) := E

h
p(�ht )

i
;

Fubini�s Theorem guarantees that

_qe (t) =
1

m
pe (t)�

�2�

2m
qe (t) and _pe (t) = �

�2�

2m
pe (t)� �qe (t) : (2.28)

From the �rst of these equations we obtain that

pe (t) = m _qe +
�2�

2
qe

whose time derivative is

_pe (t) = m�qe +
�2�

2
_qe:

These two equations substituted in the second equation of (2.28) yield

m�qe (t) = ��2� _qe (t)� �
�
�4�

4m
+ 1

�
qe (t) ; (2.29)

that is, the expected value of the position of the Hamiltonian semimartingale �h associated to h
and X satis�es the di¤erential equation of a damped harmonic oscillator (2.25) with constants

� = �2� and k = �

�
�4�

4m
+ 1

�
:

Notice that the dependence of the damping and elastic constants on the coe¢ cients of the
system is physically reasonable. For instance, we see that the more intense the stochastic
perturbation is, that is, the higher � is, the stronger the damping becomes (� = �2� increases).
In particular, if there is no stochastic perturbation, that is, if � = 0, then the damping vanishes,
k = � and (2.29) becomes the di¤erential equation of a free harmonic oscillator of mass m and
elastic constant �.
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The stability of the resting solution. It is easy to see that the constant process �t(!) =
(0; 0), for all t 2 R and ! 2 
 is an equilibrium solution of (2.26) and (2.27). One can show
using the stochastic Dirichlet�s criterion (Theorem 2.15) that this equilibrium is almost surely
Lyapunov stable since the Hamiltonian function h is a strongly conserved quantity (by (2.8))
that exhibits a critical point at the origin with de�nite Hessian.

The Langevin equation. In the previous paragraphs we succeeded in providing a micro-
scopic Hamiltonian description of the harmonic oscillator subjected to Brownian perturbations
whose macroscopic counterpart via expectations yields the equations of the damped harmonic
oscillator. In view of this, is such a stochastic Hamiltonian description available for the pure
Langevin equation (2.24)? The answer is no. More speci�cally, it can be easily shown (pro-
ceed by contradiction) that (2.24) cannot be written as a stochastic Hamiltonian di¤eren-
tial equation on R2 with its canonical symplectic form with a noise semimartingale of the
form Xt(!) = (f0(t; Bt); f1(t; Bt)) and a Hamiltonian function h(q; p) = (h0(q; p); h1(q; p)),
f0; f1; h0; h1 2 C1(R). Nevertheless, if we put aside for a moment the stochastic Hamiltonian
category and we use Itô integration, the Langevin equation can still be written in phase space,
that is,

dqt = vtdt; dvt = ��vtdt+ bdBt; (2.30)

as a stochastic perturbation of a deterministic system, namely, a free particle whose evolution
is given by the di¤erential equations

dqt = vtdt and dvt = 0: (2.31)

Let
�
u1; u2

	
be global coordinates on R2 associated to the canonical basis fe1; e2g and consider

the global basis
�
d2u

i; d2u
i � d2uj

	
i;j=1;2

of ��R2. De�ne a dual Schwartz operator S� (x; (q; v)) :
��(q;v)R

2 �! ��xR2 characterized by the relations

d2q 7�! vd2u
1; d2v 7�! bd2u

2 � �v
�
d2u

2 � d2u2
�
;

where (q; v) 2 R2 is an arbitrary point in phase space and x 2 R2. If X : R+ � 
 ! R2 is
such that X (t; !) = (t; bBt (!)), for any (t; !) 2 R+ � 
, it is immediate to see that the Itô
equations associated to S� and X are (2.30). Moreover, if we set b = 0, that is, we switch o¤
the Brownian perturbation then we recover (2.31), as required.

2.2.4 Brownian motions on manifolds

The mathematical formulation of Brownian motions (or Wiener processes) on manifolds has
been the subject of much research and it is a central topic in the study of stochastic processes on
manifolds (see [IW89, Chapter 5], [E89, Chapter V], and references therein for a good general
review of this subject).
In the following paragraphs we show that Brownian motions can be de�ned in a particularly

simple way using the stochastic Hamilton equations introduced in De�nition 2.2. More speci�-
cally we will show that Brownian motions on manifolds can be obtained as the projections onto
the base space of very simple Hamiltonian stochastic semimartingales de�ned on the cotangent
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bundle of the manifold or of its orthonormal frame bundle, depending on the availability or
not of a parallelization for the manifold in question.
We will �rst present the case in which the manifold in question is parallelizable or, equiva-

lently, when the coframe bundle on the manifold admits a global section, for the construction
is particularly simple in this situation. The parallelizability hypothesis is veri�ed by many im-
portant examples. For instance, any Lie group is parallelizable; the spheres S1, S3, and S7 are
parallelizable too. At the end of the section we describe the general case.
The notion of manifold valued Brownian motion that we will use is the following. AM -valued

process � is called a Brownian motion on (M; g), with g a Riemannian metric on M , whenever
� is continuous and adapted and for every f 2 C1(M)

f(�)� f(�0)�
1

2

Z
�Mf(�)dt

is a local martingale. We recall that the Laplacian �M (f) is de�ned as �M (f) = Tr (Hess f),
for any f 2 C1 (M), where Hess f := r(rf), withr : X(M)�X(M)! X(M), the Levi-Civita
connection of g. Hess f is a symmetric (0; 2)-tensor such that for any X;Y 2 X(M),

Hess f(X;Y ) = X [g(grad f; Y )]� g(grad f;rXY ): (2.32)

Brownian motions on parallelizable manifolds. Suppose that the n-dimensional mani-
fold (M; g) is parallelizable and let fY1; :::; Yng be a family of vector �elds such that for each
m 2 M , fY1(m); :::; Yn(m)g forms a basis of TmM (a parallelization). Applying the Gram-
Schmidt orthonormalization procedure if necessary, we may suppose that this parallelization is
orthonormal, that is, g (Yi; Yj) = �ij , for any i; j = 1; :::; n.
Using this structure we are going to construct a stochastic Hamiltonian system on the cotan-

gent bundle T �M ofM , endowed with its canonical symplectic structure, and we will show that
the projection of the solution semimartingales of this system onto M are M -valued Brownian
motions in the sense speci�ed above. Let X : R+ � 
! Rn+1 be the semimartingale given by
X(t; !) := (t; B1t (!); : : : ; B

n
t (!)), where B

j ; j = 1; :::; n, are n-independent Brownian motions
and let h = (h0; h1; : : : ; hn) : T �M ! Rn+1 be the function whose components are given by

h0 : T �M �! R
�m 7�! �1

2

Pn
j=1h�m;

�
rYjYj

�
(m)i and

hj : T �M �! R
�m 7�! h�m; Yj(m)i:

(2.33)

We will now study the projection onto M of Hamiltonian semimartingales �h that have X as
stochastic component and h as Hamiltonian function and will prove that they are M -valued
Brownian motions. In order to do so we will be particularly interested in the projectable
functions f of T �M , that is, the functions f 2 C1(T �M) that can be written as f = f � �
with f 2 C1(M) and � : T �M !M the canonical projection.
We start by proving that for any projectable function f = f � � 2 C1(T �M)

ff; h0g = g

0@grad f;�1
2

nX
j=1

rYjYj

1A and ff; hjg = g
�
grad f; Yj

�
; (2.34)
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and where f�; �g is the Poisson bracket associated to the canonical symplectic form on T �M .
Indeed, let U a Darboux patch for T �M with associated coordinates

�
q1; : : : ; qn; p1; : : : ; pn

�
such

that fqi; pjg = �ij . There exists functions f
k
j 2 C1(�(U)), with k; j 2 f1; : : : ; ng such that the

vector �elds may be locally written as Yj =
Pn

k=1 f
k
j

@
@qk
. Moreover, hj (q; p) =

Pn
k=1 f

k
j (q) pk

and

ff; hjg =
(
f � �;

nX
k=1

fkj pk

)
=

nX
k=1

fkj
�
f � �; pk

	
=

nX
k;i=1

fkj
@(f � �)
@qi

�
qi; pk

	
=

nX
k;i=1

fkj �
i
k

@f

@qi
= Yj [f ] � � = g

�
grad f; Yj

�
� �;

as required. The �rst equality in (2.34) is proved analogously. Notice that the formula that we
just proved shows that if f is projectable then so is ff; hjg, with j 2 f1; : : : ; ng. Hence, using
(2.34) again and (2.32) we obtain that

fff; hjg ; hjg = Yj
�
g
�
grad f; Yj

��
� � = Hess f (Yj ; Yj) � � + g

�
grad f;rYjYj

�
� �; (2.35)

for j 2 f1; : : : ; ng. Now, using (2.34) and (2.35) in (2.10) we have shown that for any projectable
function f = f � �, the Hamiltonian semimartingale �h satis�es that

f � �(�h)� f � �(�h0) =
nX
j=1

Z
g
�
grad f; Yj

�
(� � �h)dBj

s

+
1

2

nX
j=1

Z
Hess f (Yj ; Yj) (� � �h)dt; (2.36)

or equivalently

f � �(�h)� f � �(�h0)�
1

2

Z
�M (f)(� � �h)dt =

nX
j=1

Z
g
�
grad f; Yj

�
(� � �h)dBj

s : (2.37)

Since
Pn

i=1

R
g
�
grad f; Yj

�
(�
h
)dBi is a local martingale (see [P05, Theorem 20, page 63]),

�(�h) is a Brownian motion.

Brownian motions on Lie groups. Let now G be a (�nite dimensional) Lie group with Lie
algebra g and assume that G admits a bi-invariant metric g, for example when G is Abelian or
compact. This metric induces a pairing in g invariant with respect to the adjoint representation
ofG on g. Let f�1; : : : ; �ng be an orthonormal basis of g with respect to this invariant pairing and
let f�1; : : : ; �ng be the corresponding dual basis of g�. The in�nitesimal generator vector �elds
f�1G; : : : ; �nGg de�ned by �iG(h) = TeLh � �, with Lh : G! G the left translation map, h 2 G,
i 2 f1; : : : ng, are obviously an orthonormal parallelization of G, that is g(�iG; �jG) := �ij . Since
g is bi-invariant then rXY = 1

2 [X;Y ], for any X;Y 2 X(G) (see [O83, Proposition 9, page
304]), and hence r�iG�iG = 0. Therefore, in this particular case the �rst component h0 of the
Hamiltonian function introduced in (2.33) is zero and we can hence take hG = (h1; :::; hn) and
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XG =
�
B1t ; :::; B

n
t

�
when we consider the Hamilton equations that de�ne the Brownian motion

with respect to g.
As a special case of the previous construction that serves as a particularly simple illustration,

we are going to explicitly build the Brownian motion on a circle. Let S1 = fei� j � 2 Rg
be the unit circle. The stochastic Hamiltonian di¤erential equation for the semimartingale �h

associated to X : R+ � 
 ! R, given by Xt(!) := Bt(!), and the Hamiltonian function
h : TS1 ' S1 � R ! R given by h(ei�; �) := �, is simply obtained by writing (2.36) down
for the functions f1(ei�) := cos � and f2(ei�) := sin � which provide us with the equations for
the projections Xh and Y h of �h onto the OX and OY axes, respectively. A straightforward
computation yields

dXh = �Y hdB � 1
2
Xhdt and dY h = XhdB � 1

2
Y hdt; (2.38)

which, incidentally, coincides with the equations proposed in expression (5.1.13) of [O03]. A
solution of (2.38) is (Xh

t ; Y
h
t ) = (cosBt; sinBt), that is, �

h
t = eiBt .

Brownian motions on arbitrary manifolds. Let (M; g) be a not necessarily parallelizable
Riemannian manifold. In this case we will reproduce the same strategy as in the previous
paragraphs but replacing the cotangent bundle of the manifold by the cotangent bundle of its
orthonormal frame bundle.
Let Ox (M) be the set of orthonormal frames for the tangent space TxM . The orthonormal

frame bundle O (M) =
S
x2M Ox (M) has a natural smooth manifold structure of dimension

n (n+ 1)/ 2. We denote by � : O (M)!M the canonical projection. We recall that a curve  :
(�"; ") � R! O (M) is called horizontal if t is the parallel transport of 0 along the projection
� (t). The set of tangent vectors of horizontal curves that contain a point u 2 O (M) de�nes the
horizontal subspace HuO (M) � TuO (M) ; with dimension n. The projection � : O (M)!M
induces an isomorphism Tu� : HuO (M) ! T�(u)M . On the orthonormal frame bundle, we
have n horizontal vector �elds Yi; i = 1; :::; n, de�ned as follows. For each u 2 O (M), let
Yi (u) be the unique horizontal vector in HuO (M) such that Tu� (Yi) = ui; where ui is the ith
unit vector of the orthonormal frame u. Now, given a smooth function F 2 C1 (O (M)), the
operator

�O(M) (F ) =
nX
i=1

Yi [Yi [F ]]

is called Bochner�s horizontal Laplacian on O (M). At the same time, we recall that the Lapla-
cian �M (f), for any f 2 C1 (M), is de�ned as �M (f) = Tr (Hess f). These two Laplacians
are related by the relation

�O(M) (�
�f) = �M (f) ; (2.39)

for any f 2 C1 (M) (see [H02]).
The Eells-Elworthy-Malliavin construction of Brownian motion can be summarized as fol-

lows. Consider the following stochastic di¤erential equation on O (M) (see [IW89]):

�Ut =

nX
i=1

Yi (Ut) �B
i
t (2.40)
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where Bj ; j = 1; :::; n, are n-independent Brownian motions. Using the conventions introduced
in Subsection 1.4.4 the expression (2.40) is the Stratonovich stochastic di¤erential equation
associated to the Stratonovich operator:

e (v; u) : TvRn �! TuO (M)
v =

Pn
i=1 v

iei 7�!
Pn

i=1 v
iYi (u) ;

where fe1; : : : ; eng is a �xed basis for Rn. A solution of the stochastic di¤erential equation
(2.40) is called a horizontal Brownian motion on O (M) since, by the Itô formula,

F (U)� F (U0) =
nX
i=1

Z
Yi [F ] (Us) �B

i
s =

nX
i=1

Z
Yi [F ] (Us) dB

i
s +

1

2

Z
�O(M)(F ) (Us) ds;

for any F 2 C1 (O (M)). In particular, if F = �� (f) for some f 2 C1 (M) ; by (2.39)

f (X)� f (X0) =
nX
i=1

Z
Yi [�

� (f)] (Us) dB
i
s +

1

2

Z
�Mf (Xs) ds;

where Xt = � (Ut), which implies precisely that Xt is a Brownian motion on M .
In order to generate (2.40) as a Hamilton equation, we introduce the functions hi : T �O (M)!

R, i = 1; :::; n, given by hi (�) = h�; Yii. Recall that T �O (M) being a cotangent bundle it has
a canonical symplectic structure. Mimicking the computations carried out in the parallelizable
case it can be seen that the Hamiltonian vector �eld Xhi coincides with Yi when acting on
functions of the form F � �T �O(M); where F 2 C1 (O (M)) and �T �O(M) is the canonical pro-
jection �T �O(M) : T

�O (M)! O (M). By (2.8), the Hamiltonian semimartingale �h associated
to h = (h1; :::; hn) and to the stochastic Hamiltonian equations on T �O(M) with stochastic
component X =

�
B1t ; :::; B

n
t

�
is such that

F � �T �O(M)(�
h)� F � �T �O(M)(�

h
0)

=

nX
i=1

Z �
F � �T �O(M); hi

	
(�hs )�B

i
s =

nX
i=1

Z
Yi [F ]

�
�T �O(M)(�

h
s )
�
�Bi

s

for any F 2 C1 (O (M)). This expression obviously implies that Uh = �T �O(M)

�
�h
�
is a

solution of (2.40) and consequently Xh = �
�
Uh
�
is a Brownian motion on M .

2.2.5 The inverted pendulum with stochastically vibrating suspension point

The equation of motion for small angles of a damped inverted unit mass pendulum of length l
with a vertically vibrating suspension point is

�� =

�
�y

l
+
g

l

�
�� � _�; (2.41)

where � is the angle that measures the separation of the pendulum from the vertical upright
position, y = y (t) is the height of the suspension point (externally controlled), � is the friction
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coe¢ cient, and g is the gravity constant. By construction, the point (�; _�) = (0; 0) corresponds
to the upright equilibrium position. It can be shown that if the function y(t) is of the form
y(t) = az (!t), with z periodic, the amplitude a is su¢ ciently small, and the frequency ! is
su¢ ciently high, then this equilibrium becomes nonlinearly stable.
We now consider the case in which the external forcing of the suspension point is given by a

continuous stochastic process _z : R+�
! R such that _z2 is continuous and stationary. Under
this assumptions, the equation (2.41) becomes the stochastic di¤erential equation

d� = _�dt; d _� =
�g
l
�� � _�

�
dt+ "2!2�d _zt; (2.42)

where " :=
p
a=l. Observe that this equation is not Hamiltonian unless the friction term �� _�

vanishes (� = 0), in which case one obtains a Hamiltonian stochastic system with Hamil-

tonian function h(�; _�) = (12(l
2 _�
2 � l�2); 14("

2!2�l)2;�1
2("!�l)

2) and noise semimartingale
Xt = (t; [ _z; _z]; _z) (the symplectic form is obviously l2d� ^ d _�).
The stability of the upright position of the stochastically forced pendulum has been studied

in [O06, I01], and references therein. In [O06] it is assumed that the noise has the fairly strong
mixing property. We recall that a continuous, adapted, stationary process � : R+ � 
 ! R
has the fairly strong mixing property if E

�
�2t
�
< 1, there exists a real function c such thatR1

0 c (s) ds <1, and for any t > s

kE [�t � E [�t]j Fs]kL2 � c (t� s) k�s � E [�s]kL2 ;

where k�kL2 stands for the L2 norm. For example, if x is the unique stationary solution with
zero mean of the Itô equations

dxt = ytdt; dyt = � (xt + yt) dt+ dBt;

where Bt is a standard Brownian motion, then _x2t � 1
2 = y2t � 1

2 has the fairly strong mixing
property. Using this hypothesis, it can be shown [O06, Theorem 1] that if z : R+ � 
 ! R
is a continuously di¤erentiable and stationary process such that, for any t 2 R+, E [zt] = 0,
E [exp (" jztj)] < 1 if " =

p
a=l is su¢ ciently small, and the process _z2 has the fairly strong

mixing property, then the solution (�; _�) = (0; 0) of (2.42) is exponentially stable in probability,
if " is su¢ ciently small and g

l"4
< E

�
_z2
�
. Moreover, Ovseyevich shows in [O06, Section 4] that if

we put � = 0 in (2.42) and we consider hence the inverted pendulum as a Hamiltonian system,
then the equilibrium point (�; _�) = (0; 0) is unstable.

2.3 Critical action principles for the stochastic Hamilton equations

Our goal in this section is showing that the stochastic Hamilton equations can be characterized
by a variational principle that generalizes the one used in the classical deterministic situation.
In the following pages we shall consider an exact symplectic manifold (M;!), that is, there exist
a one-form � 2 
 (M) such that ! = �d�. The archetypical example of an exact symplectic
manifold is the cotangent bundle T �Q of any manifold Q, with � the Liouville one-form.
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In the following pages we will proceed in two stages. In the �rst subsection we will construct
a critical action principle based on using variations of the solution semimartingale using the
�ow of a vector �eld on the manifold. Even though this approach is extremely natural and
mathematically very tractable it yields a variational principle (Theorem 2.29) that does not
fully characterize the stochastic Hamilton�s equations. In order to obtain such a characterization
one needs to use more general variations associated to the �ows of vector �elds de�ned on
the solution semimartingale, that is, they depend on 
. This complicates considerably the
formulation and will be treated separately in the second subsection.

De�nition 2.21 Let (M;! = �d�) be an exact symplectic manifold, X : R+ � 
 ! V a
semimartingale taking values on the vector space V , and h :M ! V � a Hamiltonian function.
We denote by S (M) and S (R) the sets of M and real-valued semimartingales, respectively.
We de�ne the stochastic action associated to h as the map S : S(M)! S(R) given by

S (�) =

Z
h�; ��i �

Z Dbh (�) ; �XE ;
where in the previous expression, bh (�) : R+ � 
 ! V � V � is given by bh (�) (t; !) :=
(Xt(!); h(�t(!))).

2.3.1 Variations involving vector �elds on the phase space

De�nition 2.22 LetM be a manifold, F : S (M)! S (R) a map, and � 2 S (M). A local one-
parameter group of di¤eomorphisms ' : D � R�M !M is said to be complete with respect
to � if there exists � > 0 such that 's(�) is a well-de�ned process for any s 2 (��; �). We say
that F is di¤ erentiable at � in the direction of a local one parameter group of di¤eomorphisms
' complete with respect to �, if for any sequence fsngn2N � R such that sn �!n!1 0, the family

Xn =
1

sn

�
F
�
'sn (�)

�
� F (�)

�
converges uniformly on compacts in probability (ucp) to a process that we will denote by
d
ds

��
s=0

F ('s (�)) and that is referred to as the directional derivative of F at � in the direc-
tion of 's.

Remark 2.23 Note that global one-parameter groups of di¤eomorphisms (for instance, �ows
of complete vector �elds) are complete with respect to any semimartingale. Let � : R+�
!M
be a M -valued continuous and adapted stochastic process and A �M a set. We will denote by
�A = inf ft > 0 j �t (!) =2 Ag the �rst exit time of � with respect to A. We recall that �A is
a stopping time if A is a Borel set. Additionally, let � be a semimartingale and K a compact
set such that �0 � K. Then, any local one-parameter group of di¤eomorphisms ' is complete
with respect to the stopped process ��K . Note that this conclusion could also hold for certain
non-compact sets.

The proof of the following proposition can be found in Section 2.5.1.
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Proposition 2.24 Let M be a manifold, � 2 
 (M) a one-form, and F : S (M) ! S (R)
the map de�ned by F (�) :=

R
h�; ��i. Then F is di¤erentiable in all directions. Moreover, if

� : R+ � 
!M is a continuous semimartingale, ' is an arbitrary local one-parameter group
of di¤eomorphisms complete with respect to �, and Y 2 X(M) is the vector �eld associated to
', then

d

ds

����
s=0

F ('s (�)) =
d

ds

����
s=0

Z
h�; � ('s � �)i =

d

ds

����
s=0

Z
h'�s�; ��i =

Z
h$Y �; ��i : (2.43)

The symbol $Y � denotes the Lie derivative of � in the direction given by Y .

Corollary 2.25 In the setup of De�nition 2.21 let � = ![ (Y ) 2 
(M), with ![ the inverse of
the vector bundle isomorphism !] : T �M ! TM induced by !. Let � : R+ �
!M be a con-
tinuous adapted semimartingale. ' an arbitrary local one-parameter group of di¤eomorphisms
complete with respect to �, and Y 2 X(M) the associated vector �eld. Then, the action S is
di¤erentiable at � in the direction of ' and the directional derivative is given by

d

ds

����
s=0

S ('s (�)) = �
Z
h�; ��i �

Z D
dh
�
!# (�)

�
(�) ; �X

E
+ iY � (�)� iY � (�0) : (2.44)

Proof. It is clear from Proposition 2.24 that

1

s

�Z
h'�s� � �; ��i

�
s!0�!

Z
h$Y �; ��i

in ucp. The proof of that result can be easily adapted to show that ucp

1

s

�Z D�
'�sbh� bh� (�) ; �XE� s!0�!

Z D�
$Y bh� (�) ; �XE :

Thus, using (1.49a) and � = ![ (Y ) 2 
(M),

d

ds

����
s=0

S ('s (�)) =

Z
h$Y �; ��i �

Z D�
$Y bh� (�) ; �XE

=

Z
hiY d� + d (iY �) ; ��i �

Z
hdh (Y ) (�) ; �Xi

= �
Z
h�; ��i+

Z
hd (iY �) ; ��i �

Z D
dh
�
!# (�)

�
(�) ; �X

E
= �

Z
h�; ��i �

Z D
dh
�
!# (�)

�
(�) ; �X

E
+ (iY �) (�)� (iY �) (�0) :

Corollary 2.26 (Noether�s theorem) In the setup of De�nition 2.21, let ' : R�M ! M
be a one parameter group of di¤eomorphisms and Y 2 X(M) the associated vector �eld. If the
action S : S (M)! S (R) is invariant by ', that is, S ('s (�)) = S (�), for any s 2 R, then the
function iY � is a strongly conserved quantity of the stochastic Hamiltonian system associated
to h :M ! V �.
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Proof. Let �h be the Hamiltonian semimartingale associated to h with initial condition �0.
Since 's leaves invariant the action we have that

d

ds

����
s=0

S
�
's(�

h)
�
= 0

and hence by (2.44) we have that

0 = �
Z D

�; ��h
E
�
Z D

dh
�
!# (�)

�
(�h); �X

E
+ iY �(�

h)� iY � (�0) :

As �h is the Hamiltonian semimartingale associated to h we have that

�
Z D

�; ��h
E
=

Z D
dh
�
!# (�)

�
(�h); �X

E
and hence iY �(�h) = iY � (�0), as required.

Remark 2.27 The hypotheses of the previous corollary can be modi�ed by requiring, instead
of the invariance of the action by 's, the existence of a function F 2 C1(M) such that

d

ds

����
s=0

S
�
's(�

h)
�
= F (�)� F (�0):

In that situation, the conserved quantity is iY � + F .

Before we state the Critical Action Principle for the stochastic Hamilton equations we need
one more de�nition.

De�nition 2.28 Let M be a manifold and A a set. We will say that a local one parameter
group of di¤eomorphisms ' : D �M !M �xes A if 's (y) = y for any y 2 A and any s 2 R
such that (s; y) 2 D. The corresponding vector �eld Y 2 X(M) given by Y (m) = d

ds

��
s=0

's(m)
satis�es that Y jA = 0.

Theorem 2.29 (First Critical Action Principle) Let (M;! = �d�) be an exact symplectic
manifold, X : R+ � 
 ! V a semimartingale taking values on the vector space V such that
X0 = 0, and h : M ! V � a Hamiltonian function. Let m0 2 M be a point in M and � :
R+ � 
 ! M a continuous semimartingale such that �0 = m0. Let K be a compact set that
contains the point m0. If the semimartingale � satis�es the stochastic Hamilton equations (2.7)
(with initial condition �0 = m0) up to time �K then for any local one-parameter group of
di¤eomorphisms ' that �xes the set fm0g [ @K we have

1f�K<1g

�
d

ds

����
s=0

S ('s (�
�K ))

�
�K

= 0 a.s.: (2.45)

Proof.We start by emphasizing that when we write that � satis�es the stochastic Hamiltonian
equations (2.7) up to time �K we mean that�Z

h�; ��i+
Z D

dh
�
!# (�)

�
(�) ; �X

E��K
= 0:
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For the sake of simplicity in our notation we de�ne the linear operator Ham : 
(M) ! S(R)
given by

Ham(�) :=

�Z
h�; ��i+

Z D
dh
�
!# (�)

�
(�) ; �X

E�
; � 2 
 (M) :

Suppose now that the semimartingale � satis�es the stochastic Hamilton equations up to time
�K . Let ' be a local one-parameter group of di¤eomorphisms that �xes fm0g [ @K, and let
Y 2 X(M) be the associated vector �eld. Then, taking � = ![ (Y ), we have by Corollary 2.25,

d

ds

����
s=0

S ('s (�
�K )) = �

Z
h�; ���K i �

Z D
dh
�
!# (�)

�
(��K ) ; �X

E
+ iY � (�

�K ) ; (2.46)

since Y (m0) = 0 and hence iY � (�0) = 0. Additionally, since � is continuous, 1f�K<1g��K 2
@K and Y j@K = 0. Hence,

1f�K<1g

�
d

ds

����
s=0

S ('s (�
�K ))

�
�K

= �1f�K<1g
�Z

h�; ���K i+
Z D

dh
�
!# (�)

�
(��K ) ; �X

E�
�K

:

Now, Proposition A.1 in the Appendix and the hypothesis on � satisfying Hamilton�s equation
guarantee that the previous expression equals

1f�K<1g

�
d

ds

����
s=0

S ('s (�
�K ))

�
�K

= �1f�K<1g
��Z

h�; ���K i+
Z D

dh
�
!# (�)

�
(��K ) ; �X

E��K�
�K

= �1f�K<1g
��Z

h�; ��i+
Z D

dh
�
!# (�)

�
(�) ; �X

E��K�
�K

= �1f�K<1g [Ham(�)�K ] = 0 a.s.;

as required.

Remark 2.30 The relation between the Critical Action Principle stated in Theorem 2.29 and
the classical one for Hamiltonian mechanics is not straightforward since the categories in which
both are formulated are very much di¤erent; more speci�cally, the di¤erentiability hypothe-
sis imposed on the solutions of the deterministic principle is not a reasonable assumption in
the stochastic context and this has serious consequences. For example, unlike the situation
encountered in classical mechanics, Theorem 2.29 does not admit a converse within the set of
hypotheses in which it is formulated. In order to elaborate a little bit more on this question let
(M;! = �d�) be an exact symplectic manifold, take the Hamiltonian function h 2 C1(M), and
consider the stochastic Hamilton equations with trivial stochastic component X : R+�
! R
given by Xt(!) = t. As we saw in Remark 2.7 the paths of the semimartingales that solve these
stochastic Hamilton equations are the smooth curves that integrate the standard Hamilton
equations. In this situation the action reads

S (�) =

Z
h�; ��i �

Z
h (�s) ds:
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If the path �t(!) is di¤erentiable then the integral
�R
h�; ��i

�
(!) reduces to the Riemann

integral
R
�t(!)

� and S(�)(!) coincides with the classical action. In particular, if � is a solution
of the stochastic Hamilton equations then the paths �t(!) are necessarily di¤erentiable (see
Remark 2.7), they satisfy the standard Hamilton equations, and hence make the action critical.
The following elementary example shows that the converse is not necessarily true: one may have
semimartingales that satisfy (2.45) and that do not solve the Hamilton equations up to time
�K . We will consider a deterministic example. Let m0; m1 2 M be two points. Suppose there
exists an integral curve  : [t0; t1] ! M of the Hamiltonian vector �eld Xh de�ned on some
time interval [t0; t1] such that  (t0) = m0 and  (t1) = m1. De�ne the continuous and piecewise
smooth curve � : [0; t1]!M as follows:

� (t) =

�
m0 if t 2 [0; t0]
 (t) if t 2 [t0; t1] :

Let ' be a local one-parameter group of di¤eomorphisms that �xes fm0;m1g. Then by (2.44)�
d

ds

����
s=0

S ('s (�))

�
t

= �
Z
�j[0;t]

�+

Z t

0
h�;Xhi (�(t)) dt+ h�(�(t)); Y (�(t))i � h�(m0); Y (m0)i;

where Y (m) = d
ds

��
s=0

's (m), for any m 2 M and � = ![ (Y ). Using that � satis�es the
Hamilton equations on [t0; t1] and � (m0) = 0, it is easy to see that�

d

ds

����
s=0

S ('s (�))

�
t1

= 0;

that is, � makes the action critical. However, it does not satisfy the Hamilton equations on
the interval [0; t1] ; because they do not hold on (0; t0). This shows that the converse of the
statement in Theorem 2.29 is not necessarily true. In the following subsection we will obtain
such a converse by generalizing the set of variations allowed in the variational principle.

2.3.2 Variations involving vector �elds on the solution semimartingale

We start by spelling out the variations that we will use in order to obtain a converse to Theorem
2.29.

De�nition 2.31 Let M be a manifold and � a M -valued semimartingale. Let s0 > 0; we say
that the map � : (�s0; s0) � R+ � 
 ! M is a pathwise variation of � whenever �0t = �t
for any t 2 R+ a.s.. We say that the pathwise variation � of � converges uniformly to �
whenever the following properties are satis�ed:

(i) For any f 2 C1 (M), f (�s)! f (�) in ucp as s! 0.

(ii) There exists a process Y : R+ � 
 ! TM over � such that, for any f 2 C1 (M), the
Stratonovich integral

R
Y [f ] �X exists for any continuous real semimartingale X (this

is for instance guaranteed if Y is a semimartingale) and, additionally, the increments
(f (�s)� f (�))/ s converge in ucp to Y [f ] as s! 0. We will call such a Y the in�ni-
tesimal generator of �.
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We will say that � (respectively, Y ) is bounded when its image lies in a compact set of M
(respectively, TM).

The next proposition shows that, roughly speaking, there exist bounded pathwise varia-
tions that converge uniformly to a given semimartingale with prescribed bounded in�nitesimal
generator.

Proposition 2.32 Let � be a continuous M -valued semimartingale �, K � M a compact
set, and �K the �rst exit time of � from K. Let Y : R+ � 
 ! TM be a bounded process
over ��K such that

R
Y [f ] �X exists for any continuous real semimartingale X and for any

f 2 C1 (M). Then, there exists a bounded pathwise variation � that converges uniformly to
��K whose in�nitesimal generator is Y .

Proof. Let f(Vk; 'k)gk2N be a countable open covering of M by coordinate patches such that
any Vk is contained in a compact set. This covering is always available by the second countability
of the manifold and Lindelöf�s Lemma. Let fUkgk2N be an open subcovering such that, if Uk �
Vi for some k, i 2 N, then Uk ( Vi. Let f�mgm2N be a sequence of stopping times (available by
Lemma 3.5 in [E89]) such that, a.s., �0 = 0; �m � �m+1; supm �m =1; and that, on each of the
sets [�m; �m+1]\f�m+1 > �mg the semimartingale � takes values in the open set Uk(m), for some
k (m) 2 N. Since K is compact, it can be covered by a �nite number of these open sets, i.e. K �
[j2JUkj , where jJ j <1. Let xkj � (x1kj ; : : : ; x

n
kj
), n = dim (M) be a set of coordinate functions

on Ukj(m) and (xkj ; vkj ) � (x1kj ; : : : ; x
n
kj
; v1kj ; : : : ; v

n
kj
) the corresponding adapted coordinates for

TM on ��1TM
�
Ukj(m)

�
. Since Y is bounded and covers ��K , and on [�m; �m+1]\ f�m+1 > �mg

the semimartingale � takes values in the open set Ukj(m), there exist a skj > 0 such that, on
[�m; �m+1]\f�m+1 > �mg, the points (x1kj (�)+sv

1
kj
(Y ) ; : : : ; xnkj (�)+sv

n
kj
(Y )) lie in the image

of some coordinate patch Vkj containing Ukj(m) for all s 2
�
�skj ; skj

�
. Let s0 = minj2J

�
skj
	
.

Now, since the sets of the form Im := [�m; �m+1) \ f�m+1 > �mg � R+ � 
, m 2 N form a
disjoint partition of R+ � 
 we de�ne � as the map that for any m 2 N satis�es

�jIm : (�s0; s0)� [�m; �m+1) \ f�m+1 > �mg �! Vkj
(s; t; !) 7�! '�1k

�
xkj (�t (!)) + svkj (Yt (!))

�
:

Observe that by construction the image of � is covered by a �nite number of coordinated
patches and therefore, by hypothesis, contained in a compact set. � is hence bounded. More
speci�cally

f�st (!) j (s; t; !) 2 (�s0; s0)� R� 
g �
[
j2J

Vkj : (2.47)

It is immediate to see that � is a pathwise variation which converges uniformly to ��K . Indeed,
if f 2 C1 (M) has compact support within one of the elements in the family

�
Ukj
	
j2J , it can

be easily checked that

f (�s) �!
ucp
s!0

f (�) and
f (�s)� f (�)

s
�!
ucp
s!0

Y [f ] : (2.48)



2.3 Critical action principles for the stochastic Hamilton equations 73

If, more generally, f 2 C1 (M) has not compact support contained in one of the
�
Ukj
	
j2J ,

observe that, by (2.47), we only need to consider the restriction of f to
S
j2J Vkj . Take now a

partition of the unity f�kgk2N subordinated to the covering fUkgk2N. Since fsupp (�k)gk2N is
a locally �nite family and

S
j2J Vkj is contained in a compact set because, by hypothesis, so is

each Vkj for any j 2 J , then among all the f�kgk2N only a �nite number of them have their
supports in

�
Ukj
	
j2J , say

�
�ki
	
i2I with jIj <1. Thus,

f j[j2JVkj =
jIjX
i=1

�kif

and since each �kif is a function similar to those considered in (2.48) it is straightforward to
see that those implications also hold for f .

The following result generalizes Proposition 2.24 to pathwise variations of a semimartingale.
The proof can be found in Subsection 2.5.2

Proposition 2.33 Let � be a M -valued continuous semimartingale �, K �M a compact set,
and �K the �rst exit time of � from K. Let � be a bounded pathwise variation that converges
uniformly to ��K and Y : R+ � 
 ! TM the in�nitesimal generator of � that we will also
assume to be bounded. Then, for any � 2 
 (M),

lim
ucp
s!0

1

s

�Z
h�; ��si �

Z
h�; ���K i

�
=

Z
hiY d�; ���K i+ h� (��K ) ; Y i � h� (��K ) ; Y it=0 :

The next theorem shows that the generalization of the Critical Action Principle in Theorem
2.29 to pathwise variations fully characterizes the stochastic Hamilton�s equations.

Theorem 2.34 (Second Critical Action Principle) Let (M;! = �d�) be an exact sym-
plectic manifold, X : R+ � 
 ! V a semimartingale that takes values in the vector space V ,
and h : M ! V � a Hamiltonian function. Let m0 be a point in M and � : R+ � 
 ! M
a continuous adapted semimartingale de�ned on [0; ��) such that �0 = m0. Let K � M be
a compact set that contains m0 and let �K be the �rst exit time of � from K. Suppose that
�K <1 a.s.. Then,

(i) For any bounded pathwise variation � with bounded in�nitesimal generator Y which con-
verges to ��K uniformly, the action has a directional derivative that equals

d

ds

����
s=0

S (�s) := lim
ucp
s!0

1

s
[S (�s)� S (��K )] =

Z
hiY d�; ���K i �

Z D
[Y [h](��K ); �X

E
+ h� (��K ) ; Y i � h� (��K ) ; Y it=0 ; (2.49)

where the symbol [Y [h](��K ) is consistent with the notation introduced in De�nition 2.21

(ii) The semimartingale � satis�es the stochastic Hamiltonian equations (2.7) with initial
condition �0 = m0 up to time �K if and only if, for any bounded pathwise variation
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� : (�s0; s0) � R+ � 
 ! M with bounded in�nitesimal generator which converges uni-
formly to ��K and such that �s0 = m0 and �s�K = ��K a.s. for any s 2 (�s0; s0),�

d

ds

����
s=0

S (�s)

�
�K

= 0 a.s..

Proof. We �rst show that the limit (2.49) exist. Let � be an arbitrary bounded pathwise
variation converging to � uniformly and Y : R+�
! TM its in�nitesimal generator, that we
also assume to be bounded. We have

1

s
[S (�s)� S (��K )] =

1

s

�Z
h�; ��si �

Z
h�; ���K i

�
�1
s

�Z Dbh (�s)� bh (��K ) ; �XE� : (2.50)

By Proposition 2.33, the �rst summand in the right hand side of (2.50) converges ucp toZ
hiY d�; ���K i+ h� (��K ) ; Y i � h� (��K ) ; Y it=0 :

as s ! 0. An argument similar to the one leading to Proposition 2.33 shows that the second

summand converges to
R D[Y [h](��K ); �XE. Hence,

lim
s!0

1

s
[S (�s)� S (��K )] =

Z
hiY d�; ���K i �

Z D
[Y [h](��K ); �X

E
+ h� (��K ) ; Y i � h� (��K ) ; Y it=0 :

If we denote by � := �iY d� = iY ! the one-form over ��K built using the vector �eld Y over
��K , the previous relation may be rewritten as�

d

ds

����
s=0

S (�s)

�
= �

Z
h�; ���K i �

Z D
dh (��K )

�
!# (�)

�
; �X

E
+ h� (��K ) ; Y i � h� (��K ) ; Y it=0 : (2.51)

We are now going to prove the assertion in part (ii). Recall that the hypothesis that � satis�es
the stochastic Hamilton equations up to time �K means that�Z

h�; ��i+
Z D�

dh � !# (�)
�
(�) ; �X

E��K
= 0; (2.52)

for any � 2 
 (M). We now show that this expression is also true if we replace � with any
process � : R+�
! T �M over � such that the two Stratonovich integrals involved in (2.52) are
well-de�ned (for instance if � is a semimartingale). Indeed, invoking ([E89, 7.7]) and Whitney�s
embedding theorem, there exist an integer p 2 N such that the manifold M can be seen as
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an embedded submanifold of Rp. In this embedded picture, there exists a family of functions�
f1; :::; fp

	
� C1 (Rp) such that the one-form � may be written as

� =

pX
j=1

Zjdf
j ;

where the Zj : R+ � 
 ! R, j 2 f1; :::; pg, are real processes. Moreover, using the properties
of the Stratonovich integral (see [E89, Proposition 7.4]),�Z

h�; ��i+
Z D�

dh � !# (�)
�
(�) ; �X

E��K
=

0@ pX
j=1

Z
Zj�

�Z �

df j ; ��

�
+

Z D�
dh � !#

�
df j

��
(�) ; �X

E��1A�K

=

pX
j=1

Z
Zj�

�Z �

df j ; ��

�
+

Z D�
dh � !#

�
df j

��
(�) ; �X

E���K
;

where the last equality follows from Proposition A.1. Therefore, since df j is a deterministic
one-form we can conclude that

�R 


df j ; ��

�
+
R 
�

dh � !#
�
df j

��
(�) ; �X

����K = 0, which
justi�es why (2.52) also holds if we replace � 2 
 (M) by an arbitrary integrable one-form
� over �. Suppose now that � satis�es the stochastic Hamilton equations up to �K and let
� : (�s0; s0)�R+ �
!M be a pathwise variation like in the statement of the theorem. We
want to show that �

d

ds

����
s=0

S (�s)

�
�K

= 0 a.s..

Due to (2.51), we have that�
d

ds

����
s=0

S (�s)

�
�K

= �
�Z

h�; ���K i+
Z D

dh (��K )
�
!# (�)

�
; �X

E�
�K

+ h� (��K ) ; Y i�K � h� (�
�K ) ; Y it=0 :

Since �s0 = m0 and �s�K = ��K a.s. for any s 2 (�s0; s0), then Y0 = Y�K = 0 a.s. and both
h� (��K ) ; Y i�K and h� (�

�K ) ; Y it=0 vanish. Moreover,�Z
h�; ���K i+

Z D
dh (��K )

�
!# (�)

�
; �X

E�
�K

=

��Z
h�; ���K i+

Z D
dh (��K )

�
!# (�)

�
; �X

E��K�
�K

=

��Z
h�; ��i+

Z D
dh (�)

�
!# (�)

�
; �X

E��K�
�K

(2.53)

which is zero because of (2.52). In the last equality we have used Proposition A.1. Conversely,
suppose that

�
d
ds

��
s=0

S (�s)
�
�K
= 0 a.s. for arbitrary bounded pathwise variations tending to
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��K uniformly, like in the statement. We want to show that (2.52) holds. Since our pathwise
variations satisfy that Y0 = Y�K = 0 a.s., we obtain that�

d

ds

����
s=0

S (�s)

�
�K

= �
�Z

h�; ���K i+
Z D

dh (��K )
�
!# (�)

�
; �X

E�
�K

= 0 (2.54)

where � is an arbitrary bounded one form over �. Suppose now that � is a semimartingale.
Then 1[0;t]� : R+ � 
! T �M is again bounded and expressionsZ 


1[0;t]�; ��
�K
�

and
Z D

dh (��K )
�
!#
�
1[0;t]�

��
; �X

E
are well-de�ned by Proposition A.5 because both ��K and X are continuos semimartingales.
We already saw in (2.53) that (2.54) is equivalent to�Z

h�; ��i+
Z D

dh (�)
�
!# (�)

�
; �X

E�
�K

= 0:

Replacing � by 1[0;t]� in (2.54) and using again the Proposition A.5, we write

0 =

�Z 

1[0;t]�; ��

�
+

Z D
dh (�)

�
!#
�
1[0;t]�

��
; �X

E�
�K

=

 �Z
h�; ��i+

Z D
dh (�)

�
!# (�)

�
; �X

E�t!
�K

=

�Z
h�; ��i+

Z D
dh (�)

�
!# (�)

�
; �X

E�
t^�K

=

��Z
h�; ��i+

Z D
dh (�)

�
!# (�)

�
; �X

E��K�
t

:

Since t is arbitrary this implies that the process
�R
h�; ��i+

R 

dh (�)

�
!# (�)

�
; �X

���K is
identically zero, as required.

2.4 Stochastic Hamilton-Jacobi equation

Hamilton-Jacobi theory is an important part of classical mechanics that provides a character-
ization of the generating functions of certain time-dependent canonical transformations that
put a given Hamiltonian system in such a form that its solutions are extremely easy to �nd;
this is the so called solution by reduction to the equilibrium. In this respect, the fact that
the classical action satis�es the Hamilton-Jacobi equation is a very relevant result. Hamilton-
Jacobi theory also plays a fundamental role in the study of the quantum-classical relationship,
in integrable systems, or in the development of structure preserving numerical integrators. For
all these reasons it is desirable to have at hand similar tools in the stochastic Hamiltonian
context; this is the main goal of this work. The Hamilton-Jacobi equation was already studied
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by Bismut [B81] in the context of Hamiltonian di¤usions and, as we will see, most of the ideas
in that piece of work are still valid at our degree of generality; at some level, this section can
be seen as a completion of Bismut�s work in which complete proofs are provided and where
the results have been adapted to our framework using a more modern geometric language; this
makes them more palatable to a growing community interested both in geometric mechanics
and stochastics.

2.4.1 The stochastic action on Lagrangian submanifolds and the Hamilton-Jacobi
equation

It is a classical result in mechanics that the action, when written as a function of the con�gura-
tion space and time, satis�es the Hamilton-Jacobi equation (see for instance [A89]). The main
goal of this subsection is showing that an analogous result holds for the stochastic action.
To start with, we now state some of the basic properties of the �ow de�ned by (2.7). Let

' (�; z) : [0; �(z)) � R+ � 
 ! M denote the unique solution of (2.5) with initial condition
�0 = z 2 M a.s.. The map ' will be referred to as the stochastic �ow associated to (2.5).
For any (t; �) 2 R+ � 
, let Dt (�) = fz 2 M j � (z; �) > tg. Observe that Dt (�) � Ds (�) if
s � t. By [K90, Lemma 4.8.3] Dt (�) is an open set for any t 2 R+ a.s. and

't (�) : Dt (�) �! M
z 7�! 't (z; �)

is a continuously di¤erentiable di¤eomorphism ([K90, Theorem 4.8.4]). Additionally,

' (�) : [0; t]� Dt (�) �! M
(s; z) 7�! 's (z; �)

is continuous and its partial derivatives with respect to z 2 Dt (�) are also continuous on
[0; t]� Dt (�). The local version of these results, that is, the case M = R2n, can be also found
in [P05, Chapter V Theorem 39]. Furthermore, the stochastic �ow ' acts naturally on tensor
�elds and in particular on di¤erential forms. Hence, by [K81, Theorem 3.3] and [K90, Section
4.9], if � 2 
k (M) is a k-form, k 2 N, then

't (�)
� � = �+

rX
i=1

�Z t

0
'�s

�
$Xhi�

�
�Xi

s

�
(�) (2.55)

on Dt (�), (t; �) 2 R+ � 
. In particular, if � = ! is the symplectic form, then $Xhi! = 0
for any i = 1; :::; r and '�! = ! which is the stochastic version of the Liouville�s Theorem
(Theorem 2.11).
Let 't(�) : Dt (�) ! M be the �ow associated to the stochastic Hamilton equations (2.5),

(t; �) 2 R+ � 
. We de�ne the function Rt (�) : Dt (�)! R as

Rt (�; z) := S (' (z))t (�):

The next proposition provides the di¤erential of Rt (�).
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Proposition 2.35 Let t 2 R+ be a �xed time instant and � 2 
. Then Rt (�) : Dt (�)! R is
di¤erentiable and

dRt (�) = 't (�)
� � � �; (2.56)

where � is the one form of the exact symplectic manifold (M;! = �d�).

Proof. We will proceed by showing that for any pair of points x; y 2 Dt (�) we can write

Rt (�; x)�Rt (�; y) =
Z

('t (�)

� (�)� �) ;

where  : (a; b) � R! Dt (�) is any smooth curve in Dt (�) that links x and y. This expression
immediately implies that Rt has continuous directional derivatives and it is hence Fréchet
di¤erentiable. Indeed, using �rst (2.55), we haveZ


('t (�)

� (�)� �) =

Z


 
rX
i=1

Z t

0
'�s

�
$Xhi�

�
�Xi

s

!
(�)

=

 
rX
i=1

Z t

0

�Z

'�s

�
$Xhi�

��
�Xi

s

!
(�) ; (2.57)

where in the second equality we used Fubini�s Theorem. Now, since iXhi! = dhi, for any
i = 1; : : : ; r, (2.57) equals

rX
i=1

�Z t

0

�Z

'�sd

�
iXhi�

��
�Xi

s �
Z t

0

�Z

'�sdhi

�
�Xi

s

�
(�)

=
rX
i=1

�Z t

0

�Z

d
�
'�s(iXhi�)

��
�Xi

s �
Z t

0

�Z

d('�shi)

�
�Xi

s

�
(�)

=
rX
i=1

�Z t

0

h
iXhi� ('s(b))� iXhi� ('s (a))

i
�Xi

s �
Z t

0
[hi ('s(b))� hi ('s(a))] �Xi

s

�
(�)

=

�Z t

0
h�; �'s (b)i �

Z t

0

D
ĥ ('s (b)) ; �Xs

E�
(�)

�
�Z t

0
h�; �'s (a)i �

Z t

0

D
ĥ ('s (a)) ; �Xs

E�
(�) = Rt (�; x)�Rt (�; y) :

Given that  : (a; b)! Dt (�) and the points x; y 2 Dt (�) are arbitrary, the result follows.
Later on in this section we will need the composition of R with the inverse of the stochastic

�ow '. More speci�cally, let (t; �) 2 R+ � 
 and let '�1t (�) : 't (�) (Dt (�)) ! Dt (�) the
inverse of 't (�). We de�ne R̂t (�) : 't (�) (Dt (�)) ! Dt (�) as R̂t (�) := Rt (�) � '�1t (�) =
'�1t (�)� (Rt (�)). Consequently,

dR̂t (�) = '�1t (�)� (dRt (�)) = '�1t (�)� ('t (�)
� (�)� �) = � � '�1t (�)� (�): (2.58)

In order to get closer to the classical deterministic result on the Hamilton-Jacobi equation
we are �rst going to visualize it, using the map R, as a process depending on M through the
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initial condition of the �ow ' generated by (2.5). Second, we will restrict R to a Lagrangian
submanifold of M ; this encodes mathematically the writing of the action as a function of the
con�guration space. Recall that a submanifold � : L ,! M of a symplectic manifold (M;!)
is called Lagrangian if dim (L) = dim (M)/ 2 and ��! = 0. Observe that since 't (�) is
a symplectomorphism a.s. for any t 2 R+ and Dt (�) is an open set, if L is a Lagrangian
submanifold so are L \ Dt (�) and 't (�) (L \ Dt (�)).
From now on we are going to assume that the underlying symplectic manifold (M;!) is

actually a cotangent bundle endowed with its canonical symplectic structure. More speci�cally,
M = T �Q for some manifold Q. In this case, a point y 2 L � T �Q in a Lagrangian submanifold
L is said to be a regular point of L, if the restriction �jL : L! Q of the canonical projection
� : T �Q ! Q to L is a local di¤eomorphism at y (that is, Ty �jL : TyL ! T�(y)Q is an
isomorphism). In a neighborhood U � L of a regular point y 2 L we can obviously describe
the Lagrangian submanifold L using local coordinates on the base manifold Q, which we will
generally denote by (q1; : : : ; qn). On the other hand, since ��! = d(���) = 0, there exists by the
Poincaré lemma (shrinking U if necessary) a smooth function f 2 C1 (U) such that ��� = df .
Conversely, if

�
q1; : : : ; qn; p1; : : : ; pn

�
are local Darboux coordinates in a neighborhood V � T �Q

and f 2 C1 (�(V )) is a function with no critical points, then the set

Lf =

�
(q; p) 2 V j pi =

@f

@qi
; i = 1; :::; n

�
(2.59)

is a local Lagrangian submanifold such that

��f� = �j�Lfdf; (2.60)

with �f : Lf ,! V the inclusion and �jLf : Lf � T �Q ! �(V ) the local di¤eomorphism
obtained by restriction of the canonical projection.

Theorem 2.36 Let Q be a manifold and let L � T �Q a Lagrangian submanifold. Let y0 2 L
be a regular point and let x0 = �(y0), where � : T �Q ! Q is the canonical projection. Then,
there exist two neighborhoods Vy0 � L and Vx0 � Q of y0 and of x0, respectively and a map
� : 
 � Vx0 ! R+ with the property that � (x) : 
 ! R+ is a stopping time, such that the
equation

� ('s (�; y)) = x (2.61)

has a unique solution in Vy0 � L for any � 2 
, any x 2 Vx0, and any s 2 [0; � (�; x)].
We are going to denote this solution by  s (�; x). Moreover,  (x) : [0; �(x)) ! Vy0 (�) is a
semimartingale for any x 2 Vx0 and  s (�) : Vx0 ! Vy0 is a di¤eomorphism for any s 2 [0; � (x))
which depends continuously on s.

Proof. Let Uy0 � L be an open neighborhood of y0 2 L. We pick Uy0 small enough so that �jUy0
is a di¤eomorphism onto its image and a set of local coordinates

�
qi; i = 1; :::; n

�
can be chosen

on Ux0 := � (Uy0). Let
�
yi = qi � �jL ; i = 1; :::; n

�
be the corresponding induced coordinates

on Uy0 . Denote by q̂ : Ux0 ! Rn and ŷ : Uy0 ! Rn the local chart maps associated to these
coordinates. For any y 2 Uy0 , let �Ux0 (y; �) = infft > 0 j � � 't (�; y) =2 Ux0g be the �rst exit
time at which the semimartingale � � ' (y) leaves Ux0 . Let F be the restriction of � � ' to the
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set A := f(s; �; y) 2 R+ � 
 � Uy0 j s 2 [0; �Ux0 (y; �))g. In local coordinates, F : A ! Ux0 is
expressed as

F js (�)
�
y1; :::; yn

�
= qj � � � 's (�) � ŷ�1

�
y1; :::; yn

�
, j = 1; :::; n:

Now, remark that det
�
@F j0 (�)

@yi
(y0)

�
6= 0 a.s. because y0 2 L is a regular point. The continuity

of the derivative of F0 (�) : Uy0 ! Ux0 implies that there exists a neighborhood Vy0 � Uy0 such

that det
�
@F j0 (�)

@yi
(y)

�
> 0 a.s., for any y 2 Vy0 . For any of these y 2 Vy0 , let

Z (y) := det
�
@F j

@yi
(y)
�
:
�
0; �Ux0 (y)

�
�! R

(s; �) 7�! det
�
@F js (�)
@yi

(y)
�
;

which is a well de�ned and continuous semimartingale, by the continuity of the di¤erential
of the �ow '. Observe that Z0 (y) > 0 for any y 2 Vy0 . Let T (y; �) := inff�Ux0 (y) � t >
0 j Zt (y; �) =2 R+g.
Now, recall that we want to see that the equation � ('s (�; y)) = x has a unique solution in

y 2 L, for any x 2 Vx0 in a suitable Vx0 and up to a suitable stopping time � (x). Therefore, it
su¢ ces to solve the equation

�
�
'T (y)s (�; y)

�
= x; (2.62)

where 'T (y) (y) denotes the process ' (y) stopped at time T (y), that is, 'T (y) (y) (s; �) =
'T (y;�)^s (�; y). Observe that '

T (y) (y) is always in Uy0 if y was already in Vy0 . Consequently,
'T (y) (y) may be described using the local coordinates introduced above. Moreover, if we set

� (x) := T
�
�j�1L (x)

�
, Vx0 := �(Vy0), the equation (2.62) admits by construction a unique

solution  s (�; x) via the Implicit Function Theorem. Additionally, if we apply the Stratonovich
di¤erentiation rules to

�
�
'T (y)s (�;  s (�; x))

�
= x, s 2 [0; � (x; �))

we obtain that  s(�; x) satis�es up to time � (x) the Stratonovich di¤erential equation

� s(x) =
rX
i=1

�
T s(x))F

��1 �
T
'
T (y)
s ( s(x))

(q̂ � �)
�
Xhi('

T (y)
s ( s(x)))

��
�Xi

s (2.63)

with initial condition  s=0(x) = y(x) 2 Vy0 a.s. such that � (y(x)) = x 2 Vx0 . That is, we can
visualize  s(�; x) as the unique stochastic �ow associated to the stochastic di¤erential equation
(2.63). This guarantees that the properties claimed in the statement hold.

We proceed now by considering the stochastic action R not as a semimartingale parametrized
by T �Q through the initial condition of the stochastic �ow ' de�ned by (2.5), but as a process
depending on the base manifold Q. More speci�cally, we will restrict to the open neighborhood
Vx0 � Q introduced in the statement of Theorem 2.36 and which is mapped onto Vy0 � L using
the map  that solves (2.61). Furthermore, since we are always going to work around regular
points of the Lagrangian submanifold, we will always consider Lagrangian submanifolds of the
type Lf (see (2.59)) for some f 2 C1 (Q).
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De�nition 2.37 Let Lf � T �Q be a Lagrangian submanifold, f 2 C1(Q). Let Vx0 � Q
be the open neighborhood of x0 introduced in Theorem 2.36 and  (x) : [0; �(x)) ! Vy0 the
semimartingale solution of (2.63) with initial condition x 2 Vx0 a.s.. We de�ne the projected
stochastic action eS (x) : [0; �(x))! R as

eSt (�; x) = Rt (�;  t(�; x)) + f (� ( t(�; x))) = (Rt (�) + f � �) �  t(�; x):

Notice that the di¤erentiability properties of the maps R, f 2 C1 (Q), and  imply that
the map eSt (�) : D t (�) �! R

x 7�! eSt (�; x) (2.64)

is continuously di¤erentiable for any (t; �) 2 R+�
 such that t 2 [0; � (x; �)). In this expression
D t (�) := fx 2 Vx0 j t < � (x; �)g. The following theorem provides an explicit expression for
the spatial derivatives of the projected stochastic action eS.
Theorem 2.38 Let Lf be a Lagrangian submanifold of T �Q, f 2 C1(Q). Then, on the open
set D t (�), (t; �) 2 R+ � 
,

deSt (�) = ('t (�) �  t (�))� �: (2.65)

If
�
qi; pi; i = 1; :::; n

�
are local Darboux coordinates of T �Q on an open neighborhood of a regular

point y0 2 Lf , the expression (2.65) can be locally written as

@ eSt(�)
@qi

(q) = pi ('t (�;  t(�; q))) ; i = 1; :::; n:

Proof. First of all observe that eSt (�) can be expressed in terms of R̂t (�) as follows:
eSt (�; q) = R̂t (�) � 't (�) �  t (�; q) + f � � �  t (�; q) :

Then, for any smooth curve  : [a; b]! D t (�)

eSt (�; b)� eSt (�; a) = Z

deSt (�) = Z


d
h
R̂t (�) � 't (�) �  t (�)

i
+

Z

d (f � � �  t (�)) : (2.66)

Given that D t (�) � Lf , the curve  takes values in the Lagrangian submanifold Lf and hence
(2.66) can be rewritten as

eSt (�; b)� eSt (�; a) = Z

��Lfd

h
R̂t (�) � 't (�) �  t (�)

i
+

Z

d (f � � �  t (�))

=

Z

d
h
R̂t (�) � 't (�) �  t (�) � �Lf

i
+

Z

d (f � � �  t (�)) : (2.67)

On the other hand, we saw in (2.58) that

dR̂t = � � '�1t (�)� (�):
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Moreover, since ��f� = �j�Lfdf we have that

d
h
R̂t (�) � 't (�) �  t (�) � �Lf

i
=
�
't (�) �  t (�) � �Lf

��
� � d (f � � �  t(�)) ;

which substituted in (2.67) yields

eSt (�; b)� eSt (�; a) = Z


�
't (�) �  t (�) � �Lf

��
� =

Z

('t (�) �  t (�))� �:

Since  is an arbitrary smooth curve, we can conclude that

deSt (�) = ('t (�) �  t (�))� �;
as required.

We conclude this section by proving that the projected stochastic action eSt satis�es a spe-
ci�c stochastic di¤erential equation which generalizes the classical Hamilton-Jacobi equation.
For obvious reasons, this equation will be referred to as the stochastic Hamilton-Jacobi
equation.

Theorem 2.39 (Stochastic Hamilton-Jacobi equation) Using the same notation as in
Theorem 2.36, the projected stochastic action eS (q) : [0; � (q))! R associated to the Lagrangian
submanifold Lf de�ned by the function f 2 C1(Q) satis�es

eS (q) = f (q)�
Z *

ĥ

 
q;
@ eSs
@q

(q)

!
; �Xs

+

for any q 2 Vx0.

In order to prove this theorem we need the following auxiliary result.

Proposition 2.40 ([K90, Theorem 3.3.2]) Let F (x) : R+ �
! R, x 2 Rn, be a family of
continuous semimartingales parametrized by Rn. Suppose that the dependence of this family on
the Rnparameter is at least three times di¤erentiable. In addition, suppose that there exists a
process f : R+�
�Rn ! Rd that satis�es su¢ cient regularity conditions and a semimartingale
X : R+ � 
! Rd such that

F (x) =
rX
j=1

Z
fj (t; x) �X

j
t :

Let g : R+ � 
 ! Rn be a continuous Rn-valued semimartingale. Then F (g) : R+ � 
 ! R
de�ned as F (g) (t; �) := F (gt (�) ; t; �) satis�es

F (gt; t)� F (g0; 0) =
rX
j=1

Z t

0
fj (s; gs) �X

j
s +

nX
i=1

Z t

0

@F

@xi
(s; gs) �g

i
s:
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Proof of Theorem 2.39. First of all observe that using the de�nition of the function Rt the
semimartingale eS (q) : [0; � (q))! R may be expressed as

eS (q) = f � � �  t (�; q) +Rt (�;  t(�; q))

= f � � �  t (�; q) +
rX
j=1

�Z �
iXhj � � hj

�
('s(z)) �X

j
s

�������
z= t(�;q)

:

If we use Proposition 2.40 in the second summand of this expression, we obtain

eS (q) = f � � �  (q) +
rX
j=1

�Z �
iXhj � � hj

�
('s( s(q))) �X

j
s

�
+

Z
hdRs; � s (q)i : (2.68)

We now separately study the summands in the right hand side of this equation in order to prove
the statement of the theorem. We start by recalling that by Proposition 2.35, dRs = '�s� � �
and hence Z

hdRs; � s (q)i =
Z
h'�s� � �; � s (q)i . (2.69)

Furthermore, since ��f� = �j�Lfdf and the semimartingale  (q) takes values in Vy0 � Lf ,Z t

0
h�; � s (q)i =

Z t

0
hd (f � �) ; � s (q)i = f � � �  t (q)� f (q) : (2.70)

We now recall that the semimartingale '( (q)) : [0; �(q)) ! T �Q takes values in the �ber
��1 (q). Indeed, by the construction in Theorem 2.36,  (q) is the semimartingale starting at q
such that

� ('s (�;  s (�; q))) = q

for any (s; �) 2 [0; �(q)). Then, since � is a semibasic form we necessarily have thatZ
h�; � ('s( s (q)))i = 0:

But, using the fact that ' is the �ow of the stochastic Hamilton equations (2.5), by Proposition
2.40, we have that for any g 2 C1 (M)

g (' ( (q))) = g (y (q)) +
rX
j=1

Z
Xhj [g]('s ( s (q)))�X

j
s +

Z
hd (g � 's) ; � s(q)i (2.71)

where y (q) 2 Lf is the unique point such that �jL (y(q)) = q. We claim that

0 =

Z
h�; � ('s( s (q)))i =

rX
j=1

Z �
iXhj �

�
('s ( s (q))) �X

j
s +

Z
h'�s�; � s(q)i : (2.72)
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Indeed, since we are working at a local level we can use Darboux coordinates and we can replace
� by

Pn
i=1 pidq

i; (2.72) is a straightforward consequence of (2.71). If we now plug (2.69), (2.70),
and (2.72) into (2.68) we obtain

eS (q) = f (q)�
rX
j=1

Z
hj ('s ( s(q))) �X

j
s : (2.73)

Finally, we saw in Theorem 2.38 that

pi ('t �  t (�; q)) =
@ eSt (�)
@qi

(q) ; i = 1; :::; n;

on D t (�) = fx 2 Vx0 j � (x; �) > tg, (t; �) 2 R+ � 
. For any � 2 
, the time parameter s in
the integrand of (2.73) is always smaller than � (q; �) and hence as @ eSs

@qi
(q) and pi ('s �  s (q))

coincide a.s. on [0; �(q)) for any i = 1; :::; n, the result follows.

Example 2.41 Let Q = Rn and T �Q = Rn � Rn with global coordinates
�
qi; pi; i = 1; :::; n

�
.

Let f 2 C1 (Rn), h0 2 C1
�
R2n

�
, and hi = pi for any i = 1; :::; n. Consider the semimartingale

X : R+ � 
 ! Rn+1 given by (t; !) 7! (t; B1t ; : : : ; B
n
t ), where (B

1; : : : ; Bn) is a n-dimensional
Brownian motion with di¤usion coe�cient � = 2. That is, [Bi

t; B
j
t ] = �ij2t, where [�; �] denotes

the quadratic variation. Then, the projected stochastic action eS : R+�
�Rn ! R built from
the stochastic Hamiltonian system on R2n with Hamiltonian fuction h = (h0; h1; : : : ; hn) and
stochastic component X satis�es, by Theorem 2.39

eSt (q) = f(q)�
Z t

0
h0

 
q;
@ eSs
@q
(q)

!
ds�

nX
i=1

Z
@ eSs
@qi

(q)�Bi
s: (2.74)

If we transform the Stratonovich integrals in this expression into Itô integrals, (2.74) reads

eSt (q) = f(q)�
Z t

0
h0

 
q;
@ eSs
@q
(q)

!
ds�

nX
i=1

Z t

0

@ eSs
@qi

(q)dBi
s �

1

2

nX
i=1

"
@ eS
@qi
(q); Bi

#
t

;

A lengthy but straightforward computation shows that

@ eSt
@qi

(q) =
@f

@qi
(q)�

Z t

0

@

@qi

 
h0

 
q;
@ eSs
@q
(q)

!!
ds�

nX
r=1

Z t

0

@

@qi

 
hr

 
q;
@ eSs
@q
(q)

!!
�Br

s :

Since hr = pr for any r = 1; :::; n,

@ eSt
@qi

(q) =
@f

@qi
(q)�

Z t

0

@

@qi

 
h0

 
q;
@ eSs
@q
(q)

!!
ds�

nX
r=1

Z t

0

@2 eSs
@qi@qr

(q)�Br
s :

Therefore, disregarding all the �nite variation terms in this last expression, we have"
@ eS
@qi
(q); Bi

#
t

= �
nX
r=1

"Z
@2 eSs
@qi@qr

(q)dBr
s ;

Z
dBi

s

#
t

= �
nX
r=1

Z t

0

@2 eSs
@qi@qr

(q)d[Br; Bi]s

= �2
nX
r=1

Z t

0

@2 eSs
@qi@qr

(q)�irds = �2
Z t

0

@2 eSs
(@qi)2

(q)ds:
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In the previous equalities we have used the property�Z
HdX;

Z
KdY

�
t

=

Z t

0
HsKsd[X;Y ]s

that holds for arbitrary real semimartingales H, K, X, and Y ([P05, Chapter II Theorem 29]).
Thus eSt (q) = f(q) +

Z t

0

 
�eSs(q)� h0 q; @ eSs

@q
(q)

!!
ds�

nX
i=1

Z t

0

@ eSs
@qi

(q)dBi
s:

Let now �t(q) := E[exp(�eSt (q))]. By the Itô formula,
e�

eSt(q)� e�f(q) = �
Z t

0

e�
eSs(q) deSs (q) + 1

2

Z t

0

e�
eSs(q) d[eS (q) ; eS (q)]s

=

Z t

0

e�
eSs(q)

0@h0 q; @ eSs
@q
(q)

!
��eSs(q) + 1

2

nX
i=1

 
@ eSs
@qi

(q)

!21A ds+

Z t

0

e�
eSs(q) @ eSs

@qi
(q)dBi

s:

(2.75)

Taking expectations in both sides of (2.75), assuming that all the processes involved are regular
enough so that Fubini�s Theorem may be invoked, and imposing h0 = 1

2

Pn
i=1 p

2
i + V (q),

V 2 C1 (Rn), we obtain

@

@t
�t(q) = �t(q)V (q) + E

24e�eSt(q)
0@ nX
i=1

 
@ eSt
@qi

(q)

!2
��eSt(q)

1A35
= V (q)�t(q) + ��t(q):

This shows that the projected stochastic action eSt can be used to construct solutions of the
heat equation modi�ed with a potential term V , with initial condition given by the function
exp(f) 2 C1 (Rn).

2.4.2 The Hamilton-Jacobi equation and generating functions

One of the main features of the Hamilton-Jacobi equation is that its solutions can be used
as generating functions of time-dependent symplectomorphisms that transform the original
Hamiltonian system in such a way that its solutions can be easily written down. The natural
framework for carrying this out is that of time-dependent Hamiltonian systems; that is why
we have included this subsection that brie�y recalls the classical theory of non-autonomous
Hamiltonian systems and presents it in a form that is suitable for generalization in the stochastic
context. Some of the statements there are either inspired or are a direct generalization of
analogous results in [B81]; we have nevertheless included them in order to have a complete and
self-contained presentation of the theory.
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The deterministic case

We start by recalling the relation between the Hamilton-Jacobi equation and the generating
functions for integrating canonical transformations in the classical deterministic case. In the
next paragraphs we will write down some classical results in a form that is well adapted for the
subsequent generalization to the stochastic case. All along this section we will consider Hamil-
tonian systems on cotangent bundles (T �Q;! = �d�) endowed with their canonical symplectic
forms.
Consider the manifold T �Q�T �Q endowed with the symplectic form 
 := ��1!� ��2!, where

� i : T
�Q�T �Q! T �Q, i = 1; 2, denote the canonical projections onto the �rst and the second

factors, respectively. Let now  : T �Q ! T �Q be a smooth function. It is easy to verify that
the map  is a symplectomorphism if and only if �� 
 = 0, where � : L ,! T �Q � T �Q is
the inclusion of the graph L of  ([AM78, Proposition 5.2.1]), in which case is a Lagrangian
submanifold of T �Q � T �Q. Given that 
 = �d�, with � = ��1� � ��2�, we have that 0 =
�� 
 = ��� (d�) = �d(�� �) and hence by Poincaré�s Lemma, we can locally write �� � = dS,
for some function S 2 C1

�
L 
�
. We will say that S is a local generating function for the

symplectic map  . In addition, suppose that

� : T �Q� T �Q! Q�Q; � = � � �1 � � � �2 (2.76)

with � : T �Q ! Q the canonical projection, is a local di¤eomorphism when restricted to L 

and denote its (local) inverse by ��1 : Q �Q ! L . We will suppose throughout this section
that this is the case and we will think of the generating function S 2 C1

�
L 
�
as a function

de�ned on Q�Q; that is, we will not distinguish between S and
�
��1

��
S. With this convention,

we can write
dQ�QS =

�
��1

�� � �� (�) : (2.77)

Let now f tgt2R be a family of symplectomorphisms depending smoothly on t 2 R (for
example f tgt2R could be the �ow of a Hamiltonian vector �eld) and let S : R � Q � Q !
R be the corresponding generating functions associated to this family. We will say that  t
transforms a vector �eld X 2 X(T �Q) to equilibrium if T t (X) = 0 for any t 2 R.
For example, if X = Xh is the Hamiltonian vector �eld associated to a Hamiltonian function
h 2 C1 (T �Q) and  t transforms Xh to equilibrium, then the integral curve  of Xh with
initial condition z is

t =  ̂
�1
( 0 (z) ; t)

where  ̂
�1
is the inverse of the di¤eomorphism  ̂ : T �Q � R ! T �Q � R given by (z; t) 7!

( t (z) ; t). The main goal of the classical Hamilton-Jacobi theory in this context is proving
that  transforms Xh to equilibrium if, roughly speaking, its generating function S satis�es
the (deterministic) Hamilton-Jacobi equation. As we deal with time-dependent transformations
 t of the phase space, the time-dependent Hamiltonian formalism is more convenient.

Time-dependent Hamiltonian systems

Recall that, for time-dependent Hamiltonian systems, the phase space T �Q is replaced with the
extended phase space R�T �Q. Given a time-dependent Hamiltonian function h 2 C1 (R� T �Q),



2.4 Stochastic Hamilton-Jacobi equation 87

one introduces 
h 2 
2 (R� T �Q) as 
h = dh ^ dt + !, where ! 2 
2 (T �Q) is the canoni-
cal symplectic form and t denotes the global time coordinate in R. Observe that 
h is exact,

h = �d�h, where �h = � � hdt and � is the canonical Liouville one form on the cotangent
bundle. Then, the Hamiltonian vector �eld Xh 2 X (R� T �Q) is characterized by the two
equations

iXh
h = 0; T�R (Xh) =
@

@t
;

where �R : R� T �Q! R is the projection onto the �rst factor.
Sometimes it is more convenient to encode time-dependent Hamiltonian systems as au-

tonomous Hamiltonian systems on the symplectic manifold E := T � (R�Q) = T �R � T �Q:
let (t; u) be global coordinates for T �R, that is u is the conjugate momentum associated to the
time t, and denote by �R�T �Q : T �R�T �Q! R�T �Q the projection ((t; u) ; z) 7! (t; z), with
z 2 T �Q. It is straightforward to check that the Hamiltonian vector �eld Xh? associated to the
function h? := u + ��R�T �Q (h) 2 C1(E) is such that T�R�T �Q (Xh?) = Xh. In other words,
any time-dependent Hamiltonian system may be visualized as an autonomous Hamiltonian
system by replacing R � T �Q by E and h by h?; the integral curves of the original system
Xh are simply obtained form the integral curves of the autonomous system Xh? by dropping
the additional degree of freedom u, which is irrelevant as far as the dynamical description of
the system is concerned. The following proposition deals with a time-dependent family of sym-
plectomorphisms f tgt2R of T �Q in the enlarged phase space E and will be useful in order to
transform time-dependent Hamiltonian systems.

Proposition 2.42 Let f tgt2R be a family of symplectomorphisms of T �Q and S 2 C1(R�Q
�Q) its generating function. De�ne

� : E �! E
(t; u; z) 7�! (t; u;  t(z)) ;

where t 2 R, u 2 R, z 2 T �Q, and

Jt : T
�Q �! Q�Q
z 7�! (�(z); � ( t(z))) :

(2.78)

Then,

(i) !E = � 
�
(!E)+d

�
@S
@t � J � �R�T �Q

�
^dt, where !E denotes the canonical symplectic two

form of E = T � (R�Q).

(ii) � � (!E) is non-degenerate and, for any � 2 
 (R� T �Q) and any h 2 C1 (R� T �Q),

dh?
�
!#E � � 

� � �R�T �Q (�)
�
= d

�
h �  ̂�1 + @S

@t
� Jt �  ̂

�1
�? �

!#E � �R�T �Q (�)
�
� � 

Proof. (i) Let
�
(t; u) ;

�
qi; pi; i = 1; :::; n

��
be local coordinates on a suitable open neighborhood

U � E. It is immediate to see from (2.77) that for any z 2 T �Q

pi (z) =
@S

@qi1
(t; Jt (z)) and pi ( t(z)) = �

@S

@qi2
(t; Jt (z)) ;
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i = 1; :::; n (see, for instance, (7.9.1) in [MR99]), which implies that the canonical one-form
�E := udt+

Pn
i=1 pidq

i locally equals

� 
�
(�E) + dS � J � �R�T �Q �

@S

@t
� J � �R�T �Qdt

(see, for instance, (7.9.5) in [MR99]). Applying �d to this expression, the result follows.
(ii) By (i), (� �1)�!E = !E + d

�
@S
@t � J � �R�T �Q � � 

�1
�
^ dt. In order to simplify our

notation let F := @S
@t �Jt� ̂

�1
. Then, using fdt;du;dqi;dpigi=1;:::;n and f @@t ;

@
@u ;

@
@qi
; @
@pi
gi=1;:::;n

as bases of T �� (m)U and T� (m)U respectively, we have the relations

�
(� 
�1
)�!E

�#
(dt) = � @

@u ; !#E (dt) = �
@
@u ;�

(� 
�1
)�!E

�#
(du) = @

@t +
Pn

i=1

�
@F
@pi

@
@qi
� @F

@qi
@
@pi

�
; !#E (du) =

@
@t ;�

(� 
�1
)�!E

�# �
dqi
�
= � @F

@pi
@
@u �

@
@pi
; !#E

�
dqi
�
= � @

@pi
;�

(� 
�1
)�!E

�#
(dpi) =

@F
@qi

@
@u +

@
@qi
; !#E (dpi) =

@
@qi
;

(2.79)

which easily shows the non-degeneracy of
�
� 
�1
��
!E .

Let now g 2 C1 (R� T �Q), � 2 
 (R� T �Q), and g? = u + ��R�T �Q(g). Using (2.79), it is
straightforward to check that

dg?
��
(� 
�1
)�!E

�# �
��R�T �Q(�)

��
= d (g + F )?

h
!#E
�
��R�T �Q(�)

�i
: (2.80)

Additionally, for any m 2 U � E, the following diagram commutes:

T �mE
!#E (m)�! TmE

T �m � 
" #Tm � 

T �� (m)E

�
(� 

�1
)�!E

�#
(� (m))

�! T� (m)E:

(2.81)

Therefore, by (2.81), for any � 2 
 (E) and any h 2 C1 (R� T �Q),

dh?
h
!#E � � 

�
(�)
i
(m) = dh? (m)

h
!#E (m)

�
T �m� 

�
�
�
� (m)

���i
= dh? (m)

�
T� (m)

� 
�1
��
(� 
�1
)�!E

�# �
� (m)

� �
�
�
� (m)

����
= d

�
(� 
�1
)�h?

� �
� (m)

� ��
(� 
�1
)�!E

�# �
� (m)

� �
�
�
� (m)

���
= d

�
(� 
�1
)�h?

� �
� (m)

� ��
(� 
�1
)�!E

�# �
� (m)

� �
�
�
� (m)

���
:
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In addition, if � is of the form ��R�T �Q(�) for some � 2 
 (R� T �Q), by (2.80) with g =
( ̂
�1
)�h we have

dh?
h
!#E � � 

� � ��R�T �Q(�)
i
(m) = d

��
( ̂
�1
)�h+ F

�?� �
� (m)

� h�
!#E � �

�
R�T �Q(�)

� �
� (m)

�i
:

Since F = @S
@t � Jt �  ̂

�1
, the expression in (ii) follows.

Proposition 2.43 Let h 2 C1 (R� T �Q). With the same notation as in Proposition 2.42, a
curve  : [0; T ] ! R � T �Q is a solution of the Hamiltonian system de�ned by h if and only
if, for any family of symplectomorphisms f tgt2R of T �Q, the curve  �  : [0; T ]! R� T �Q
such that ( ̂ � ) (t) := (t;  t ((t))) is a solution of a Hamiltonian system with Hamiltonian
function

h0 = h �  ̂�1 + @S

@t
� J �  ̂�1 (2.82)

where S 2 C1 (R�Q�Q) is the generating function of f tgt2R.

Proof. Let  : [0; T ] ! R � T �Q be a solution of the time-dependent Hamiltonian system
de�ned by h. Let � : [0; T ] ! E = T � (R�Q) be the curve such that  = ��R�T �Q(�) and

_u = @h
@t (), u being the conjugate momenta of the time coordinate t. Then  is a solution of

the time-dependent Hamiltonian system de�ned by h 2 C1 (R� T �Q) if and only if � is a
solution of the autonomous Hamilton system on the phase space E with Hamiltonian function
h? = u+ ��R�T �Q(h). By (2.2), this means that for any � 2 
 (E),Z

�j[0;t]
� = �

Z t

0
dh?

�
!#E (�)

�
� (s)ds (2.83)

for any t 2 [0; T ]. However, since we are not interested in the evolution of u, the conjugate
momentum of the time, verifying that  is a solution of the time-dependent Hamilton equations
is equivalent to taking any curve � such that  = ��R�T �Q(�) and checking that (2.83) holds
for any di¤erential form of the type ��R�T �Q (�), � 2 
 (R� T �Q).
Let now f tgt2R be a time-dependent family of symplectomorphisms of T �Q and consider

 ̂ : R � T �Q ! R � T �Q such that  ̂ (t; z) = (t;  t (z)), (t; z) 2 R � T �Q, and � : E ! E
such that � (t; u; z) = (t; u;  t (z)) as in Proposition 2.42. Let � � � : [0; T ] ! E be de�ned as
(� � �)(s) := � s(�(s)). ThenZ

� ��j
[0;t]

��R�T �Q (�) =

Z
�j[0;t]

� 
� �
��R�T �Q (�)

�
= �

Z t

0
dh?

�
!#E � � 

�
(��R�T �Q (�))

�
� �(s)ds

= �
Z t

0
d

�
h �  ̂�1 + @S

@t
� J �  ̂�1

�? �
!#E (�

�
R�T �Q (�))

�
�
�
� � �

�
(s)ds

where Proposition 2.42 (ii) have been used in the last equality. Hence, we conclude that
�R�T �Q(� � �) =  ̂ �  is a solution of the time-dependent Hamiltonian system given by

( ̂
�1
)�(h+ @S

@t � J). The converse is left to the reader.
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The content of Proposition 2.43 can be restated as follows. Given h 2 C1 (R� T �Q) and
a family of symplectomorphisms f tgt2R, there exists a smooth function h0 2 C1 (R� T �Q)
such that 
h =  ̂

�

h0 , where 
h0 = dh0 ^ dt+ ! and h0 is given by (2.82) (see [MR99, Section

7.9]). Furthermore T  ̂
�1
(Xh) is the Hamiltonian vector �eld related to h0 and the �ow of Xh0

restricted to the phase space T �Q is '̂t =  �1t � 't �  0 where, as usual, ' denotes the �ow
of symplectomorphisms of the Hamiltonian vector �eld Xh 2 X (T �Q). However, as we will be
interested in transforming Xh using T rather than T �1 we will rewrite (2.82) in the form

h0 (t;  t(z)) := h (z) +
@S

@t
(t; Jt � z) : (2.84)

De�nition 2.44 Let h 2 C1 (T �Q) be a Hamiltonian function and let
�
qi; pi; i = 1; :::; n

�
be

local Darboux coordinates on T �Q. Regarding h as a function of these coordinates, we will say
that the generating function S : R �Q�Q ! R satis�es the (deterministic) Hamilton-Jacobi
equation if the function K : R�Q�Q! R

Kt (q1; q2) := h

�
q1;

@S

@q1
(t; q1; q2)

�
+
@S

@t
(t; q1; q2) , (q1; q2) 2 Q�Q (2.85)

does not depend on the �rst entry q1 2 Q.

Observe that in the right hand side of (2.85) we have carried out the substitution (p1)i =
@S
@qi1
(t; q1; q2), i = 1; :::; n. We could also write (2.85) more intrinsically as

h (dQ1S (t; q1; q2)) +
@S

@t
(t; q1; q2)

where, for a �xed value (t; q2) 2 R�Q, we consider dQ1S (t; q1; q2) as an element in T �q1Q.
Notice that the map Jt introduced in (2.78) is a local di¤eomorphism for any t 2 R because

we required the projection � de�ned in (2.76) to be a local di¤eomorphism when restricted to
the graph of  t. We may therefore (locally) write any z 2 T �Q as z = J�1t (q1; q2) for some
suitable (q1; q2) 2 Q � Q. The important point is that J�1t (q1; q2) = dQ1S (t; q1; q2) ([MR99,
(7.9.1)]) and, consequently, the transformed Hamiltonian h0 in (2.84) can be seen as a function
on R�Q�Q. Explicitly, if �z =  t (z) 2 T �Q,

h0 (t; �z) = h (dQ1S (t; q1; q2)) +
@S

@t
(t; q1; q2) ; (2.86)

so h0 (t; �z) equals the functionKt (q1; q2) introduced in De�nition 2.44. Suppose now that S : R�
Q�Q! R is a solution to the Hamilton-Jacobi equation. In other words, Kt (q1; q2) � Kt (q2).
Since q2 = � ( t (z)) is the base point in the con�guration space of the transformed point  t (z),
z 2 T �Q, we conclude that h0 does not depend on the �ber coordinates. Hence, removing the
subindices, the Hamilton equations associated to the new Hamiltonian h0 are

_qi = 0; _pi = �
@K

@qi
(t; q) ; i = 1; :::; n;

which are easily integrable. In particular, if K is independent of both q1 and q2, then  t
transforms Xh to equilibrium.
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The stochastic case

We are now going to see that the classical Hamilton-Jacobi that we just outlined has a stochastic
counterpart. More speci�cally, one may use a time-dependent family of symplectomorphisms
and their generating function to transform a stochastic Hamiltonian system into another one
in much the same fashion as in the deterministic case. The strategy consists of �nding and
characterizing a suitable generating function so that the new Hamiltonian system is easier to
solve.
Let T �Q be the cotangent bundle of the con�guration space manifoldQ and let fh0; h1; :::; hrg

� C1 (T �Q) be a family of functions. Take a Rr+1-valued semimartingale X : R+�
! Rr+1
such that

X =
�
X0; X1; :::; Xr

�
; with X0 = t a.s., (2.87)

and consider the stochastic Hamiltonian system on T �Q with Hamiltonian function h :=
(h0; h1; :::; hr) and stochastic component X. If we want to remove the assumption that there
is a Hamiltonian vector �eld, i.e. Xh0 , playing the role of a deterministic drift, we may simply
choose h0 = 0.
Using an approach similar to the one in 2.4.2, we will work in the extended phase space

E := T � (R�Q). Indeed, it is easy to check that the solution semimartingales of the stochastic
Hamiltonian system can be obtained out of the solutions of the stochastic Hamiltonian system
on E with Hamiltonian function �h = (h?0; �

�
R�T �Q(h1); :::; �

�
R�T �Q(hr)) and stochastic compo-

nent X; notice that the functions h0; h1; :::; hr have already been considered as functions on
R � T �Q instead of only T �Q. The solutions of the original system can be recovered by com-
posing the solutions of the Hamiltonian system on E with �R�T �Q. When instead of working
on the space E one uses directly R � T �Q instead of T �Q then a T �Q-valued semimartingale
� is a solution of the corresponding stochastic Hamiltonian system when for any � 2 
 (T �Q),Z

h�; ��si = �
Z D

dh
�
��T �Q � !#(�)

�
(s;�s) ; �Xs

E
;

where �T �Q : R� T �Q! T �Q is the canonical projection onto the second factor.

Proposition 2.45 Let f tgt2R be a time-dependent family of symplectomorphisms of T �Q
with generating function S 2 C1 (R�Q�Q). Consider  ̂ : R � T �Q ! R � T �Q and � :
E ! E the natural di¤eomorphisms extending  to R � T �Q and E respectively. Then the
semimartingale � : R+ � 
 ! T �Q is a solution of the Hamiltonian system with Hamiltonian
function h : T �Q ! Rr+1, h = (h0; h1; :::; hr), and stochastic component X : R+ � 
 ! Rr+1
as in (2.87), if and only if  (�) is a solution of the Hamiltonian system with Hamiltonian
function h0 : R� T �Q! Rr+1 with components given by

h00 = ��T �Q(h0) �  ̂
�1
+
@S

@t
� J �  ̂�1;

h01 = ��T �Q(h1) �  ̂
�1
;

...

h0r = ��T �Q(hr) �  ̂
�1
: (2.88)
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and stochastic component X.

Proof. Suppose that � : R+ � 
! T �Q is a solution of the Hamiltonian system with Hamil-
tonian function h and stochastic componentX and let �� : R+�
! E be a semimartingale such
that �R�T �Q(��t) = (t;�t) 2 R� T �Q, t 2 R+. We want to check that � (��) is a solution of the
stochastic Hamiltonian system given by the Hamiltonian function (2.88). Let � 2 
 (R� T �Q).
Since � is a solution, we may writeZ 


��R�T �Q(�); �� (��)
�
=

Z 

� 
� � ��R�T �Q(�); ���

�
= �

Z D
d�h(!#E � � 

� � ��R�T �Q(�))(��); �X
E

= �
Z
dh?0(!

#
E � � 

� � ��R�T �Q(�))(��)dt�
rX
i=1

Z
d(��T �Qhi)(!

#
E � � 

� � ��R�T �Q(�))(��)�Xi;

where �T �Q : E = T �R � T �Q ! T �Q is the projection onto the second factor. Now, by
Proposition 2.43 we have Z

dh?0(!
#
E � � 

� � ��R�T �Q(�))(��)dt =Z
d

�
�T �Q(h0) �  ̂

�1
+
@S

@t
� Jt �  ̂

�1
�? �

!#E � �R�T �Q (�)
� �
� (��)

�
dt: (2.89)

On the other hand, using (2.79) and (2.81) it is easy to see that for any g 2 C1 (T �Q)

d(��T �Qg)(!
#
E � � 

� � ��R�T �Q(�))(m) = d(��T �Q(g) � � 
�1
)(!#E � �

�
R�T �Q(�))(� (m)):

Consequently, Z
d(��T �Qhi)(!

#
E � � 

� � ��R�T �Q(�))(��)�Xi

=

Z
d(��T �Q(hi) � � 

�1
)(!#E � �

�
R�T �Q(�))(� (��))�X

i; (2.90)

for any i = 1; :::; r. Combining (2.89) and (2.90) we obtain thatZ 

��R�T �Q(�); �� (��)

�
=

�
Z
d

�
�T �Q(h0) �  ̂

�1
+
@S

@t
� Jt �  ̂

�1
�? �

!#E � �R�T �Q (�)
� �
� (��)

�
dt

�
Z
d(��T �Q(hi) � � 

�1
)(!#E � �

�
R�T �Q(�))(

� (��))�Xi;

which means that  t (�t) is a solution of the time-dependent stochastic Hamiltonian system
with stochastic component X and Hamiltonian function (2.88). The converse is left to the
reader.
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The system (2.88) may be written as

h00(t;  t(z)) = ��T �Q(h0) (dQ1S (t; q1; q2)) +
@S

@t
(t; q1; q2)

h01(t;  t(z)) = ��T �Q(h1) (dQ1S (t; q1; q2))

...

h0r(t;  t(z)) = ��T �Q(hr) (dQ1S (t; q1; q2)) (2.91)

where, as in (2.86) we have written z 2 T �Q as z = J�1t (q1; q2) for some suitable (q1; q2) 2
Q � Q. In addition, if the generating function S is such that the right hand side of (2.91) is
independent of the variable q1, that is,

��T �Q(h0) (dQ1S (t; q1; q2)) +
@S

@t
(t; q1; q2) =: K0 (t; q2) ;

��T �Q(h1) (dQ1S (t; q1; q2)) =: K1 (t; q2) ;

...

��T �Q(hr) (dQ1S (t; q1; q2)) =: Kr (t; q2) ; (2.92)

then the stochastic Hamilton equations of the transformed system may be expressed in local
coordinates as

�qi = 0

�pi = �
@K0

@q
(t; q) dt�

rX
i=1

@Ki

@q
(t; q) �Xi:

The next result is basically due to Bismut (see [B81, Théorème 7.6, page 349]).

Proposition 2.46 In the conditions of the previous proposition, if (2.92) holds then

fhi; hjg (z) = 0

fh0; hig(z) +
@Ki

@t
(t; � ( t(z))) = 0

locally for any 1 � i; j � r:

Proof. Suppose that there exists a generating function S 2 C1 (R�Q�Q) such that the
equalities (2.92) are satis�ed. We take a �xed point q2 2 Q and writeKq2

i (t) instead ofKi (t; q2),
i = 0; :::; r, and Sq2 (t; q) instead of S (t; q; q2). Consider the following family of functions of the
extended phase space E = T � (R�Q):

g0 = u+ ��T �Q(h0)�K
q2
0 (t)

g1 = ��T �Q(h1)�K
q2
1 (t)

...

gr = ��T �Q(hr)�Kq2
r (t) ;
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where u denotes the conjugate momentum of the time coordinate t in E. The functions
g0; :::; gr � C1(E) vanish on the Lagrangian submanifold LS � E locally de�ned by

LS =

�
(t; u; q; p) 2 E j pi =

@Sq2

@qi
(t; q); u =

@Sq2

@t
(t; q)

�
:

Given that if a family of functions is locally constant on a Lagrangian submanifold, then their
Poisson brackets must vanish on it, we have that fgi; gjg = 0 for any 0 � i; j � r. Equivalently,

0 = f��T �Qhi; ��T �Qhjg
��
LS
= ��T �Q (fhi; hjg)

��
LS
;

0 = ��T �Q (fh0; hig)
��
LS
+
@Kq2

i

@t

����
LS

; (2.93)

for any i; j = 1; :::; r. In particular, since the inverse J�1t : Q � Q ! T �Q of the local di¤eo-
morphism introduced in (2.78) is such that z = J�1t (q1; q2) = (q1;dS

q2 (t; q1)), we have the
freedom to chose q2 so that z = J�1t (q1; q2) is a point in the �ber of q1 2 Q. With this choice
(2.93) implies that

fhi; hjg (z) = 0

fh0; hig (z) +
@Kq2

i

@t
(t) = fh0; hjg (z) +

@Ki

@t
(t; � ( t(z))) = 0

for any z 2 T �Q.

2.5 Proofs and auxiliary results

2.5.1 Proof of Proposition 2.24

Before proving the proposition, we recall a technical lemma dealing with the convergence of
sequences in a metric space.

Lemma 2.47 Let (E; d) be a metric space. Let fxngn2N be a sequence of functions xn : (0; �)!
E where (0; �) � R is an open interval of the real line. Suppose that xn converges uniformly
on (0; �) to a function x: Additionally, suppose that for any n, the limits lim

s!0
xn (s) = x�n 2 E

exist and so does lim
n!1

x�n. Then

lim
s!0

x (s) = lim
n!1

x�n.

Proof. Let " > 0 be an arbitrary real number. We have

d
�
x (s) ; lim

n!1
x�n

�
� d (x (s) ; xk (s)) + d (xk (s) ; x

�
k) + d

�
x�k; limn!1

x�n

�
:

From the de�nition of limit and since xk (s) converges uniformly to x on (0; �) ; we can choose
k0 such that d (x�k; limn!1 x�n) <

"
3 and d (x (s) ; xk (s)) <

"
3 , simultaneously for any k � k0.
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Additionally, since lims!0 xk (s) = x�k we choose s0 small enough such that d (xk (s) ; x
�
k) <

"
3 ,

for any s < s0. Thus,

d
�
x (s) ; lim

n!1
x�n

�
< "

for any s < s0: Since " > 0 is arbitrary, we conclude that lim
s!0

x (s) = lim
n!1

x�n. H

Proof of Proposition 2.24. First of all, the second equality in (2.43) is a straightforward
consequence of [E89, page 93]. Now, let fUkgk2N be a countable open covering of M by coor-
dinate patches. By [E89, Lemma 3.5] there exists a sequence f�mgm2N of stopping times such
that �0 = 0; �m � �m+1; supm �m =1; a.s., and that, on each of the sets

[�m; �m+1]\f�m < �m+1g := f(t; !) 2 R+ � 
 j �m+1 (!) > �m (!) and t 2 [�m (!) ; �m+1 (!)]g

the semimartingale � takes its values in one of the elements of the family fUkgk2N. Second,
the statement of the proposition is formulated in terms of Stratonovich integrals. However,
the proof will be carried out in the context of Itô integration since we will use several times
the notion of uniform convergence on compacts in probability (ucp) which behaves well only
with respect to this integral. Regarding this point we recall that by the very de�nition of the
Stratonovich integral of a 1-form � along a semimartingale � we have thatZ

h'�s�; ��i =
Z
hd2 ('�s�) ; d�i and

Z
h$Y �; ��i =

Z
hd2 ($Y �) ; d�i : (2.94)

The proof of the proposition follows directly from Lemma 2.47 by applying it to the sequence
of functions given by

xn (s) :=

�Z �
1

s
[d2 ('

�
s�)� d2 (�)] ; d�

���n
:

This sequence lies in the space D of càglàd processes endowed with the topology of the ucp
convergence. We recall that this space is metric [P05, page 57] and hence we are in the conditions
of Lemma 2.47. In the following points we verify that the rest of the hypotheses of this result
are satis�ed.

(i) The sequence of functions fxn(s)gn2N converges uniformly to

x(s) :=

Z �
1

s
[d2 ('

�
s�)� d2 (�)] ; d�

�
:

The pointwise convergence is a consequence of part (i) in Proposition A.2. Moreover, in the
proof of that result we saw that if d : D � D ! R+ is a distance function function associated
to the ucp convergence, then for any t 2 R+ and any s 2 (0; �), d(xn(s); x(s)) � P (f�n < tg).
Since the right hand side of this inequality does not depend on s and P (f�n < tg) ! 0 as
n!1, the uniform convergence follows.

(ii)

lim
ucp
s!0

xn(s) =

�Z
hd2 ($Y �) ; d�i

��n
=: x�n:
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By the construction of the covering fUkgk2N and of the stopping times f�mgm2N, there exists
a k(m) 2 N such that the semimartingale � takes its values in Uk(m) when evaluated in the
stochastic interval (�n; �n+1] � [�n; �n+1] \ f�n < �n+1g. Now, since d2 is a linear operator
and 1

s (('
�
s�)� �) (m)

s!0�! $Y �(m), for any m 2M , we have that 1s (d2 ('
�
s�)� d2�) (m)

s!0�!
d2 ($Y �) (m). Moreover, a straightforward application of Taylor�s theorem shows that

1

s
(d2 ('

�
s�)� d2�) jUk(m)

s!0�! d2 ($Y �) jUk(m)

uniformly, using a Euclidean norm in ��Uk(m) (we recall that Uk(m) is a coordinate patch). This
fact immediately implies that

1(�n;�n+1]
1

s
(d2 ('

�
s�)� d2�) (�)

s!0�! 1(�n;�n+1]d2 ($Y �) (�)

in ucp. As by construction the Itô integral behaves well when we apply it to a ucp convergent
sequence of processes we have that

lim
ucp
s!0

Z
1(�n;�n+1]

�
1

s
(d2 ('

�
s�)� d2�) (�); d�

�
=

Z
1(�n;�n+1] hd2 ($Y �) (�); d�i : (2.95)

Consequently,

lim
ucp
s!0

�Z �
1

s
[d2 ('

�
s�)� d2 (�)] ; d�

���n
= lim

ucp
s!0

n�1X
m=0

��Z �
1

s
[d2 ('

�
s�)� d2 (�)] ; d�

���m+1
�
�Z �

1

s
[d2 ('

�
s�)� d2 (�)] ; d�

���m�

= lim
ucp
s!0

n�1X
m=0

Z
1(�m;�m+1]

�
1

s
(d2 ('

�
s�)� d2�) ; d�

�
=

n�1X
m=0

Z
1(�m;�m+1] hd2 ($Y �) ; d�i

=

�Z
hd2 ($Y �) ; d�i

��n
;

where in the second equality we have used Proposition A.1 and the third one follows from (2.95).

(iii)

lim
n!1

x�n =

Z
hd2 ($Y �) ; d�i :

It is a straightforward consequence of Proposition A.2. The equation (2.43) follows from Lemma
2.47 applied to the sequences fxngn2N and fx�ngn2N, and using the statements in (i), (ii), and
(iii).

2.5.2 Proof of Proposition 2.33

We will start the proof by a preparatory result.
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Lemma 2.48 Let fXngn2N and fYngn2N be two sequences of real valued processes converging
in ucp to a couple of processes X and Y respectively. Suppose that, for any t 2 R+, the random
variables supn2N sup0�s�t j(Xn)sj and sup0�s�t jYsj are bounded (their images lie in a compact
set of R). Then, the sequence XnYn converges in ucp to XY as n!1.

Proof. We need to prove that for any " > 0 and any t 2 R+,

P

��
sup
0�s�t

j(XnYn)s � (XY )sj � "

��
�!
n!1

1:

First of all, note that

sup
0�s�t

j(XnYn)s � (XY )sj � sup
0�s�t

jXnj jYn � Y j+ sup
0�s�t

jY j jXn �Xj :

Hence, we have�
sup
0�s�t

j(XnYn)s � (XY )sj � "

�
�
�
sup
0�s�t

jXnj jYn � Y j+ sup
0�s�t

jY j jXn �Xj � "

�
�
�
sup
0�s�t

jXnj jYn � Y j �
"

2

�
\
�
sup
0�s�t

jY j jXn �Xj �
"

2

�
:

Denote

An :=

�
sup
0�s�t

jXnj jYn � Y j �
"

2

�
; and Bn :=

�
sup
0�s�t

jY j jXn �Xj �
"

2

�
;

and let c be a constant such that supn2N sup0�s�t j(Xn)sj < c and sup0�s�t jYsj < c, available
by the boundedness hypothesis. Then,

1 � P (An) � P

��
sup
0�s�t

jYn � Y j �
"

2c

��
�!
n!1

1;

1 � P (Bn) � P

��
sup
0�s�t

jXn �Xj �
"

2c

��
�!
n!1

1:

Thus, P (An) ! 1 and P (Bn) ! 1 as n ! 1. But as P (An \Bn) = P (An) + P (Bn) �
P (An [Bn), we conclude that

P (An \Bn) �!
n!1

1:

Since An \Bn �
�
sup0�s�t j(XnYn)s � (XY )sj � "

	
, we obtain

P

��
sup
0�s�t

j(XnYn)s � (XY )sj � "

��
�!
n!1

1: H

Proof of Proposition 2.33.
We now proceed with the proof of the proposition. We will start by using Whitney�s Em-

bedding Theorem and the remarks in [E89, §7.7] to visualize M as an embedded submanifold
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of Rp , for some p 2 N, and to write down our Stratonovich integrals as real Stratonovich
integrals. Indeed, there exists a family of functions

�
h1; :::; hp

	
� C1 (Rp) such that, in the

embedded picture, the one form � can be written as � =
Pp

j=1 Zjdh
j , where Zj 2 C1 (Rp) for

j 2 f1; :::; pg. Therefore, using the properties of the Stratonovich integral (see [E89, Proposition
7.4]),

1

s

�Z
h�; ��si �

Z
h�; ���K i

�
=

pX
j=1

1

s

�Z
Zj (�

s) �
�
hj (�s)

�
�
Z
Zj (�

�K ) �
�
hj (��K )

��
: (2.96)

Adding and subtracting the term
Pp

j=1

R
Zj (�

s) �hj (��K ) in the right hand side of (2.96), we
have

1

s

�Z
h�; ��si �

Z
h�; ���K i

�
=

pX
j=1

1

s

�Z
Zj (�

s) �hj (�s)�
Z
Zj (�

s) �hj (��K )

�
| {z }

(1)

+

pX
j=1

1

s

�Z
(Zj (�

s)� Zj (��K )) �hj (��K )
�

| {z }
(2)

: (2.97)

We are going to study the terms (1) and (2) separately. We start by considering

�n =
�
0 = Tn0 � Tn1 � : : : � Tnkn <1

	
;

a sequence of random partitions that tends to the identity (in the sense of [P05, page 64]).
The expression (1):
We want to study the ucp convergence of 1s

�R
Zj (�

s) �hj (�s)�
R
Zj (�

s) �hj (��K )
�
as s!

0. De�ne

xn (s) :=
1

s

 
kn�1X
i=0

1

2

�
Zj (�

s)Tni+1
+ Zj (�

s)Tni

��
hj (�s)T

n
i+1 � hj (�s)T

n
i

�
�
kn�1X
i=0

1

2

�
Zj (�

s)Tni+1
+ Zj (�

s)Tni

��
hj (��K )T

n
i+1 � hj (��K )T

n
i

�!

=

kn�1X
i=0

1

2

�
Zj (�

s)Tni+1
+ Zj (�

s)Tni

� hj (�s)Tni+1 � hj (��K )Tni+1
s

�h
j (�s)T

n
i � hj (��K )T

n
i

s

!
:

which corresponds to the discretization of the Stratonovich integrals 1
s

�R
Zj (�

s) �hj (�s) �R
Zj (�

s) �hj (��K )
�
using the random partitions of �n. Indeed, by [P05, Corollary 1, page
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291],

xn (s) �!
ucp
n!1

1

s

�Z
Zj (�

s) �hj (�s)�
Z
Zj (�

s) �hj (��K )

�
:

On the other hand, as Tni < 1 a.s. for any i 2 f1; :::; kng, part (i) in De�nition 2.31 and
Lemma A.3 imply that

1

2

�
Zj (�

s)Tni+1
+ Zj (�

s)Tni

�
�!
ucp
s!0

1

2

�
Zj (�

�K )Tni+1
+ Zj (�

�K )Tni

�

The convergence above is in probability but, for convenience, we prefer to regard these random
variables as trivial processes. Furthermore, part (ii) in De�nition 2.31 and Lemma A.4 imply
that

hj (�s)T
n
i+1 � hj (��K )T

n
i+1

s
=

�
hj (�s)� hj (��K )

s

�Tni+1
�!
ucp
s!0

Y
�
hj
�Tni+1 ;

hj (�s)T
n
i � hj (��K )T

n
i

s
=

�
hj (�s)� hj (��K )

s

�Tni
�!
ucp
s!0

Y
�
hj
�Tni

Now, since by hypothesis � and Y are bounded then so are 1
2

�
Zj (�

s)Tni+1
+ Zj (�

s)Tni

�
and

Y
�
hj
�
= iY dh

j (dhj is only evaluated on the compact K since Y is a vector �eld over ��K )
and hence by Lemma 2.48

xn (s) �!
ucp
s!0

kn�1X
i=0

1

2

�
Zj (�

�K )Tni+1
+ Zj (�

�K )Tni

��
Y
�
hj
�Tni+1 � Y �hj�Tni � =: x�n

In addition, by [P05, Corollary 1, page 291],

x�n �!ucp
n!1

Z
Zj (�

�K ) �
�
Y
�
hj
��
:

Hence, by Lemma 2.47 we conclude that

1

s

�Z
Zj (�

s) �hj (�s)�
Z
Zj (�

s) �hj (��K )

�
�!
ucp
s!0

Z
Zj (�

�K ) �
�
Y
�
hj
��
: (2.98)

The expression (2):
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We want to study now the ucp convergence of 1s
R
(Zj (�

s)� Zj (��K )) �hj (��K ) as s ! 0.
As in the previous paragraphs, we de�ne

yn (s) :=
1

s

 
kn�1X
i=0

1

2

�
Zj (�

s)Tni+1
+ Zj (�

s)Tni

��
hj (��K )T

n
i+1 � hj (��K )T

n
i

�
�

kn�1X
i=0

1

2

�
Zj (�

�K )Tni+1
+ Zj (�

�K )Tni

��
hj (��K )T

n
i+1 � hj (��K )T

n
i

�!

=

kn�1X
i=0

1

2

 
Zj (�

s)Tni+1
� Zj (��K )Tni+1
s

+
Zj (�

s)Tni
� Zj (��K )Tni
s

!�
hj (��K )T

n
i+1 � hj (��K )T

n
i

�
as a discretization of the Stratonovich integral 1s

R
(Zj (�

s)� Zj (��K )) �hj (��K ) using �n.
Then, by construction,

yn (s) �!
ucp
n!1

1

s

Z
(Zj (�

s)� Zj (��K )) �hj (��K ) :

On the other hand, invoking De�nition 2.31 and Lemma A.3 we have that

Zj (�
s)Tni+1

� Zj (��K )Tni+1
s

=

�
Zj (�

s)� Zj (��K )
s

�
Tni+1

�!
ucp
s!0

Y [Zj ]Tni+1

Zj (�
s)Tni

� Zj (��K )Tni
s

=

�
Zj (�

s)� Zj (��K )
s

�
Tni

�!
ucp
s!0

Y [Zj ]Tni
:

We now use again the boundedness of � and Y to guarantee the boundedness of Y [Zj ]Tni+1
=

(iY dZj)Tni+1
and Y [Zj ]Tni

= (iY dZj)Tni
(notice that dZj is only evaluated on the compact set

K because Y is a vector �eld over ��K � K). Therefore, by Lemma 2.48,

xn (s) �!
ucp
s!0

kn�1X
i=0

1

2

�
Y [Zj ]Tni+1

+ Y [Zj ]Tni

��
hj (��K )T

n
i+1 � hj (��K )T

n
i

�
:= x�n:

Additionally, the sequence fx�ngn2N obviously converge in ucp to
R
Y [Zj ] �

�
hj (��K )

�
as n !

1. Hence, by Lemma 2.47, we conclude that
1

s

�Z
(Zj (�

s)� Zj (��K )) �hj (��K )
�
�!
ucp
s!0

Z
Y [Zj ] �

�
hj (��K )

�
: (2.99)

To sum up, if we substitute (2.98) and (2.99) in (2.97) we obtain that

1

s

�Z
h�; ��si �

Z
h�; ���K i

�
�!
ucp
s!0

pX
j=1

Z
Zj (�

�K ) �
�
Y
�
hj
��
+

Z
Y [Zj ] �

�
hj (��K )

�
:
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Using the integration by parts formula,Z
Zj (�

�K ) �
�
Y
�
hj
��
= Zj (�

�K )Y
�
hj
�
�
�
Zj (�

�K )Y
�
hj
��
t=0

�
Z
Y
�
hj
�
� (Zj (�

�K ))

= h� (��K ) ; Y i � h� (��K ) ; Y it=0 �
Z
Y
�
hj
�
� (Zj (�

�K ))

and, consequently,

1
s

�R
h�; ��si �

R
h�; ���K i

�
�!
ucp
s!0

R
Y [Zj ] �

�
hj (��K )

�
�
R
Y
�
hj
�
� (Zj (�

�K ))

+ h� (��K ) ; Y i � h� (��K ) ; Y it=0 :

In order to conclude the proof, we claim thatZ
Y [Zj ] �

�
hj (��K )

�
�
Z
Y
�
hj
�
� (Zj (�

�K )) =

Z
hiY d�; ���K i : (2.100)

Indeed,

d� = d

0@ pX
j=1

Zjdh
j

1A =

pX
j=1

dZj ^ dhj ; and iY d� =

pX
j=1

�
Y [Zj ]dh

j � Y
�
hj
�
dZj

�
which proofs (2.100), as required.
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3
Reduction and reconstruction of symmetric SDEs

Symmetries have historically played a role of paramount importance in the study of dynamical
systems in general (see [GS85, GS02, ChL00], and references therein) and of physical, mechan-
ical, and Hamiltonian systems in particular (see for instance [AM78, MR99, OR04] for general
presentations of the subject, historical overviews, and references). The presence of symmetries
in a system usually brings in its wake the occurrence of degeneracies, conservation laws, and
invariance properties that can be used to simplify or reduce the system and hence its analysis.
In trying to pursue this strategy, researchers have developed powerful mathematical tools that
optimize the bene�t of this approach in speci�c situations.
The impressive volume of work that has been done in this �eld over the centuries does not

have a counterpart in the context of stochastic dynamics, probably because most symmetry
based mathematical tools are formulated using global analysis and Lie theory in an essen-
tial way, and this machinery has been adapted to the stochastic context relatively recently
[M81, M82, S82, E82, E89]. As we will show in this chapter, most of the symmetry based tech-
niques available for dynamical systems can be formulated and taken advantage of when studying
stochastic di¤erential equations.
In a �rst approach, symmetry based techniques can be roughly grouped into two separate

procedures, namely, reduction and reconstruction. Reduction is explicitly implemented by com-
bining the restriction of the system to dynamically invariant submanifolds whose existence is
implied by its symmetries and by eliminating the remaining symmetry degeneracies through
projection to an appropriate orbit space. Even if the space in which the system is originally
formulated is Euclidean, the resulting reduced space is most of the time a non-Euclidean man-
ifold hence showing the importance of global analysis in this context. The reduction procedure
yields a dimensionally smaller space in which the symmetry degeneracies have been eliminated
and that should, in principle, be easier to study; in the stochastic context, reduction has the
added value of being able in some instances to isolate the non-stochastic part of the dynamics
(see the example on collective motion in Subsection 3.6.1).
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If once the reduced system has been solved we want to come back to the original one, we
need to reconstruct the reduced solutions. In practice, this is obtained by horizontally lifting
the reduced motion using a connection and then correcting the result with a curve in the group
that satis�es a certain �rst order di¤erential equation. The strategy of combining reduction
and reconstruction in the search for the solutions of a symmetric dynamical system, splits the
task into two parts, which most of the time simpli�es greatly the problem.
Another approach used to take advantage of the symmetries of a problem consists of using

the Slice Theorem [P61] and the tangent-normal decomposition [K90, F91] available for proper
group actions to locally split the dynamics into a direction tangent to the group orbits and
another one transversal to them. We will see that this tool, that is used in a standard fashion
in the context of deterministic equivariant dynamics and equivariant bifurcation theory, yields
in the stochastic case skew-product splittings that have already been extensively studied in the
equivariant di¤usions literature (see for instance [PR88, L89, T92], and references therein) to
construct decompositions of the associated second order di¤erential operators.
It must be noticed that the mathematical value of the results obtained with the two ap-

proaches that we just brie�y discussed, that is, the one based on reduction-reconstruction and
the one based on the tangent-normal decomposition, is morally the same. However, there are
important technical conditions that make them di¤erent and preferable over one another in
di¤erent speci�c situations:

(i) The reduction-reconstruction technique uses very strongly the orbit space of the sym-
metry group in question; this space could be geometrically convoluted and we may need
to use only its strata if we want to face regular quotient manifolds where the standard
calculus on manifolds is valid. The main advantage of this technique is that it yields global
results.

(ii) The use of the Slice Theorem and the tangent-normal decomposition makes unnecessary
the use of quotient manifolds and the entire analysis takes place in the original manifold.
However, the results obtained are local and are limited to a tubular neighborhood of the
orbits.

In this chapter we show how the symmetries of stochastic di¤erential equations can be used
by implementing techniques similar to those available for their deterministic counterparts. We
start in Section 3.1 by introducing the notion of group of symmetries of a stochastic di¤erential
equation and by studying the associated invariant submanifolds as well as the implied degen-
eracies in the solutions. The reduction and reconstruction procedures are presented in Section
3.2; reconstruction is carried out using the horizontal lifts for semimartingales introduced in
[S82, C01] and references therein.
The skew-product decomposition of second order di¤erential operators is a factorization tech-

nique that has been used in the stochastic processes literature in order to split the semielliptic
and, in particular, the di¤usion operators, associated to certain stochastic di¤erential equa-
tions (see, for instance, [PR88, L89, T92], and references therein). This splitting has important
consequences as to the properties of the solutions of these equations, like certain factoriza-
tion properties of their probability laws and of the associated stochastic �ows. In Section 3.3
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we show that symmetries are a natural way to obtain this kind of decompositions. Our work
extends the existing results in two ways: �rst, we generalize the notion of skew-product to
arbitrary stochastic di¤erential equations by working with the notion of skew-product decom-
position of the Stratonovich operator. Obviously, our approach coincides with the traditional
one in the case of di¤usions. Second, we use the Slice Theorem [P61] and the tangent-normal
decomposition [K90, F91] to construct local skew-product decompositions in the presence of
arbitrary proper symmetries (not necessarily free) in a neighborhood of any point in the open
and dense principal orbit type. This result generalizes the skew-product decompositions pre-
sented in [ELL04] for regular free actions. Section 3.4 studies stochastic di¤erential equations
on associated bundles; in this situation the local skew-product splitting induced by the Slice
Theorem is globally available.
Section 3.5 is dedicated to reduction and reconstruction of the stochastic Hamiltonian sys-

tems introduced in Chapter 2. It is worth mentioning that, as it was already the case for
deterministic Hamiltonian systems, stochastic Hamiltonian systems are stable with respect to
symplectic and Poisson reduction; in short, the reduction of a stochastic Hamiltonian system
is again a stochastic Hamiltonian system. In Section 3.6 we present several (Hamiltonian)
examples. The �rst one (Subsection 3.6.1) has to do with deterministic systems in which a
stochastic perturbation is added using the conserved quantities associated to the symmetry
(collective perturbation); such systems share the remarkable feature that symplectic reduction
eliminates the stochastic part of the equation making the reduced system deterministic. In
Subsection 3.6.2 we study the symmetries of stochastic mechanical systems on the cotangent
bundles of Lie groups. In this situation, the reduction and reconstruction equations can be
written down in a particularly explicit fashion that has to do with the Lie-Poisson structure in
the dual of the Lie algebra of the group in question. A particular case of this is presented in
Subsection 3.6.3 where we analyze two di¤erent stochastic perturbations of the free rigid body:
one of them models the dynamics of a free rigid body subjected to small random impacts and
the other one an "unbolted" rigid body that is not completely rigid.
The content of this chapter is a transcription of the paper [LO08] written by the author of

this thesis in collaboration with Juan Pablo Ortega.

3.1 Symmetries and conservation laws of stochastic di¤erential
equations

Let M and N be two �nite dimensional manifolds and let (
;F ; fFt j t � 0g; P ) be a �ltered
probability space. Let X : R+�
! N be a N -valued semimartingale. According to Subsection
1.4.4, a Stratonovich operator from N to M is a family fS(x; y)gx2N;y2M such that S(x; y) :
TxN ! TyM is a linear mapping that depends smoothly on its two entries. We recall that a
M -valued semimartingale � is a solution of the the Stratonovich stochastic di¤erential equation

�� = S(X;�)�X (1.53)
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associated to X and S, if for any � 2 
(M), the following equality between Stratonovich
integrals holds: Z

h�; ��i =
Z
hS�(X;�)�; �Xi:

If we prefer it, di¤erential equations can be formulated using Itô integration by associating
a natural Schwartz operator S : �xN ! �yM on the second order tangent bundles, to the
Stratonovich operator S.

De�nition 3.1 Let X : R+�
! N be a N -valued semimartingale and let S : TN�M ! TM
be a Stratonovich operator. Let � :M !M be a di¤eomorphism. We say that � is a symmetry
of the stochastic di¤erential equation (1.53) if for any x 2 N and y 2M

S (x; � (y)) = Ty� � S (x; y) : (3.1)

As it was already the case in standard deterministic context, the symmetries of a stochastic
di¤erential equation imply degeneracies at the level of its solutions, as we spell out in the
following proposition.

Proposition 3.2 Let X : R+ � 
 ! N be a N -valued semimartingale, S : TN �M ! TM
a Stratonovich operator, and let � : M ! M be a symmetry of the corresponding stochastic
di¤erential equation (1.53). If � is solution of (1.53) then so is � (�).

Proof. Let � be a solution of (1.53). We need to show that for any � 2 
 (M),Z
h�; �� (�)i =

Z
hS� (X;� (�))�; �Xi:

Since � is a di¤eomorphism,
R
h�; �� (�)i =

R
h���;�i (see, for instance, [E89, §7.5]). Now,

since � is a solution of (1.53),
R
h���;�i =

R
hS� (X;�) (���); �Xi. Since � is a symmetry, we

have that S� (x; � (y)) = S� (x; y) � T �y �, for any x 2 N , y 2M and hence,Z
h���;�i =

Z
hS� (X;�) (���); �Xi =

Z
hS� (X;� (�)) (�); �Xi ;

which shows that � (�) is a solution of (1.53).

The symmetries that we are mostly interested in are induced by the action of a Lie group G
on the manifold M via the map � : G�M !M . Given (g; z) 2 G�M , we will usually write
g � z to denote � (g; z). We also introduce the maps

�z : G �! M
g 7�! g � z ;

�g :M �! M
z 7�! g � z :

The Lie algebra of G will be usually denoted by g and we will write the tangent space to the
orbit G �m that contains m 2M as g �m := Tm(G �m).

De�nition 3.3 We will say that the stochastic di¤erential equation (1.53) is G-invariant if,
for any g 2 G, the di¤eomorphism �g :M !M is a symmetry in the sense of De�nition 3.1.
In this situation we will also say that the Stratonovich operator S is G-invariant.



3.1 Symmetries and conservation laws of stochastic di¤erential equations 107

Remark 3.4 Given a solution � of a G-invariant stochastic di¤erential equation, Proposi-
tion 3.2 provides an entire orbit of solutions since for any g 2 G, the semimartingale �g(�) is
also a solution. This degeneracy has also a re�ection in the probability laws of the solutions in
a form that we spell out in the following lines. Let � : f0 � t < �g ! M be a solution of the
G-invariant system (M;S;X;N) de�ned up to the explosion time �, which may be �nite if M
is not compact. In such case, � can be actually understood as a process that takes values in
the Alexandro¤ one-point compacti�cation M̂ :=M [f1g of M and it is hence de�ned in the
whole space R+�
 ([IW89, Chapter V]). In this picture, the process � is continuous and with
the property that �t (!) = f1g, for any (t; !) 2 R+ � 
 such that t � � (!).
Let now Ŵ (M) be the path space de�ned by

Ŵ (M) = fw : [0;1]! M̂ continuous such that w (0) 2M and

if w(t) = f1g then w(t0) = f1g for any t0 � tg:

Let fPz j z 2Mg be the family of probability measures on Ŵ (M) de�ned by the solutions of
(M;S;X;N), that is, Pz is the law of the random variable �z : 
 ! Ŵ (M), where �z is the
solution of (M;S;X;N) with initial condition �zt=0 = z a.s.. The action � : G � M ! M
may be extended to M̂ just putting �g (f1g) = f1g for any g 2 G. Since �g (�z) is the
unique solution of the system (M;S;X;N) with initial condition g � z by Proposition 3.2 then
Pg�z = ��gPz. More explicitly, for any measurable set A � Ŵ (M), Pg�z(A) = Pz (�g(A)).
The equivariance property of the probabilities fPz j z 2Mg can be found in [ELL04] formu-

lated in the context of equivariant di¤usions on principal bundles. In that setup, the authors re-
place the path space Ŵ (M) by C (l; r;M) = f� : [l; r]!M j � is continuousg, 0 � l < r <1
and prove [ELL04, Theorem 2.5] that the probability laws fP l;rz j z 2Mg admit a factorization
through probability kernels fPH;l;rz j z 2Mg from M to C (l; r;M) and fQl;rw j w 2 C (l; r;M)g
from C (l; r;M) to Ce (l; r;G) = f� : [l; r]! G j � is continuous, �(l) = eg such that

P l;rz (U) =

Z Z
1U (g � w)Ql;rw (dg)PH;l;rz (dw)

for any Borel set U � C (l; r;M). The proof of this fact uses a technique very close to the
reduction-reconstruction scheme that we will introduce in the next section.

Apart from degeneracies, the presence of symmetry in a stochastic di¤erential equation is also
associated with the occurrence of conserved quantities and, more generally, with the appearance
of invariant submanifolds.

De�nition 3.5 Let � be a solution of the stochastic di¤erential equation (1.53) and let L be an
injectively immersed submanifold of M . Let � be the maximal stopping time of � and suppose
that �0(!) = Z0, where Z0 is a random variable such that Z0(!) 2 L, for all ! 2 
. We say
that L is an invariant submanifold (respectively, a locally invariant submanifold) of
the stochastic di¤erential equation if for any stopping time � < � (respectively, if there exists a
nontrivial stopping time �L � � such that for any stopping time � < �L) we have that �� 2 L.

Proposition 3.6 Let X : R+ �
! N be a N -valued semimartingale and let S : TN �M !
TM be a Stratonovich operator. Let L be an injectively immersed submanifold ofM and suppose
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that the Stratonovich operator S is such that Im (S(x; y)) � TyL, for any y 2 L and any
x 2 N . Then, L is a locally invariant submanifold of the stochastic di¤erential equation (1.53)
associated to X and S. If L is closed in M , then it is an invariant submanifold.

Proof. The proof is similar to the proof of Proposition 2.9. By hypothesis, the Stratonovich
operator S : TN �M ! TM induces another Stratonovich operator SL : TN � L ! TL,
obtained from S by restriction. It is clear that if i : L ,!M is the inclusion then

S�L(x; y) � T �y i = S�(x; y); (3.2)

for any x 2 N and y 2 L. Let �L be the semimartingale in L that is a solution of the
Stratonovich stochastic di¤erential equation

��L = SL(X;�L)�X (3.3)

with initial condition �0 in L. We now show that � := i � �L is a solution of

�� = S(X;�)�X:

Since the maximal stopping times �L and � of, respectively, �L and of the stochastic di¤erential
equation associated to S with the same initial condition, are such that �L � �, this will prove
the statement. Indeed, for any � 2 
(M),Z

h�; ��i =
Z
h�; �(i � �L)i =

Z
hi��; ��Li:

Since �L satis�es (3.3) and i�� 2 
(L), by (3.2) this equalsZ
hS�L(X;�L)(i��); �Xi =

Z
hS�(X; i � �L)(�); �Xi =

Z
hS�(X;�)(�); �Xi;

that is, �� = S(X;�)�X, as required. When L is closed inM , one can show (see [E82, Theorem
3 page 123]) that �L = � and hence L is an invariant submanifold.

We now use Proposition 3.6 to show that the invariant manifolds that can be associated to de-
terministic symmetric systems are also available in the stochastic context. LetM be a manifold
acted properly upon by a Lie group G via the map � : G�M !M . We recall that the action �
is said to be proper when for any two convergent sequences fmng and fgn �mn := �(gn;mn)g
in M , there exists a convergent subsequence fgnkg in G. The properness hypothesis on the
action implies implies that most of the useful features that compact group actions have, are
still available. For example, proper group actions admit local slices, the isotropy subgroups are
always compact, and (the connected components of) the isotropy type submanifolds de�ned
by MI := fz 2 M j Gz = Ig, are embedded submanifolds of M for any isotropy subgroup
I � G of the action.

Proposition 3.7 (Law of conservation of the isotropy) Let X : R+ � 
 ! N be a N -
valued semimartingale and let S : TN �M ! TM be a Stratonovich operator that is invariant
with respect to a proper action of the Lie group G on the manifold M . Then, for any isotropy
subgroup I � G, the isotropy type submanifolds MI are invariant submanifolds of the stochastic
di¤erential equation associated to S and X.
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Proof. The properness of the action guarantees that for any isotropy subgroup I � G and any
z 2MI ,

TzMI = (TzM)
I := fv 2 TzM j Tz�g � v = v; for any g 2 Ig: (3.4)

Hence, for any z 2MI and g 2 I, the G-invariance of the Stratonovich operator S implies that

Tz�g � S (x; z) = S (x; g � z) = S (x; z) ;

which by (3.4) implies that Im (S (x; z)) � TzMI . The invariance of the isotropy type mani-
folds follows then from Proposition 3.6 as well as from the equivariance of the stochastic �ow
associated to the stochastic di¤erential equation determined by S and X. More explicitly, let
F : [0; �) �M ! M be the stochastic �ow associated to the stochastic di¤erential equation
determined by S and X; by de�nition, Ft (z) is the solution semimartingale � with initial
condition �0 (!) = z a.s., z 2 M . The invariance of S implies that the �ow F is such that
Ft (g � z) = g � Ft (z), for any z 2 M and g 2 G, as it can be checked from the proof of Propo-
sition 3.2. This equality guarantees that the isotropy subgroups of z and of Ft (z) coincide, for
any t. Consequently, if z 2MI then Ft(z) 2MI , as required.

Remark 3.8 Some of the results that we just stated and others that will appear later on in the
paper could be easily proved using their deterministic counterparts and the so calledMalliavin�s
Transfer Principle [Ma78] which says, roughly speaking, that results from the theory of ordinary
di¤erential equations are valid for stochastic di¤erential equations in Stratonovich form. The
unavailability of a metatheorem that explicitly proves and shows the range of applicability of
this principle makes advisable its use with care.

3.2 Reduction and reconstruction

This section is the core of the chapter. In the preceding paragraphs we explained how the
symmetries of a stochastic di¤erential equation imply the existence of certain conservation
laws and degeneracies; reduction is a natural procedure to take advantage of the former and
eliminate the latter via a combination of restriction and passage to the quotient operations.
The end result of this strategy is the formulation of a stochastic di¤erential equation with the
same noise semimartingale but whose solutions take values in a manifold that is dimensionally
smaller than the original one, which justi�es the term reduction when we refer to this process.
Smaller dimension and the absence of symmetry induced degeneracies usually make the reduced
stochastic di¤erential equation more tractable and easier to solve. The gain is therefore clear
if once we have found the solutions of the reduced system, we know how to use them to �nd
the solutions of the original system; that task is feasible and is the reconstruction process that
will be explained in the second part of this section.

Theorem 3.9 (Reduction Theorem) Let X : R+ � 
 ! N be a N -valued semimartingale
and let S : TN � M ! TM be a Stratonovich operator that is invariant with respect to a
proper action of the Lie group G on the manifold M . Let I � G be an isotropy subgroup
of the G-action on M , MI the corresponding isotropy type submanifold, and LI := N(I)=I,
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with N(I) := fg 2 G j gIg�1 = Ig the normalizer of I in G. LI acts freely and properly on
MI and hence the orbit space MI=LI is a regular quotient manifold, that is, the projection
�I : MI ! MI=LI is a surjective submersion. Moreover, there is a well de�ned Stratonovich
operator SMI=LI : TN �MI=LI ! T (MI=LI) given by

SMI=LI (x; �I(z)) = Tz�I (S(x; z)) ; for any x 2 N and z 2MI (3.5)

such that if � is a solution semimartingale of the stochastic di¤erential equation associated to
S and X, with initial condition �0 � MI , then so is �MI=LI := �I (�) with respect to SMI=LI

and X, with initial condition �I(�0). We will refer to SMI=LI as the reduced Stratonovich
operator and to �MI=LI as the reduced solution.

Proof. The statement about MI=LI being a regular quotient manifold is a standard fact
about proper group actions on manifolds (see for instance [DK99]). Now, observe that SMI=LI :
TN �MI=LI ! T (MI=LI) is well de�ned: if z1, z2 2MI are such that �I (z1) = �I (z2), then
there exists some g 2 LI satisfying z2 = �g (z1) (we use the same symbol � to denote the
G-action on M and the induced LI -action on MI). Hence,

SMI=LI (x; �I(z2)) = Tz2�I � S(x; z2) = Tz2�I � Tz1�g � S (x; z1)
= Tz1�I � S (x; z1) = SMI=LI (x; �I(z1));

where the G-invariance of S has been used. Let now � be a solution semimartingale of the
stochastic di¤erential equation associated to S and X with initial condition �0 � MI . The
G-invariance of S implies via Proposition 3.7 that � �MI and hence �MI=LI := �I (�) is well
de�ned. In order to prove the statement, we have to check that for any one-form � 2 
(MI=LI)Z

h�; ��MI=LI i =
Z
hS�MI=LI

(X;�MI=LI )�; �Xi:

This equality follows in a straightforward manner from (3.5). Indeed,Z
h�; ��MI=LI i =

Z
h�; � (�I � �)i =

Z
h��I�; ��i

=

Z
hS�(X;�) (��I�) ; �Xi =

Z
hS�MI=LI

(X;�MI=LI )�; �Xi;

as required. �
We are now going to carry out the reverse procedure, that is, given an isotropy subgroup

I � G and a solution semimartingale �MI=LI of the reduced stochastic di¤erential equation
with Stratonovich operator SMI=LI we will reconstruct a solution � of the initial stochastic
di¤erential equation with Stratonovich operator S. In order to keep the notation not too heavy
we will assume in the rest of this section that the G-action on M is not only proper but also
free, so that the only isotropy subgroup is the identity element e and hence there is only one
isotropy type submanifold, namely Me =M . The general case can be obtained by replacing in
the following paragraphs M by the isotropy type manifolds MI , and G by the groups LI .



3.2 Reduction and reconstruction 111

We now make our goal more precise. The freeness of the action � : G�M !M guarantees
that the canonical projection � : M ! M=G is a principal bundle with structural group G.
We saw in the previous theorem that for any solution � of a stochastic di¤erential equation
associated to a G-invariant Stratonovich operator S and aN -valued noise semimartingaleX, we
can build a solution �M=G = � (�) of the reduced stochastic di¤erential equation associated to
the projected Stratonovich operator SM=G introduced in (3.5) and to the stochastic component
X. The main goal of the paragraphs that follow is to show how to reconstruct the dynamics of
the initial system from solutions �M=G of the reduced system. As we will see in Theorem 3.10,
any solution � of the original stochastic di¤erential equation may be written as � = �g� (d)

where d : R+ � 
 ! M is a semimartingale such that � (d) = �M=G and g� : R+ � 
 ! G
is a G-valued semimartingale which satis�es a suitable stochastic di¤erential equation on the
group G.
We start by picking A 2 
1 (M ; g) (g is the Lie algebra ofG) an auxiliary principal connection

on the left principal G-bundle � :M !M=G and let TM = Hor�Ver be the decomposition of
the tangent bundle TM into the Whitney sum of the horizontal and vertical bundles associated
to A. Analogously, the cotangent bundle T �M admits a decomposition T �M = Hor� � Ver�
where, by de�nition, Hor�z := (Verz)

� is the annihilator of the vertical subspace Verz at a point
z 2M and Ver�z := (Horz)

� is the annihilator of the horizontal subspace. Hence, any one form
� 2 
 (M) may be uniquely written as � = �H+�V with �H 2 Hor� and �V 2 Ver�. A section
of the bundle �M : T �M !M taking values in Hor� is called a horizontal one form. It is called
vertical if �z 2 Ver�z for any z 2M .
Let �M=G � MM=G be a solution of the reduced stochastic di¤erential equation associated

to the Stratonovich operator SM=G, and with stochastic component X : R+ � 
 ! V as in
Theorem 3.9 . As we claimed, we are going to �nd a solution � to the original G-invariant
stochastic di¤erential equation associated to S, such that � (�) = �M=G with a given initial
condition �0. We start by horizontally lifting �M=G to aM -valued semimartingale d. Indeed, by
[S82, Theorem 2.1] (see also [C01]), there exists a M -valued semimartingale d : R+ � 
 ! M
such that d0 = �0, � (d) = �M=G and that satis�esZ

hA; �di = 0; (3.6)

where (3.6) is a g-valued integral. More speci�cally, let f�1; :::; �mg be a basis of the Lie algebra
g and let A (z) =

Pm
i=1A

i (z) �i the expression of A in this basis. ThenZ
hA; �di :=

mX
i=1

Z 

Ai; �d

�
�i: (3.7)

The condition (3.6) is equivalent to
R
h�; �di = 0 for any vertical one-form � 2 
 (M) (see

[C01, page 1641]) which, in turn, impliesZ
h�; �di = 0 (3.8)

for any T �M -valued process � : R+ � 
 ! Ver� � T �M over d. We want to �nd a G-valued
semimartingale g� : 
 � R+ ! G such that g�0 = e a.s. and � = g� � d is a solution of the
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stochastic di¤erential equation associated to the Stratonovich operator S and the N -valued
noise semimartingale X.

Let g 2 G; z 2M . It is easy to see that

ker
�
T �g�z

�
= (Tg�z (G � z))� = (Verg�z)� = Hor�g�z: (3.9)

Where G � z denotes the G-orbit that contains the point z 2M . Therefore, the map

]T �g�z := T �g�z
��
Ver�g�z

: T �g�zM \Ver�g�z �! T �gG (3.10)

is an isomorphism. Let

� (g; z) : T �gG �! T �g�zM \Ver�g�z � T �g�zM

�g 7�!
�
]T �g�z

��1
(�g)

and de�ne  � (x; z; g) : T �gG! T �xN by

 � (x; z; g) = S� (x; g � z) � � (g; z) :

Finally, we de�ne a dual Stratonovich operator between the manifolds G and M �N as

K� ((z; x) ; g) : T �gG �! T �zM � T �xN
�g 7�! (0;  � (x; z; g) (�g)) :

(3.11)

Theorem 3.10 (Reconstruction Theorem) Let X : R+ � 
 ! N be a N -valued semi-
martingale and let S : TN�M ! TM be a Stratonovich operator that is invariant with respect
to a free and proper action of the Lie group G on the manifold M . If we are given �M=G a solu-
tion semimartingale of the reduced stochastic di¤erential equation then � = g� � d is a solution
of the original stochastic di¤erential equation such that �(�) = �M=G.
In this statement, d : R+�
!M is the horizontal lift of �M=G using an auxiliary principal

connection on � : M ! M=G such that �0 = d0, and g� : R+ � 
! G is the semimartingale
solution of the stochastic di¤erential equation

�g� = K (�; g) �� (3.12)

with initial condition g�0 = e, K the Stratonovich operator introduced in (3.11), and stochastic
component � = (d;X) We will refer to d as the horizontal lift of �M=G and to � = g� as the
stochastic phase of the reconstructed solution.

Remark 3.11 As we already pointed out, Theorem 3.10 is also valid when the group action
is not free. In that situation, one is given a solution of the reduced stochastic di¤erential
equation on the quotient MI=LI , with I an isotropy subgroup of the G-action on M . The
correct statement (and the proof that follows) of the reconstruction theorem in this case can
be obtained from the one that we just gave by replacing M by the isotropy type manifold MI

and G by the group LI .
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Proof of Theorem 3.10. In order to check that � = g� � d is a solution of the original
stochastic di¤erential equation we have to verify that for any � 2 
(M),Z

h�; ��i =
Z
hS�(X;�)�; �Xi: (3.13)

Since � = g� � d = �(g�; d), the statement in [S82, Lemma 3.4] allows us to writeZ
h�; ��i =

Z D
��g��; �d

E
+

Z 

��d�; �g

�
�
: (3.14)

We split the veri�cation of (3.13) into two cases:

(i) � 2 
 (M) is horizontal or, equivalently, � = �� (�) with � 2 
 (M=G). Since � is horizon-
tal, then ��d� = 0 by (3.9). Then, using (3.14),Z

h�; ��i =

Z D
��g��; �d

E
=

Z D
��g� (�

� (�)) ; �d
E

=

Z 

(� � �g�)� (�) ; �d

�
=

Z
h�� (�) ; �di =

Z 

�; ��M=G

�
:

We recall that �M=G = � (d) is a solution of the reduced system, that is,Z 

�; ��M=G

�
=

Z D
S�M=G

�
X;�M=G

�
(�) ; �X

E
for any � 2 
 (M=G). This implies by (3.5) thatZ 


�; ��M=G

�
=

Z D
S�M=G

�
X;�M=G

�
(�) ; �X

E
=

Z
hS� (X; d) (��(�)) ; �Xi :

Now, due to the G-invariance of S; we know that S� (x; g � z) = S� (x; z) � T �z�g, for any
g 2 G, x 2 N , z 2 M . Recall also that Tz�g sends the horizontal space Horz to Horg�z
and the vertical space Verz to Verg�z. Moreover, since � is horizontal, ��g� = � for any
g 2 G. Therefore,Z 


�; ��M=G

�
=

Z
hS� (X; d) (�) ; �Xi =

Z D
S� (X; d)

�
��g��

�
; �X

E
=

Z 

S�
�
X; g� � d

�
(�) ; �X

�
=

Z
hS� (X;�) (�) ; �Xi

and hence (3.13) holds.

(ii) � 2 
 (M) is vertical. Since � is vertical, so is ��
g�
� as a T �M -valued process. Therefore,R D

��
g�
�; �d

E
= 0 by (3.8). Thus, using (3.14),Z

h�; ��i =
Z 


��d�; �g
�
�
:
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Now, as g� is a solution of the stochastic di¤erential equation (3.12),Z 

��d�; �g

�
�
=

Z 

K� ��; g�� (��d�) ; ��� = Z 
�0;  � �g�; X; d� (��d�)� ; ���

=

Z 

 �
�
g�; X; d

�
(��d�) ; �X

�
: (3.15)

Recall that  � (x; z; g) = S� (x; g � z) � � (g; z). Moreover � (g; z)
�
g
�
=
�
]T �g�z

��1 �
g
�

for any g 2 T �gG. Hence,

� (g; z) � T �g�z (�g�z) =
�
]T �g�z

��1 �
T �g�z (�g�z)

�
= �g�z

for any �g�z 2 T �g�zM\Ver�g�z, since in that situation T �g�z (�g�z) = ]T �g�z (�g�z). Therefore,
expression (3.15) equalsZ 


 �
�
X; d; g�

�
(��d�) ; �X

�
=

Z 

S�
�
X; g� � d

�
(�) ; �X

�
=

Z
hS� (X;�) (�) ; �Xi ;

and hence (3.13) also holds whenever � 2 
 (M) is vertical, as required. �

The stochastic phase g� introduced in the Reconstruction Theorem admits another charac-
terization that we present in the paragraphs that follow. Let f�1; :::; �mg be a basis of g, the Lie
algebra of G and write A =

Pm
i=1A

i�i, where A
i 2 
 (M) are the components of the auxiliary

connection A 2 
1 (M ; g) in this basis. Consider the g-valued semimartingale

Y =

mX
i=1

Z 

S� (X; d)

�
Ai
�
; �X

�
�i: (3.16)

Proposition 3.12 Let Y : R+ � 
 ! g be the g-valued semimartingale de�ned in (3.16).
Then, the stochastic phase g� : R+ � 
! G introduced in (3.12) is the unique solution of the
stochastic di¤erential equation

�g = L (Y; g) �Y (3.17)

associated to the Stratonovich operator L given by

L (�; g) : T�g �! TgG
� 7�! TeLg (�) ;

with initial condition g0 = e. The symbol Lg : G! G denotes the left translation map by g 2 G.

In the proof of this proposition, we will denote by �M (z) :=
d
dt

��
t=0
exp t� � z the in�nitesimal

vector �eld associated to � 2 g by the G-action on M evaluated at z 2 M . Analogously, we
will write �G for the in�nitesimal generators of the G-action on itself by left translations. We
recall (see [OR04] for a proof) that for any g 2 G, � 2 g, and z 2M ,

Tz�g (�M (z)) = (Adg�)M (g � z) : (3.18)
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Moreover, Tg�z (�G (g)) = Tz�g (�M (z)) or, in other words,

�G (g) = ]Tg�z
�1
� Tz�g (�M (z)) ; (3.19)

where ]Tg�z
�1
: Tg�zM \Verg�z ! TgG is the isomorphism introduced in (3.10).

Proof of Proposition 3.12. A result in [S82] shows that in order to prove the statement it
su¢ ces to check that

R 

�; �g�

�
= Y , where � is the canonical g-valued one form on G de�ned

by �g (�G (g)) = �, for any g 2 G and � 2 g. Indeed, Lemmas 3.2 and 3.3 in [S82] show that a
G-valued semimartingale gG is such that

R 

�; �gG

�
= Y if and only if gG is a solution of (3.17).

Now, suppose that g� is a solution of (3.12),Z 

�; �g�

�
=

Z 

 �
�
X; d; g�

�
(�) ; �X

�
=

Z 

S�
�
X; g� � d

�
� �
�
g�; d

�
(�) ; �X

�
:

We are now going to verify that for any g 2 G and z 2M ,

� (g; z) (�) =
�
��g�1A

�
(g � z) : (3.20)

First of all notice that as � (g; z)
�
g
�
=
�
]T �g�z

��1 �
g
�
2 T �g�zM \ Ver�g�z, for any g 2 T �gG

and since A vanishes when acting on horizontal vector �elds, it su¢ ces to verify (3.20) when
acting on vector �elds of the form �M , for some � 2 g. Using (3.18), the right hand side of
(3.20) then reads�
��g�1A

�
(g � z) (�M (g � z)) = A (z)

�
Tz�g�1 (�M (g � z))

�
= A (z)

��
Adg�1�

�
M
(z)
�
= Adg�1�:

As to the left hand side, we can write using (3.18) and (3.19),

� (g; z) (�(g)) (�M (g � z)) =
��
]T �g�z

��1
�(g)

�
(�M (g � z)) = � (g)

h
]Tg�z

�1
(�M (g � z))

i
= � (g)

h
]Tg�z

�1
� Tz�g � Tg�z�g�1 (�M (g � z))

i
= � (g)

h
]Tg�z

�1
� Tz�g �

�
Adg�1�

�
M
(z)
i

= � (g)
��
Adg�1�

�
G
(g)
�
= Adg�1�:

Thus, Z 

S�
�
X; g� � d

�
� �
�
g�; d

�
(�) ; �X

�
=

Z D
S�
�
X; g� � d

� �
��
(g�)�1

A
�
; �X

E
:

Now, since the Stratonovich operator S is G-invariant, we have that S� (x; g � z) = S� (x; z) �
T �z�g, for any x 2 N , z 2M , and g 2 G, and hence

S� (x; g � z)
��
��g�1A

�
(g � z)

�
= S� (x; z) � T �z�g � T �g�z�g�1 (A (z)) = S� (x; z) (A (z)) :
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Therefore,Z 

�; �g�

�
=

Z D
S�
�
X; g� � d

� �
��
(g�)�1

A
�
; �X

E
=

Z
hS� (X; d) (A) ; �Xi = Y;

and consequently g� solves (3.17). The argument that we just gave can be easily reversed to
prove that if g� is a solution of (3.17) then it is also a solution of (3.12). �

The combination of the reduction and the reconstruction of the solution semimartingales of
a symmetric stochastic di¤erential equation can be seen as a method to split the problem of
�nding its solutions into three simpler tasks which we summarize as follows:

Step 1: Find a solution �M=G for the reduced stochastic di¤erential equation associated to
the reduced Stratonovich operator SM=G on the dimensionally smaller space M=G.

Step 2: Take an auxiliary principal connection A 2 
1 (M ; g) for the principal bundle � :M !
M=G and a horizontally lifted semimartingale d : R+ � 
 ! M , that is

R
hA; �di = 0,

such that d0 = �0 and � (d) = �M=G.

Step 3: Let g� : R+ � 
 ! G be the solution semimartingale of the stochastic di¤erential
equation (3.17) on G

�g = L (Y; g) �Y

with initial condition g0 = e a.s. and with noise semimartingale Y =
R
hS� (X; d) (A) ; �Xi.

The solution of the original stochastic di¤erential equation associated to the Stratonovich
operator S with initial condition �0 is then � = �g� (d).

Remark 3.13 Theorem 3.10 has as a consequence that the maximal existence times � and
�M=G of �-related solutions � and �M=G of the original symmetric and reduced systems, coin-
cide. Indeed, if we write �t = gt � dt, with dt a horizontal lift of �M=G, then �rst, dt is de�ned
up to the same (maybe �nite) explosion time �M=G of �M=G. Second, as the semimartingale gt
is the solution of the left-invariant stochastic di¤erential equation (3.17) then it is in principle
stochastically complete ([E82, Chapter VII §6, Example (i) page 131]) if its stochastic forcing is.
Since in our case, the stochastic component Y (3.16) depends on dt, we can conclude that gt is
de�ned again on the stochastic interval [0; �M=G). We consequently conclude that the maximal
existence time of the solutions of the initial symmetric system (M;S;X;N) coincides with that
of the corresponding solutions of the reduced system (M=G;SM=G; X;N). Notice that this in
particular implies that if the reduced manifold M=G is compact then all the solutions of the
original symmetric system are de�ned for all time, even if M is not compact.

3.3 Symmetries and skew-product decompositions

The skew-product decomposition of second order di¤erential operators is a factorization tech-
nique that has been used in the stochastic processes literature in order to split the semielliptic
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and, in particular, the di¤usion operators, associated to certain stochastic di¤erential equa-
tions (see, for instance, [PR88, L89, T92], and references therein). This splitting has important
consequences as to the properties of the solutions of these equations, like certain factorization
properties of their probability laws and of the associated stochastic �ows.
Symmetries are a natural way to obtain this kind of decompositions as it has already been

exploited in [ELL04]. Our goal in the following pages consists of generalizing the existing results
in two ways: �rst, we will generalize the notion of skew-product to arbitrary stochastic di¤eren-
tial equations by working with the notion of skew-product decomposition of the Stratonovich
operator; we will indicate below how our approach coincides with the traditional one in the case
of di¤usions. Second, we will show that the skew-product decompositions presented in [ELL04]
for regular free action are also available (at least locally) for singular proper group actions.

De�nition 3.14 Let N , M1, and M2 be three smooth manifolds and S (x;m) : TxN !
Tm (M1 �M2), x 2 N , m = (m1;m2) 2 M1 �M2, a Stratonovich operator from N to the
product manifold M1 �M2. We will say that S admits a skew-product decomposition if
there exists a Stratonovich operator S2 (x;m2) : TxN �! Tm2M2 from N to M2 and a M2-
dependent Stratonovich operator S1 (x;m1;m2) : TxN ! Tm1M1 such that

S (x;m) = (S1 (x;m1;m2) ; S2 (x;m2)) 2 L (TxN;Tm1M1 � Tm2M2)

for any m = (m1;m2) 2M1 �M2. The operators S1 and S2 will be called the factors of S.

In order to show the relation between this de�nition and the classical one used in the papers
that we just quoted, we �rst have to brie�y recall the relation between the global Stratonovich
and Itô formulations for the stochastic di¤erential equations (see [E89] for a detailed presenta-
tion of this subject). GivenM and N two manifolds, a Schwartz operator is a family of Schwartz
maps (see [E89, De�nition 6.22]) S (x; z) : �xN ! � zM between the tangent bundles of sec-
ond order �N and �M . In this context, the Itô stochastic di¤erential equation de�ned by the
Schwartz operator S with stochastic component a continuous semimartingale X : R+�
! N
is

d� = S (X;�) dX: (3.21)

Given a Stratonovich operator S, we saw in Subsection 1.4.4 that there is a unique Schwartz
operator S : �N �M ! �M that is an extension of S to the tangent bundles of second order
and which makes the Itô and Stratonovich stochastic di¤erential equations associated to S and
S equivalent, in the sense that they have the same semimartingale solutions.
It is easy to show that if S : TN � (M1 �M2) ! T (M1 �M2) is a Stratonovich operator

that admits a skew-product decomposition with factors S1 and S2 then the equivalent Schwartz
operator S : �N � (M1 �M2)! � (M1 �M2) can be written as

S (x; (m1;m2)) = S1 (x;m1;m2) + S2 (x;m2) ; (3.22)

for any x 2 N and any m = (m1;m2) 2 M1 �M2. In this expression, S1 (x;m1;m2) : �xN !
�m(M1 �M2) and S2 (x;m2) : �xN ! �m(M1 �M2) are the equivalent Schwartz operators of
the Stratonovich operators eS1; eS2 : TN � (M1 �M2) ! T (M1 �M2) de�ned by eS1(x;m) :=
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Tm1im2 (S1(x;m1;m2)) and eS2(x;m) := Tm2im1 (S2(x;m2)). The maps im1 : M2 ! M1 �M2

and im2 :M1 !M1�M2 are the natural inclusions obtained by �xing m1 and m2, respectively.
Now, the notion of skew-product decomposition of a second order di¤erential operator L 2

X2 (M1 �M2) on M1 �M2 that one �nds in the literature (see for instance [T92]) consists on
the existence of two smooth maps L1 : M2 ! X2 (M1) and L2 2 X2 (M2) such that for any
f 2 C1 (M1 �M2)

L [f ] (m1;m2) = (L1 (m2) [f (�;m2)]) (m1) + (L2 [f (m1; �)]) (m2) : (3.23)

The relation between this notion and the one introduced in De�nition 3.14 is very easy to
establish for semielliptic di¤usions. Indeed, suppose that a Stratonovich operator associated to
a semielliptic di¤usion admits a skew-product decomposition; we just saw that this implies in
general the existence of a skew-product decomposition (3.22) of the corresponding Schwartz
operator, which in turn implies the availability of a skew-product decomposition of the in�ni-
tesimal generator associated to (3.21) in the sense of (3.23). See [T92, page 15] for a sketch of
the proof of this fact.
In conclusion, since in the cases that have already been studied, the skew-product decom-

positions of Stratonovich operators carry in their wake the skew-product decompositions as
di¤erential operators of the associated in�nitesimal generators, we can focus in what follows
on the more general situation that consists of adopting De�nition 3.14.

3.3.1 Skew-products on principal �ber bundles. Free actions.

Let M , N be two manifolds, G a Lie group, and � : G�M !M a proper and free action. We
already know that M=G is a smooth manifold under these hypotheses and that �M=G : M !
M=G is a principal �ber bundle with structural group G. The goal of the following paragraphs
is to show that any G-invariant Stratonovich operator S : TN �M ! TM on M admits a
local skew-product decomposition. This result is also true even if the action � is not free, as
we will see in the next section. However, what makes this local decomposition possible in this
simpler case is not the fact that the G-action is free and proper but that �M=G :M !M=G is
a principal �ber bundle. Consequently, in order to keep our exposition as general as possible,
we will adopt as the setup for the rest of this subsection a G-invariant Stratonovich operator
S : TN � P ! TP on an arbitrary (left) G-principal �ber bundle � : P ! Q. This setup
has been studied in detail in [ELL04] for invariant di¤usions. In the following proposition we
generalize the vertical-horizontal splitting in that paper to arbitrary Stratonovich operators
and we formulate it in terms of skew-products.

Proposition 3.15 Let N be a manifold, � : P ! Q a (left) principal bundle with structure
group G, S : TN � P ! TP a G-invariant Stratonovich operator, X : R+ � 
 ! N a
N -valued semimartingale, and � : U ! ��1 (U) � P a local section of � de�ned on an open
neighborhood U � Q. Then, S admits a skew-product decomposition on ��1 (U). More explicitly,
there exists a di¤eomorphism F : G � U ! ��1 (U) and a skew-product split Stratonovich
operator SG�U : TN � (G� U) ! T (G� U) such that F establishes a bijection between
semimartingales � starting on ��1 (U) which are solutions of the stochastic system (P; S;X;N)
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up to time � = inf
�
t > 0 j �t =2 ��1(U)

	
and the (G� U)-valued semimartingales (egt;�Qt ) that

solve (G� U; SG�U ; X;N),

�(egt;�Qt ) = SG�U
�
X; (egt;�Qt )� �Xt: (3.24)

Proof. Let U � Q be an open neighborhood and � : U ! ��1 (U) � P a local section of
� : P ! Q. Given that G acts freely on P , the map

F : G� U �! ��1 (U)
(g; q) 7�! g � � (q)

is a G-equivariant di¤eomorphism, where g �� (q) = �g (� (q)) denotes the (left) action of g 2 G
on � (q) 2 P via � : G�P ! P and the product manifold G�U is considered as a left G-space
with the action de�ned by g � (h; q) := (g � h; q). Thus, we can use F to identify ��1 (U) � P
with the product manifold G� U .
Now, given p = g � � (q) 2 ��1 (U), de�ne Horp � TpP as Horp := T�(q)�g � Tq� (TqQ). It is

straightforward to see that the family of horizontal spaces fHorp j p 2 ��1 (U)g is invariant
by the G-action and hence de�nes a principal connection A� 2 
1

�
��1 (U) ; g

�
on the open

neighborhood ��1 (U). Moreover, if �Q : R+�
! Q is a Q-valued semimartingale starting at
q, then �

�
�Q
�
is the unique horizontal lift on P of �Q associated to the connection A� starting

at � (q) 2 ��1 (q) and de�ned up to time �U = infft > 0 j �Qt =2 Ug.
Consider now the skew-product split Stratonovich operator SG�U (x; (g; q)) : TN�(G� U)!

T (G� U) such that, for any x 2 N , g 2 G, q 2 U

SG�U (x; (g; q)) =
�
K ((�(q); x) ; g); SP=G (x; q)

�
2 L (TxN;TgG� TqU) ;

where K is the Stratonovich operator introduced in (3.11) and SP=G the reduced Stratonovich

operator constructed out of S as in (3.5). Let (egt;�Qt ) be a (G� U)-valued semimartingale
solution of the stochastic system (3.24), i.e.

�(egt;�Qt ) = SG�U
�
X; (egt;�Qt )� �X;

with initial condition (g; q) 2 G � U . We claim that �t = F (egt;�Qt ) = egt � �(�Qt ) is a solution
of the stochastic system (P; S;X;N) with initial condition g � �(q) up to the �rst exit time
�U = infft > 0 j �Qt =2 Ug. This is a consequence of the Reconstruction Theorem 3.10 and
the fact that �(�Qt ) is the horizontal lift of a solution of the reduced system

�
Q;SP=G; X;N

�
.

Conversely, let � be a solution of the stochastic system (P; S;X;N) with initial condition
p = g � � (q) 2 ��1 (U). By the Reconstruction Theorem 3.10, � can be written as �t = egt � dt.
We recall that dt the horizontal lift with respect to an arbitrary connection A 2 
1 (Q; g)
of the solution �Qt = �(�t) of the reduced system

�
Q;SP=G; X;N

�
(see Theorem 3.9) with

initial condition �(q). On the other hand, egt is the solution of the stochastic system (3.12)
with initial condition g 2 G. If we take in this procedure A� 2 
1

�
��1(U); g

�
as the auxiliary

connection, that is, the one given by the local section � : U ! ��1 (U), then dt = �(�Qt )

and it is straightforward to check that (egt;�Qt ) is a solution of (3.24) with initial condition
(g; q) 2 G� U . �
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Example 3.16 Let G be a Lie group, H � G a closed subgroup, and R a smooth mani-
fold. In [PR88], Pauwels and Rogers show several examples of skew-product decompositions of
Brownian motions on manifolds of the type R�G=H which share a common feature, namely,
they are obtained from skew-product split Brownian motions on R � G via the reduction
� : R � G ! R � G=H. The H-action on R � G is h � (r; g) := (r; gh), for any h 2 H, r 2 R,
and g 2 G. An important result in this paper is Theorem 2 which reads as follows: suppose
that R � G=H is a Riemannian manifold with Riemannian metric � and that the tensor ���
is G-invariant. Furthermore, suppose that the decomposition T(r;g) (R�G) = TrR � TgG is
orthogonal with respect to ���, for any r 2 R, g 2 G, and that the Lie algebra g of G ad-
mits an AdH -invariant inner product. Under these hypotheses, R � G admits a G-invariant
Riemannian metric �̂ such that if � is a Brownian motion on R �G with respect to �̂ then �
has a skew-product decomposition and moreover, � (�) is a Brownian motion on (R�G=H; �).
This result is repeatedly used in [PR88] to obtain skew-product decompositions of Brownian
motions on various manifolds of matrices.

Example 3.17 (Brownian motion on symmetric spaces) Let (M;�) be a Riemannian
symmetric space with Riemannian metric �. We want to de�ne Brownian motions on (M;�)
by reducing a suitable process de�ned on the connected component containing the identity
of its group of isometries. The notation and most of the results in this example, in addition
to a comprehensive exposition on symmetric spaces, can be found in [H78] and [KN69]. The
reader is encouraged to check with [ELL98] to learn more about stochastics in the context of
homogeneous spaces.
We start by recalling that a M -valued process � is a Brownian motion whenever

f(�)� f (�0)�
1

2

Z
�(f) (�s) ds

is a real valued local semimartingale for any f 2 C1(M), where � denotes the Laplacian. The
Laplacian is de�ned as the trace of the Hessian associated to the Levi-Civita connection r of
�, that is,

�(f) (m) =
rX
i=1

(LYi � LYi �rYiYi) (f)(m)

where fY1; :::; Yrg � X (M) is family or vector �elds such that fY1(m); :::; Yr(m)g is an ortho-
normal basis of TmM , m 2M .
Let G be the connected component containing the identity of the isometries group I(M) �

Di�(M) of M . Take o 2M a �xed point and let s be a geodesic symmetry at o. The Lie group
G acts on M transitively and, if K denotes the isotropy group of o, M is di¤eomorphic to
G=K ([H78, Chapter IV, Theorem 3.3]). Denote by � : G! G=K the canonical projection and
suppose that dim (G) < 1. Let � : G ! G be the involutive automorphism of G de�ned by
� (g) = s � �g � s for any g 2 G, where � : G �M ! G denotes as usual the left action of
G on M . Te� : g ! g induces an involutive automorphism of g. That is, Te� � Te� = Id but
Te� 6= Id. Let k and m be the the eigenspaces in g associated to the eigenvalues 1 and �1 of
Te�, respectively, such that g = k � m. It can be checked that k is a Lie subalgebra of g and
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that (see [KN69, Chapter XI Proposition 2.1]).

[k; k] � k, [k;m] � m, and [m;m] � k:

Since the in�nitesimal generators �M 2 X (M) of the G-action � on M , with � 2 m, span
the tangent space at any point gK 2 G=K, any a¢ ne connection is fully characterized by its
value on the left-invariant vector �elds �M with � 2 m. In the particular case of the Levi-
Civita connection r associated to the metric �, its G-invariance implies via [KN69, Chapter
XI, Theorem 3.3] that

r�M �
M (gK) = 0 (3.25)

for any pair of left-invariant vector �elds �M and �M . A consequence of (3.25) is that the
Laplacian � takes the expression �(f) (gK) =

Pr
i=1 L�Mi � L�Mi (f)(gK), gK 2 G=K, where�

�M1 (gK); :::; �
M
r (gK)

	
is an orthonormal basis of TgK(G=K).

Let f�1; :::; �rg be a basis of m such that fTe� (�1) :::; Te� (�r)g is an orthonormal basis of
TK(G=K) ' ToM with respect to �o and let

�
�G1 ; :::; �

G
r

	
� X (G) be the corresponding family of

right-invariant vector �elds built from f�1; :::; �rg. Observe that
�
�M1 ; :::; �

M
r

	
is an orthonormal

basis of the tangent space at any point gK 2 G=K due to the transitivity of the G-action onM
and to the G-invariance of the metric �. Consider now the Stratonovich stochastic di¤erential
equation on G

�gt =
rX
i=1

�Gi (gt)�B
i
t; (3.26)

where
�
B1t ; :::; B

r
t

�
is a Rr-valued Brownian motion. The equation (3.26) is by construction

K-invariant with respect to the right action R : K � G ! G, Rk (g) = gk. In addition, it is
straightforward to check that the projection � : G! G=K sends any right-invariant vector �eld
�G 2 X (G), � 2 g, to the in�nitesimal generator �M 2 X (M) of the G-action � : G�M !M .
Indeed, for any � 2 g, g 2 G, and k 2 K

Tg�
�
�G(g)

�
= Tg� � TeRg (�) =

d

dt

����
t=0

� (exp (t�) g) =
d

dt

����
t=0

� (exp (t�) ; � (g)) = �M (gK);

and hence (3.26) projects to the stochastic di¤erential equation

��t =

rX
i=1

�Mi (�t)�B
i
t (3.27)

on M by the Reduction Theorem 3.9. A straightforward computation shows that that the
solution semimartingales of (3.27) have as in�nitesimal generator the Laplacian� =

Pr
i=1 L�Mi �

L�Mi and hence by the Itô formula

f(�)� f (�0)�
1

2

Z
�(f) (�s) ds =

rX
i=1

Z
�Mi [f ](�)dB

i

which allows us to conclude that they are Brownian motions. It is worth noticing that since
right-invariant systems such that (3.26) are stochastically complete (see [E82, Chapter VII §6])
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and by the Reduction and Reconstruction Theorems 3.9 and 3.10 any solution of (3.27) may be
written as �t = � (gt) for a suitable solution gt of (3.26), the Brownian motion on a symmetric
space is stochastically complete.

3.3.2 Skew-products induced by non-free actions. The tangent-normal decomposition

In this section we will show how the results that we just presented for free actions can be
generalized to the non-free case by using the notion of slice [Ko53, P61] and a generalization
to the context of Stratonovich operators of the so-called tangent-normal decomposition of
G-equivariant vector �elds with respect to proper group actions [K90, F91].
Let � : G�M !M be a proper action of the Lie group G on the manifold M and let M=G

be the associated orbit space, M=G. Observe that as the group action is not necessarily free,
the orbit space M=G needs not be a smooth manifold.
In order to introduce the notion of slice we start by considering a subgroup H � G of G.

Suppose that H acts on the left on a certain manifold A. The twisted action of H on the
product G�A is de�ned by

h � (g; a) = (gh; h�1 � a); h 2 H; g 2 G; and a 2 A:

Note that this action is free and proper by the freeness and properness of the action on the
G-factor. The twisted product G�H A is de�ned as the orbit space (G�A)=H corresponding
to the twisted action. The elements of G �H A will be denoted by [g; a], g 2 G, a 2 A. The
twisted product G�H A is a G-space relative to the left action de�ned by g0 � [g; a] := [g0g; a].
Also, it can be shown that the action of H on A is proper if and only if the G-action on G�HA
just de�ned is proper (see [OR04, Proposition 2.3.17]).
Let now m 2 M and denote H := Gm. A tube around the orbit G �m is a G�equivariant

di¤eomorphism
' : G�H A �! U;

where U is a G�invariant neighborhood of the orbit G �m and A is some manifold on which H
acts. Note that the G�action on the twisted product G�H A is proper since by the properness
of the G-action on M , the isotropy subgroup H is compact and, consequently, its action on A
is proper.

De�nition 3.18 Let M be a manifold and G a Lie group acting properly on M . Let m 2 M
and denote H := Gm. Let W be a submanifold of M such that m 2 W and H �W = W . We
say that W is a slice at m if the G�equivariant map

' : G�H W �! U
[g; s] 7�! g � s

is a tube about G �m for some G�invariant open neighborhood U of G �m. Notice that if W is
a slice at m then �g(W ) is a slice at the point �g(m).

The Slice Theorem of Palais [P61] proves that there exists a slice at any point of a proper
G-manifold. The following theorem, whose proof can be found in [OR04] provides several equiv-
alent characterizations of the concept of slice that are available in the literature.
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Theorem 3.19 Let M be a manifold and G a Lie group acting properly on M . Let m 2 M ,
denote H := Gm, h the Lie algebra of H, and let W be a submanifold of M containing m.
Then the following statements are equivalent:

(i) There is a tube ' : G�H A �! U about G �m such that '[e; A] =W .

(ii) W is a slice at m.

(iii) The submanifold W satis�es the following properties:

(a) The set G �W is an open neighborhood of the orbit G �m and W is closed in G �W .
(b) For any z 2W we have that TzM = g � z + TzW . Moreover, g � z \ TzW = h � z. In

particular, for z = m the sum g � z + TzW is direct.

(c) W is H�invariant. Moreover, if z 2 W and g 2 G are such that g � z 2 W , then
g 2 H.

(d) Let � : V � G=H ! G be a local section of the submersion G ! G=H. Then, the
map F : V �W ! M given by F (gH; z) := �(gH) � z is a di¤eomorphism onto an
open subset of M .

(iv) G �W is an open neighborhood of G �m and there is an equivariant smooth retraction

r : G �W �! G �m

of the injection G �m ,! G �W such that r�1(m) =W .

Let now S : TN �M ! TM be a G-invariant Stratonovich operator. The existence of slices
for the G-action allow us to carry out two decompositions of S. The �rst one, that we will
call tangent-normal decomposition is semi-global in the sense that it shares the properties
that the Slice Theorem has in this respect, which is global in the orbit directions and local in
the directions transversal to the orbits; this decomposition consists of writing S as the sum
of two Stratonovich operators such that, roughly speaking, one is tangent to the orbits of
the G-action and the other one is transversal to them. The second one is purely local and
yields a skew-product decomposition of S in the sense of De�nition 3.14, provided that an
additional hypothesis on the isotropies in the slice is present. This hypothesis, whose impact
will be explained in detail later on, is generically satis�ed and hence the following theorem
shows that S admits a skew product decomposition in a neighborhood of most points in M
(those points form an open and dense subset of M). These statements are rigorously proved in
the following theorem.

Theorem 3.20 Let X : R+�
! N be a N -valued semimartingale, � : G�M !M a proper
Lie group action, and S : TN �M ! TM a G-invariant Stratonovich operator. Let m 2 M
and W a slice at m. Then, there exist two Stratonovich operators SN : TN �W ! TW and
ST : TN �G �W ! T (G �W ) such that the following statements hold:
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(i) Let Lie (N(Gz)) denote the Lie algebra of the normalizer N(Gz) in G of the isotropy
group Gz, z 2 G � W . The Stratonovich operator ST is G-invariant and ST (x; z) 2
L (TxN;Lie (N(Gz)) � z) for any x 2 N and any z 2 G �W . Moreover, there exists an
adjoint G-equivariant map � : TN � G �W ! g, (that is, � (x; g � z) = Adg �� (x; z), for
any g 2 G) such that ST (x; z) = Te�z � � (x; z).

(ii) The Stratonovich operator SN : TN �W ! TW is Gm-invariant.

(iii) If z = g � w 2 G �W , with g 2 G and w 2W , then

S (x; z) = ST (x; z) + Tw�g � SN (x;w) = Tw�g � (ST (x;w) + SN (x;w)) : (3.28)

This sum of Stratonovich operators will be referred to as the tangent-normal decom-
position of S.

(iv) Let ' be the �ow of the stochastic system (W;SN ; X;N) so that ' (w) denotes the solution
of

�� = SN (X;�)�X (3.29)

with initial condition �t=0 = w a.s.. Let Sg�W : TN � (g�W ) ! T (g�W ) be the
Stratonovich operator de�ned as Sg�W (x; (�; w)) = � (x;w)�SN (x;w) 2 L (TxN; g� TwW )
and let (�w;�w) be the solution semimartingale of the stochastic system (g�W;Sg�W ; X;N)
with initial condition (0; w) 2 g�W . Finally, let eg : f0 � t < �'g ! G be the solution of
the stochastic system (G;L; �w; g) with initial condition g 2 G and where L : Tg�G! TG
is such that L (�; g) (�) = TeLg(�). Then, the semimartingale

�t = egt � 't (w)
is a solution up to time �' of the stochastic system (M;S;X;N) with initial condition
z = g � w 2 G �W .

(v) Suppose now that Gw = Gz, for any w 2 W . Then S admits a local skew-product de-
composition. More speci�cally, for any point m 2 M , there exists an open neighborhood
V � G=Gm of Gm, a di¤eomorphism F : V �W ! U � M , and a skew-product split
Stratonovich operator SV�W : TN � (V �W ) ! T (V �W ) such that F establishes a
bijection between semimartingales � starting on U which are solution of the stochastic
system (U; S;X;N) and semimartingales on V � W solution of the stochastic system
(V �W;SV�W ; X;N). Moreover,

SV�W (x; (gGm; w)) = Tg�Gm � TeLg (� (x;w))� SN (x;w)

for any x 2 N , gGm 2 V � G=Gm, and any g 2 G such that �Gm (g) = gGm.

Remark 3.21 The last point in this theorem shows that proper symmetries of Stratonovich
operators imply the availability of skew-products decompositions around most points in the
manifold where the solutions take place. Indeed, the Principal Orbit Type Theorem (see for
instance [DK99]) shows that there exists an isotropy subgroup H whose associated isotropy
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type manifold M(H) := fz 2 M j Gz = kHk�1; k 2 Gg is open and dense in M . Hence, for
any point m 2M(H) there exist slice coordinates around the orbit G �m in which the manifold
M looks locally like G �H W = G �H WH ' G=H � WH . This local trivialization of the
manifold M into two factors and the results in part (v) of the theorem can be used to split
the Stratonovich operator S, in order to obtain a locally de�ned skew-product around all the
points in the open dense subset M(H) of M .

Proof. As we already said, this construction is much inspired by a similar one available in
the context of equivariant vector �elds [K90, F91]. In this proof we will mimic the strategy for
that result followed in [OR04, Theorem 3.3.5].
We start by noting that the properness of the action guarantees that the isotropy subgroup

Gm is compact and hence there exists an open Gm-invariant neighborhood V � G=Gm of
Gm and a local section � : V � G=Gm ! G with the following equivariance property [F91]:
�(h �gGm) = h�(gGm)h

�1, for any h 2 Gm and gGm 2 V . If we now construct with this section
the map F : V �W ! U �M introduced in Theorem 3.19, that is

F (gGm; w) := �(gGm) � w; (3.30)

we obtain a Gm-equivariant map by considering the diagonal Gm-action in V �W . Since for
any w 2W we have that F�1(w) = (Gm; �(Gm)�1 � w),

TwF
�1 � S(x;w) =: SV (x;w)� SW (x;w) 2 L

�
TxN;TGmV � T�(Gm)�1�wW

�
: (3.31)

De�ne

SN (x;w) := T�(Gm)�1�w��(Gm) � SW (x;w) 2 TwW (3.32a)

ST (x; g � w) := Tw�g � Te�w � T�(Gm)R�(Gm)�1 � TGm� � SV (x;w)
= Te�g�w �Adg �T�(Gm)R�(Gm)�1 � TGm� � SV (x;w): (3.32b)

(i) Let z = g � w 2 G �W , g 2 G, w 2W , x 2 N , and de�ne � : TN �G �W ! g by

�(x; z) = Adg �T�(Gm)R�(Gm)�1 � TGm� � SV (x;w): (3.33)

It can be seen that � (x; z) is well de�ned by reproducing the steps taken in [OR04, Theorem
3.3.5 (i)]. More speci�cally, it can be shown that if z is written as z = g0 � w0 for some other
g0 2 G and w0 2W then

Adg �T�(Gm)R�(Gm)�1 � TGm� � SV (x;w) = Adg0 �T�(Gm)R�(Gm)�1 � TGm� � SV (x;w
0):

Using (3.32b) and (3.33) we have that

ST (x; g � w) = Tw�g�w � �(x; g � w)

It is an exercise to check that � (x; g � w) = Adg �� (x;w), for any g 2 G, and hence the
Stratonovich operator ST is G-invariant. This G-invariance implies by Proposition 3.7 that
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the image of ST (x; z) is such that Im(ST (x; z)) � TzMGz . On the other hand, Im(ST (x; z)) =
Im(Te�z � �(x; z)) � g � z, therefore

Im (ST (x; z)) � TzMGz \ g � z = Tz (N(Gz) � z)

by [OR04, Proposition 2.4.5] and hence Im(�(x; z)) � Lie (N(Gz)).
(ii) and (iii) It is immediate to see that the Stratonovich operator SN : TN � W ! TW
de�ned in (3.32a) is Gm-invariant. Let w 2W ; using (3.31) and (3.30)

S (x;w) = T(Gm;�(Gm)�1�w)F � (SV (x;w)� SW (x;w))

= Te�w � T�(Gm)R�(Gm)�1 � TGm� � SV (x;w) + T�(Gm)�1�w��(Gm) � SW (x;w)
= ST (x;w) + SN (x;w) ;

where (3.32a) and (3.32b) have been used. The equality (3.28) then follows from the G-
invariance of S and ST .

(iv) First of all observe that if (�w;�w) is the g �W -valued semimartingale solution of the
stochastic system (g�W;Sg�W ; X;N) with constant initial condition (0; w) 2 g�W , then

h�; �wi =
Z
h� (X;'t(w))� (�); �Xi

for any � 2 g�. In other words, �w may be regarded as the solution of the stochastic di¤erential
equation

��w = � (X;'t(w)) �X (3.34)

with initial condition �wt=0 = 0 a.s.. Notice that �
w is de�ned up to time �'(w), that is, the time

of existence of the solution '(!). Let now �t = egt � 't (w) be the M -valued semimartingale in
the statement. Applying the rules of Stratonovich di¤erential calculus and the Leibniz rule we
obtain

��t = Tegt�'t(w)(�egt) + T't(w)�egt(�'t(w)) (3.35)

We rewrite the �rst summand in this expression as

Tegt�'t(w)(�egt) = T't(w)�egt � Te�'t(w) � TegtLeg�1t (�egt)
= T't(w)�egt � Te�'t(w)(��wt )
= T't(w)�egt � Te�'t(w) � �(Xt; 't(w))�Xt

= T't(w)�egt � ST (X;'t(w))�Xt;

where in the second and third line we have used that egt is a solution of (G;L; �w; g) and equation
(3.34), respectively. The second summand of (3.35) can be written as

T't(w)�egt(�'t(w)) = T't(w)�egt � SN (X;'t(w))�Xt

because 't(w) is a solution of (3.29). Therefore, using (3.28) we can conclude that

��t = T't(w)�egt � (SN (X;'t(w)) + ST (X;'t(w))) �Xt

= S (X; egt � 't(w)) �Xt = S (X;�t) �Xt
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which shows that �t is a solution up to time �' of the stochastic system (M;S;X;N) with
initial condition z = g � w 2 G �W

(v) Let w 2 W and h 2 Gm = Gw. Let 	 be the twisted action of Gm on W , that is,
	 : Gm � (G�W ) ! (G�W ) de�ned as 	h (g; w) :=

�
gh; h�1 � w

�
, and whose orbit space

is the twisted product G �Gm W . The hypothesis Gm = Gw, for any w 2 W , implies that
G�Gm W can be easily identi�ed with G=Gm �W using the di¤eomorphism

G�Gm W �! G=Gm �W
[g; w] 7�! (gGm; w) :

Consider now the Stratonovich operator de�ned by

SG�W (x; (g; w)) = TeLg � � (x;w)� SN (x;w) :

We are going to show that SG�W is Gm-invariant under the action de�ned by 	. Indeed, given
that Gw = Gm, 	h (g; w) = (gh;w) for any h 2 Gm, g 2 G, and w 2W , we have

SG�W (x;	h (g; w)) = SG�W (x; (gh;w)) = TeLgh � � (x;w)� SN (x;w)
= ThLg � TeLh � � (x;w)� SN (x;w)
= ThLg � TeRh �Adh �� (x;w)� SN (x;w)
= TgRh � TeLg �Adh �� (x;w)� SN (x;w) : (3.36)

But due to the G-equivariance of � we have � (x;w) = � (x; h � w) = Adh �� (x;w), for any
h 2 Gm. In addition, T(g;w)	h = TgRh � Id, so (3.36) equals

T(g;w)	h � (TeLg � � (x;w)� SN (x;w)) = T(g;w)	h � SG�W (x; (g; w)) ;

which shows that SG�W is Gm-invariant.
We can therefore apply the Reduction Theorem 3.9 to conclude that SG�W projects onto a

stochastic system
�
G=Gm �W;SG=Gm�W ; X;N

�
on G�GmW ' G=Gm�W with Stratonovich

operator

SG=Gm�W (x; (gGm; w)) : = Tg�Gm � SG�W (x; (g; w))
= Tg�Gm � TeLh � � (x;w)� SN (x;w) ; (3.37)

where x 2 N , w 2 W , and g 2 G is any element such that �Gm (g) = gGm. Notice that
by (3.28), expression (3.37) proves that the Stratonovich operator SG=Gm�W is a local skew-
product decomposition of S on G=Gm �W .
Concerning the solutions, by (iv) any solution of the stochastic system (M;S;X;N) starting

at some point z = g �w 2 U � G �W can be written as the image by the action � of the solution
(gt; 't (w)) of the stochastic system (G�W;SG�W ; X;N) starting at (g; w) 2 G � W and
de�ned up to time �'(w). Then, the Reduction Theorem 3.9 guarantees that this solution can
be projected to a solution of

�
G=Gm �W;SG=Gm�W ; X;N

�
starting at (gGm; w) 2 G=Gm �

W , also de�ned up to time �'(w). Conversely, in order to recover a solution of the original
system from a solution ((gGm)t ; wt) of

�
G=Gm �W;SG=Gm�W ; X;N

�
we need to invoke the
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Reconstruction Theorem 3.10 by choosing an auxiliary connection A 2 
1 (G; gm). This will
yield a solution (gt; wt) of (G�W;SG�W ; X;N) with gt a G-valued semimartingale that can
be written as

gt = dtht;

where dt : R+�
! G is the horizontal lift of (gGm)t with respect to A and ht : R+�
! Gm
is a suitable semimartingale on Gm. The key point is that the image by the action � of the
solution (gt; wt) of (G�W;SG�W ; X;N), that is,

� (gt; wt) = gt � wt = dtht � wt = dt � wt

yields a solution of (M;S;X;N). Notice that the semimartingale ht plays no role. Indeed, let
� : V � G=Gm ! G be the local Gm-equivariant section introduced in the beginning of the
proof. We already saw in Proposition 3.15 that if (gGm)t : R+ � 
 ! G=Gm is a G=Gm-
valued semimartingale then � ((gGm)t) is the horizontal lift with respect to the connection
A� 2 
1

�
��1Gm (V ) ; gm

�
induced by the local section �. Consequently, any solution �t of the

initial stochastic system (M;S;X;N) with initial condition �t=0 = g � w 2 U � G �W can be
locally expressed as � ((gGm)t) � wt where ((gGm)t ; wt) is a solution of the stochastic system�
G=Gm �W;SG=Gm�W ; X;N

�
with initial condition (�Gm(g); w) 2 G=Gm �W . �

Example 3.22 (Liao decomposition of Markov processes) The possibility of decompos-
ing stochastic processes using a group invariance property has been used beyond the context of
stochastic di¤erential equations. For example, Liao [L07] has used what he calls the transver-
sal submanifolds of a compact group action to carry out an angular-radial decomposition
of the Markov processes that are equivariant with respect to those actions. To be more speci�c,
let M be a manifold acted upon by a Lie group G and let � : R+ � 
 ! M be a M -valued
Markov process with transition semigroup Pt; that is, � is a process with càdlàg paths that
satis�es the simple Markov property

E [f (�t+s) jFt] = Psf (�t)

a.s. for s < t and f 2 C1b (M), where C
1
b (M) is the space of bounded smooth functions on

M , and fFtgt2R+ is the natural �ltration induced by �. Furthermore, suppose that the Markov
process � or, equivalently, its transition semigroup Pt is G-equivariant in the sense that

Pt (f � �g) = (Ptf) � �g

for any g 2 G. Additionally, in [L07] it is assumed the existence of a submanifold W � M
which is globally transversal to the G-action. This means that W intersects each G-orbit at
exactly one point, that is, for any w 2W , G �w\W = fwg andM =

S
w2W G �w. The existence

of such global transversal section is a strong hypothesis that only a limited number of actions
satisfy. A larger range of applicability of the results in [L07] can be obtained if one is willing to
work locally using the slices introduced in this section. Indeed, suppose now that the group G is
not compact but just that the group action is proper; let m 2M and ' : G�Gm W ! U �M
a tube around the orbit G �m where, additionally, we assume that Gw = Gm for any w 2 W .
With this hypothesis which, incidentally is the same one that in part (v) of Theorem 3.20
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allowed us to obtain a skew-product decomposition of the invariant Stratonovich operator, the
slice W is a local transversal manifold in the sense of [L07].
Let now J : U �M !W be the projection that associates to each point, the unique element

in its orbit that intersects W . Liao proves [L07, Theorem 1] that the radial part y := J (�) of
the Markov process � is also a Markov process with transition semigroup Qt := J�Pt. Moreover,
if the group G is compact and � is Feller then so is y and its generator is fully determined by
that of �.
Let now �Gm : G ! G=Gm be the canonical projection, V � G=Gm as in Theorem 3.19

(iii)-(d), and let � : V � W ! U be the di¤eomorphism associated to the local section
� : V ! ��1Gm (V ) � G such that � (gGm; w) = � (gGm) �w. Let � be U -valued Markov process
starting at m and y = J (�) its radial part. Let �� : f0 � t < �Ug ! V � G=Gm be the process
such that �t = �

�
��t
�
� yt, where �U = inf ft > 0 j �t =2 Ug. �� is called the angular part of �.

Liao shows (see [L07, Theorem 3]) that the angular process ��t is a nonhomogeneous Lévy
process under the conditional probability built by conditioning with respect to the �-algebra
generated by the radial process. The reader is encouraged to check with [L07] (see also Section
4.3) for precise de�nitions and statements (see also [L04]).

3.4 Projectable stochastic di¤erential equations on associated bundles

In the previous section we saw how the availability of the slices associated to a proper group
action allows the local splitting of the invariant Stratonovich operators using what we called
the tangent-normal decomposition. Additionally, this decomposition yields generically a local
skew-product splitting of the invariant Stratonovich operator in question. The key idea behind
these splittings was the possibility of locally modeling the manifold where the solutions of the
stochastic di¤erential equation take place as a twisted product. A natural setup that we could
consider are the manifoldsM where this product structure is global, that isM = P �GW , with
P andW two G-manifolds. The most standard situation where such manifolds are encountered
is when M is the associated bundle to the G-principal bundle � : P ! Q: let W be an
e¤ective left G-space and �� : P �G W ! Q, ��([p; w]) = �(p). A classical theorem in bundle
theory shows that such construction is a �ber bundle with typical �ber W and it is usually
referred to as the bundle associated to � : P ! Q with �ber W . To be more speci�c, consider
the commutative diagram that de�nes ��:

P �W ��! P �GW
pr1 # #��
P

��! Q:

(3.38)

In this diagram, �p : fpg � W ! ���1(�(p)) =: (P �H W )�(p) is a di¤eomorphism (see for
instance [KMS93, 10.7]). Hence, the correspondence p ! �p, p 2 P , allows us to consider the
elements of P as di¤eomorphisms from the typical �berW of P�GW to ���1 (q), with q = �(p).
Stochastic processes and di¤usions on associated bundles have deserved certain attention

in the literature (see [L89] for example) because, as we will see in the following paragraphs,
the available geometric structure makes possible a Reduction-Reconstruction procedure that in
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some cases implies the existence of a global skew-product decomposition. In this context, the
notion of invariance is replaced by what we will call ��-projectability: if N is a manifold and
S : TN �M ! TM a Stratonovich operator from N to M , we say that S is ��-projectable if
the Stratonovich operator SQ from N to Q

SQ (x; q) := T[p;w]�� � S (x; [p; w]) 2 L
�
TxN;T[p;w]M

�
is well de�ned, where [p; w] 2M is any point such that �� ([p; w]) = q 2 Q.

Theorem 3.23 Let �� :M = P �GW ! Q be the associated bundle introduced in the previous
discussion. Let N be a manifold, S : TN �M ! TM a ��-projectable Stratonovich operator
onto Q, and X : R+ � 
 ! N a N -valued semimartingale. Then there exist a Stratonovich
operator SP�W : TN � (P �W )! TP � TW with the property that if (pt; wt) is any solution
of the stochastic system (P �W;SP�W ; X;N) with initial condition (p; w) 2 P � W , then
�t := � (pt; wt) is the solution of (M;S;X;N) starting at [p;m]. Furthermore, pt can be written
as the horizontal lift of �� (�t) with respect to an auxiliary connection A 2 
1 (P ; g). Conversely,
if �t is a solution of (M;S;X;N) and pt the horizontal lift of �� (�t) with respect to A, then�
pt; �

�1
pt (�t)

�
is a solution of (P �W;SP�W ; X;N).

Proof. Let A 2 
1 (P ; g) be an auxiliary principal connection for � : P ! Q and letbAp : T�(p)Q ! Horp P � TpP be the inclusion of the tangent space TqQ at q = �(p) into the

horizontal space Horp P at p 2 P de�ned by A. Consider the family of linear maps bA[p;w] :
T��([p;w])Q! T[p;w]M for any [p; w] 2 P �GW as

bA[p;w] = Tp�w � bAp; (3.39)

where �w(p) := � (p; w) for any w 2W . The family of maps fbA[p;w] j [p; w] 2Mg de�ne what
is called the induced connection A ([KMS93, 11.8]) on P �G W by A 2 
1 (P ; g). It can
be easily checked that A is well-de�ned, that is, the expression (3.39) does not depend on the
particular choice of p 2 P and w 2 W in the class [p; w] 2 P �GW used to de�ne it. Indeed,
if [p; w] = [p0; w0] then there exists some g 2 G such that p0 = g � p and w0 = g�1 � w. Since the
connection A is principal, bAp0 = TpRg � bAp, where R : G� P ! P denotes the G-right action
on P . On the other hand, since � (p0 = p � g; w0) = � (p; g � w0), we have

Tp0�w0 � TpRg = Tp�g�w0 or, equivalently, Tp0�w0 = Tp�g�w0 � Tp0Rg�1 : (3.40)

Therefore, bA[p0;w0] = Tp0�w0 � bAp0 = Tp�g�w0 � Tp0Rg�1 � TpRg � bAp = Tp�w � bAp = bA[p;w].
Let SQ : TN �Q! TQ be the Stratonovich operator de�ned as

SQ (x; q) := T[p;w]�� � S (x; [p; w]) ; (3.41)

where [p; w] 2 P �G W is any point such that �� ([p; w]) = q, x 2 N , and w 2 W . This
Stratonovich operator is well-de�ned because S is by hypothesis ��-projectable. Let bH[p;w] :
T[p;w]M ! Hor[p;w]M � T[p;w]M and bV[p;w] : T[p;w]M ! Ver[p;w]M � T[p;w]M be the projections
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onto the horizontal and vertical spaces associated to A, respectively, at [p; w] 2 P�GW . De�ne
the Stratonovich operator SP�W : TN � (P �W )! TP � TW as

SP�W (x; (p; w)) = bAp �SQ (x; � (p))� (Tw�p)�1 � bV[p;w] �S (x; [p; w]) 2 L �TxN;T(p;w)(P �W )�
(3.42)

for any x 2 N , w 2 W , and p 2 P . Recall from (3.38) that �p : W ! M�(p) is a di¤eo-
morphism for any p 2 P and hence (Tw�p)

�1 exists as a map. Now, we claim that if (pt; wt)
is a (P �W )-valued semimartingale solution of the stochastic system (P �W;SP�W ; X;N)
then �t := �pt(wt) is a solution of (M;S;X;N). Indeed, applying the Stratonovich rules for
di¤erential calculus,

��t = Twt�pt (�wt) + Tpt�wt (�pt)

= Twt�pt � (Twt�pt)�1 � bV[pt;wt] � S (Xt; [pt; wt]) �Xt + Tpt�wt � bApt � SQ (Xt; � (pt)) �Xt

= bV[pt;wt] � S (Xt; [pt; wt]) �Xt + bA[pt;wt] � SQ (Xt; � (pt)) �Xt

= bV[pt;wt] � S (Xt; [pt; wt]) �Xt + bA[pt;wt] � T[pt;wt]�� � S (Xt; [pt; wt]) �Xt

= bV[pt;wt] � S (Xt; [pt; wt]) �Xt + bH[pt;wt] � S (Xt; [pt; wt]) �Xt

= S (Xt; [pt; wt]) �Xt = S (Xt;�t) �Xt;

and hence �t is a solution of (M;S;X;N).
Conversely, let �t be a solution of (M;S;X;N) such that �t=0 = [p;m] a.s. and let pt be

the horizontal lift of �� (�t) with respect to the auxiliary connection A 2 
1 (P ; g) starting
at some p0 2 ��1 (�� ([p; w])). De�ne ewt := ��1pt (�t). Observe that ewt=0 = ew0 is such that
[p0; ew0] = [p;m]. Since �p : W !M�(p) is a di¤eomorphism, ewt is uniquely determined a.s. by
�t once pt is �xed. Indeed, ewt is the unique semimartingale such that �pt ( ewt) = �t. But we
have already seen that the solution of (P �W;SP�W ; X;N) starting at (p0; ew0) 2 P �W may
be expressed as (pt; wt), with pt the �xed horizontal lift of �� (�t) that we have been using all
along. Therefore wt = ewt a.s. necessarily and wt = ��1pt � �pt (wt) = ��1pt (�t). �

Corollary 3.24 Using the same notation as in the proof of Theorem 3.23, suppose that (Tw�p)
�1

� bV[p;w] � S (x; [p; w]) in (3.42) does not depend on p 2 P . In such case there exists a unique
G-invariant Stratonovich operator SW : TN � W ! TW from N to W determined by the
relation

Tw�p � SW (x;w) = bV[p;w] � S (x; [p; w]) (3.43)

for any x 2 N , w 2 W , and p 2 P . Moreover, SP�W in (3.42) admits the skew-product
decomposition

SP�W (x; (p; w)) = bAp � SQ (x; � (p))� SW (x;w) :
Proof. First of all notice that as (Tw�p)

�1 � bV[p;w] �S (x; [p; w]) does not depend on p 2 P , the
expression (3.43) is a good de�nition that uniquely determines SW . The only non-trivial point in
the statement that needs proof is the G-invariance of SW : let g 2 G and (p0; w0), (p; w) 2 P�W
such that p0 = p � g and w0 = g�1 � w. Since bV[p0;w0] � S (x; [p0; w0]) = bV[p;w] � S (x; [p; w]), we
necessarily have

Tw�p � SW (x;w) = Tw0�p0 � SW
�
x;w0

�
:
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As � (p � g; w) = � (p; g � w), we have that Tg�w�p � Twlg = Tw�p�g, where l : G�W !W is the
G-action on W . Thus,

Tw0�p0 � SW
�
x;w0

�
= Tw�p � Tg�1�wlg � SW

�
x; g�1 � w

�
:

Since Tw�p : TwW ! T[p;w] (P �GW ) is an isomorphism, we conclude comparing the two
previous relations that

SW (x;w) = Tg�1�wlg � SW
�
x; g�1 � w

�
;

necessarily, which amounts to SW being G-invariant. �

Remark 3.25 It is worth noticing that, under the hypotheses of Corollary 3.24 and unlike
Theorem 3.20, the skew-product decomposition of SP�W : TN � (P �W ) ! T (P �W ) is
now global.

Remark 3.26 If the hypotheses of Corollary 3.24 hold, we can solve a stochastic system
(M;S;X;N) on the associated bundle �� :M = P �GW ! Q with ��-projectable Stratonovich
operator S using the following reduction-reconstruction scheme. On one hand, we �nd the
solution starting at �� ([p; w]) on the base space system (Q;SQ; X;N), where SQ was given
in (3.41). We lift then this solution to the principal bundle P using an auxiliary connection
A 2 
1 (P ; g). We choose the lift pt starting at some p0 2 ��1 (�� ([p; w])). On the other hand, we
�nd the solution wt of the independent stochastic system (W;SW ; X;N) with initial condition
w0 such that � (p0; w0) = [p; w]. Then �pt (wt) is the solution of (M;S;X;N) starting at [p; w].

Example 3.27 Projectable SDEs and the horizontal-vertical factorization of di¤u-
sion operators. In this example we show how some of the results in [L89] on the factorization
of certain semielliptic di¤erential operators on associated bundles can be rethought in the light
of the results in Theorem 3.23 and Corollary 3.24. We recall that a second order di¤erential
operator LQ 2 X2 (Q) on a manifold Q is called semielliptic if any point q 2 Q has an open
neighborhood U where LQ can be locally written as

LQjU =
sX
i=1

LYiLYi + LY0 (3.44)

for some Y0, Yi 2 X (U), i = 1; :::; s. Such a semielliptic operator can be seen as the in�nitesi-
mal generator for the laws of the solution semimartingales of the following stochastic system
(Q;SQ; X;R� Rs) (see for instance [IW89, Theorem 1.2, page 238]): let X : R+�
! R�Rs
be the semimartingale

Xt (!) =
�
t; B1t (!) ; :::; B

s
t (!)

�
;

where
�
B1; :::; Bs

�
is a s-dimensional Brownian motion and consider the Stratonovich operator

SQ (x; q) : Tx (R� Rs) �! TqU � TqQ�
u; v1; :::; vs

�
7�! uY0 +

Ps
i=1 v

iYi:

Let now G be a Lie group, � : P ! Q a principal G-bundle, and consider a manifold W
acted upon by G via the map l : G�W !W . Let LW 2 X2 (W ) be the semielliptic di¤erential
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operator on W given by

LW =
nX
i=1

LZiLZi + LZ0

where Z0; Z1; :::; Zn 2 X (V ) on some V � W . As we just did, we will consider LW as the
generator for the laws of the solutions of the stochastic system

�
W;SW ; X

0;Rn+1
�
, where

X 0 : R+ � 
 ! Rn+1 is a noise semimartingale constructed using the time process t and
n independent Brownian motions, and SW is the Stratonovich operator given by

SW (x;w) : Tx (R� Rn) �! TwV � TwW�
u; v1; :::; vn

�
7�! uZ0 +

Pn
i=1 v

iZi:

In addition, we will assume that both LW and SW are G-invariant. Let bA be a connection on the
associated bundleM = P �GQ and de�ne the Stratonovich operator S : TRn+s+1�M ! TM
as

S (x; [p; w]) = Tw�p � SW (x;w) + bA[p;w] � SQ (x; � (p))
consistently with the notation introduced so far. Taking

�
B1t ; :::; B

n+s
t

�
a (n+ s)-dimensional

Brownian motion, the stochastic system (M;S; eX;Rn+s+1) with stochastic component eX : R+�

! Rn+s+1 given by eXt (!) =

�
t; B1t (!) ; :::; B

n+s
t (!)

�
satis�es by construction the hypotheses

of Theorem 3.23 and Corollary 3.24. The projected stochastic system of (M;S; eX;Rn+s+1) onto
Q is obviously

�
Q;SQ; X;Rs+1

�
and the one induced in the typical �berW is

�
W;SW ; X

0;Rn+1
�
.

It is straightforward to check that the probability laws of the solutions of (M;S; eX;Rn+s+1)
have as in�nitesimal generator

LM = eLQ + L�W ; (3.45)

where eLQ is what Liao [L89] calls the horizontal lift of LQ and L�W the vertical operator
induced by LW .
Many of the results presented in [L89] about the factorization (3.45) of semielliptic operators

on associated bundles and their related di¤usions can be understood from the perspective of
stochastic systems and stochastic di¤erential equations that we have adopted here using The-
orem 3.23 and Corollary 3.24. In order to illustrate this point consider the following result in
Liao�s article about Riemannian submersions (see also [EK85]): let (M;�) be a complete Rie-
mannian space with Riemann metric tensor � and let �� :M ! Q be a Riemannian submersion
with totally geodesic �bers. In this setup, �� :M ! Q is an associated bundle whose structure
group G is the group of isometries of the standard �ber W := ���1 (q0) for some q0 2 Q [H60].
Indeed, it can be checked that all the �bers of �� :M ! Q are isometric, so we can take any of
them as a standard �ber, and that G has �nite dimension [BB82, Remark 1.10, page 185]. Let
� : P ! Q be the corresponding principal bundle. Additionally, since �p : W ! ���1 (q) is an
isometry for any p 2 P , the restriction ����1(q) of the metric � to ���1(q) may be considered as
induced from the metric ����1(q0) of W by �p which, in addition, is invariant by G. Then,

�M = e�Q +�
�
W (3.46)

where �Q is the Laplacian on Q and �W the Laplacian on W ([L89, Proposition 3]). As a
consequence of (3.46), if �t is a M -valued Brownian motion associated to the Laplacian �M
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on M then �� (�t) is a Brownian motion on Q with generator �Q (see also [E82, Theorem
10E]). Let now A 2 
1 (P; g) be the principal connection on P whose associated connection A
on �� : M ! Q is such that Hor?m = Verm for any m 2 M , that is, the horizontal subspace
Horm � TmM of A is the orthogonal complement of Verm, m 2 M . Then, if pt denotes the
horizontal lift of �� (�t) to P with respect to A then ��1pt (�t) is a Brownian motion on W with
generator ��W [L89, Propositions 6].

3.5 The Hamiltonian case

Hamiltonian dynamical systems are a class of di¤erential equations in the non-stochastic de-
terministic context in which reduction techniques have been much developed. This is mainly
due to their central role in mechanics and applications to physics and also to the added value
that symmetries usually have in this category. As we saw in Proposition 3.7 the symmetries
of a stochastic di¤erential equation bring in their wake certain invariance properties of its �ow
that have to do with the preservation of the isotropy type submanifolds. Symmetric Hamil-
tonian deterministic systems also preserve isotropy type submanifolds but they usually exhibit
additional invariance features caused by the presence of symmetry induced �rst integrals or
constants of motion, usually encoded as components of a momentum map.
The goal in this section is to show that the reduction and reconstruction techniques that

have been developed for deterministic Hamiltonian dynamical systems can be extended to the
stochastic Hamiltonian systems that have been introduced in Chapter 2 as a generalization
of those in [B81] and that we now brie�y review. In the following paragraphs we will assume
certain familiarity with standard deterministic Hamiltonian systems and reduction theory (see
for instance [AM78, OR04] and references therein).
Let (M; f�; �g) be a �nite dimensional Poisson manifold, X : R+ � 
 ! V a continuous

semimartingale that takes values on the vector space V with X0 = 0, and let h : M ! V �

be a smooth function with values in V �, the dual of V . Let f�1; : : : ; �rg be a basis of V �
and let h1; : : : ; hr 2 C1(M) be such that h =

Pr
i=1 hi�

i. According to De�nition 2.2, the
stochastic Hamiltonian system associated to h with stochastic component X is the
stochastic di¤erential equation

��h = H(X;�)�X (2.5)

de�ned by the Stratonovich operator H(v; z) : TvV ! TzM de�ned by

H(v; z) (u) :=
rX
i=1



�i; u

�
Xhi (z) ; (2.6)

where Xhi is the Hamiltonian vector �eld associated to hi 2 C1 (M). In this case, the dual
Stratonovich operator H�(v; z) : T �zM ! T �v V of H(v; z) is given by H�(v; z)(�z) = �dh(z) �
B](z)(�z), where B] : T �M ! TM is the vector bundle map naturally associated to the
Poisson tensor B 2 �2(M) of f�; �g and dh =

Pr
i=1 dhi 
 �i. We will usually summarize this

construction by saying that (M; f�; �g; h;X) is a stochastic Hamiltonian system. We will
dedicate particular attention to the symplectic case (M;!) in which the bracket f�; �g is obtained
from the symplectic form ! via the expression ff; hg = !(Xf ; Xh), f; h 2 C1(M).
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3.5.1 Invariant manifolds and conserved quantities of a stochastic Hamiltonian system

As we already said, the presence of symmetries in a Hamiltonian system forces the appearance
of invariance properties that did not use to occur for arbitrary symmetric dynamical systems.
Before we proceed with the study of those conservation laws in the stochastic Hamiltonian case,
we extract some conclusions on invariant manifolds that can be obtained from Proposition 3.6
in that situation, some of them already stated in Chapter 2.

Proposition 3.28 Let (M; f�; �g; h :M ! V �; X) be a stochastic Hamiltonian system. Let f�1;
: : : ; �rg be a basis of V � and write h =

Pr
i=1 hi�

i. Consider the following situations:

(i) Suppose thatM is symplectic (respectively, Poisson) and let z 2M be such that dh(z) = 0
(respectively, Xhi(z) = 0, for all i 2 f1; : : : ; rg). Then, the Hamiltonian semimartingale
�h with constant initial condition �0(!) = z, for all ! 2 
, is an equilibrium, that is
�h = �0.

(ii) Let S1; : : : ; Sr be submanifolds of M with transverse intersection S := S1 \ : : :\ Sr, such
that Xhi(zi) 2 TziSi, for all zi 2 Si and i 2 f1; : : : ; rg. Then S is a local invariant
submanifold of the stochastic Hamiltonian system (M; f�; �g; h :M ! V �; X).

(iii) The symplectic leaves of (M; f�; �g) are local invariant submanifolds of the stochastic
Hamiltonian system (M; f�; �g; h :M ! V �; X).

Proof. It is a direct consequence of Proposition 3.6 and of the fact that the Stratonovich
operator is given by H(v; z)(u) :=

Pr
i=1h�j ; uiXhj (z). In (i) the hypothesis dh(z) = 0 implies

in the symplectic case that Xhi(z) = 0, for all i 2 f1; : : : ; rg. Hence, both in the symplectic
and in the Poisson cases H(v; z) = 0 and hence by Proposition 3.6, the point z is an invariant
submanifold and consequently an equilibrium. For (ii) it su¢ ces to recall that the transversality
hypothesis implies that TzS = TzS1 \ : : : \ TzSr, for any z 2 S. (iii) is a restatement of
Proposition 2.9. �
In the Hamiltonian case, most of the invariant manifolds of a system come as the level sets

of a conserved quantity (also called �rst integral) of the motion. Recall that, according to
De�nition 2.12, a function f 2 C1(M) is said to be a (strongly) conserved quantity of the
stochastic di¤erential equation associated to X and S when for any solution semimartingale
� we have that f(�) = f(�0). We now concentrate on the conserved quantities that one can
associate to the invariance of a Hamiltonian system with respect to a group action. We recall
that given a Lie group G acting on the Poisson manifold (M; f�; �g) (respectively, symplectic
(M;!)) via the map � : G�M ! M , we will say that the action is canonical when for any
g 2 G and f; h 2 C1(M), ff; hg��g = f��gf;��ghg (respectively, ��g! = !). In this context, we
will say that the Hamiltonian system (M; f�; �g; h :M ! V �; X) is G-invariant whenever the
G-action on M is canonical and the Hamiltonian function h : M ! V � is G-invariant. Notice
that the invariance of h and the canonical character of the action imply that the associated
Stratonovich operator H is also G-invariant. Indeed, Let f�1; : : : ; �rg be a basis of V � and
write h =

Pr
i=1 hi�

i; if h is G-invariant, then so are the components hi, i 2 f1; : : : ; rg, that is
hi 2 C1(M)G, and hence, for any g 2 G we have that T�g � Xhi = Xhi � �g, which implies
that H(v; z) (u) :=

Pr
i=1



�i; u

�
Xhi (z)is G-invariant.
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Now suppose that M is a Poisson manifold (M; f�; �g) acted properly and canonically upon
by a Lie group G. We also recall that the optimal momentum map [OR02] J :M !M=DG

of the G-action on (M; f�; �g) is the projection onto the leaf space of the integrable distribution
DG � TM (in the generalized sense of Stefan-Sussmann) given by DG := fXf j f 2 C1(M)Gg.

Proposition 3.29 Let (M;h;X; V ) be a standard Hamiltonian system acted properly and
canonically upon by a Lie group G via the map � : G�M !M . Suppose that h :M ! V � is
a G-invariant function.

(i) Law of conservation of the isotropy: The isotropy type submanifolds MI are invari-
ant submanifolds of the stochastic Hamiltonian system associated to h and X, for any
isotropy subgroup I � G.

(ii) Noether�s Theorem: If the G-action on (M; f�; �g) has a momentum map associated
J : M ! g� then its level sets are left invariant by the stochastic Hamiltonian system
associated to h and X. Moreover, its components are conserved quantities.

(iii) Optimal Noether�s Theorem: The level sets of the optimal momentum map J :M !
M=DG are local invariant subsets of the stochastic Hamiltonian system associated to h
and X.

Proof. (i) As we already saw, the G-invariance of h implies that

H(v; z)(u) :=
rX
i=1

h�j ; uiXhj (z)

is G-invariant. The statement follows from Proposition 3.7. (ii) Let � 2 g be arbitrary and let
J� := hJ; �i 2 C1(M) be the corresponding component. The G-invariance of the components hi
of the Hamiltonian implies that fJ�; hig = �dhi ��M = 0, where �M 2 X(M) is the in�nitesimal
generator associated to the element �. By formula (2.8) we have that

J�(�h)� J�(�0) =
rX
j=1

Z
fJ�; hjg �Xj = 0;

where Xj , j 2 f1; : : : ; rg, are the components of X in the basis fe1; : : : ; erg of V dual to the
basis f�1; : : : ; �rg of V �. Since this equality holds for any � 2 g, we have that J(�h) = J(�0) and
the result follows. (iii) It is a straightforward consequence of the construction of the optimal
momentum map and Proposition 3.6. �

Remark 3.30 When the manifold M is symplectic and the group action has a standard mo-
mentum map J : M ! g� associated, part (iii) in the previous proposition implies the �rst
two since it can be shown that in that situation (see [OR02]) the level sets of the optimal
momentum map coincide with the connected components of the intersections J�1(�) \MI ,
with � 2 g� and I an isotropy subgroup of the G-action on M .
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Remark 3.31 The level sets of the momentum map J may not be submanifolds of M unless
the G-action is, in addition to proper and canonical, also free ([OR04, Corollary 4.6.2]). If this is
the case, the relation fJ�; hig = �dhi ��M = 0, which stems from the G-invariance of h, implies
then that Im (H(v; z)) � TzJ

�1(�), for any z 2 J�1(�) and any v 2 V . Then Proposition 3.6
may be invoked to prove the invariance of the �bers J�1(�) under the stochastic Hamiltonian
system associated to H.

3.5.2 Stochastic Hamiltonian reduction and reconstruction

The goal of this section is showing that stochastic Hamiltonian systems share with their de-
terministic counterpart a good behavior with respect to symmetry reduction. The main idea
that our following theorem tries to convey to the reader is that the symmetry reduction of a
stochastic Hamiltonian system yields a stochastic Hamiltonian system, that is, the stochastic
Hamiltonian category is stable under reduction.
The following theorem spells out, in the simplest possible case, how to reduce symmetric

Hamiltonian stochastic systems. In a remark below we give the necessary prescriptions to
carry this procedure out in more general situations. The main simplifying hypothesis is the
freeness of the action. We recall that in this situation, the orbit space M=G inherits from M a
Poisson structure f�; �gM=G naturally obtained by projection of that in M , that is, ff; ggM=G �
� := ff � �; g � �g, for any f; g 2 C1(M=G), with � : M ! M=G the orbit projection.
Moreover, if M is actually symplectic with symplectic form !, and the action has a coadjoint
equivariant momentum map J : M ! g�, then the symplectic leaves of this Poisson structure
are naturally symplectomorphic to the (connected components) of the Marsden-Weinstein
[MW74] symplectic quotients (M� := J�1(�)=G�; !�), with � 2 g� and G� the coadjoint
isotropy of �. The symplectic structure !� on M� is uniquely determined by the expression
���!� = i��!, with i� : J

�1(�) ,!M the injection and �� : J�1(�)! J�1(�)=G� the projection.
See [AM78, OR04] and references therein for a general presentation of reduction theory.

Theorem 3.32 Let (M; f�; �g; h :M ! V �; X) be a stochastic Hamiltonian system that is in-
variant with respect to the canonical, free , and proper action � : G�M !M of the Lie group
G on M .

(i) Poisson reduction: The projection hM=G of the Hamiltonian function h onto M=G,
uniquely determined by hM=G �� = h, with � :M !M=G the orbit projection, induces a
stochastic Hamiltonian system on the Poisson manifold (M=G; f�; �gM=G) with stochastic
component X and whose Stratonovich operator HM=G : TV �M=G! T (M=G) is given
by

HM=G(v; �(z))(u) = Tz� (H(v; z)(u)) =

rX
i=1

h�i; uiX
h
M=G
i

(�(z)); u; v 2 V and z 2M .

(3.47)
In the previous expression f�1; : : : ; �rg is a basis of V �, hM=G =

Pr
i=1 h

M=G
i �i, and

h =
Pr

i=1 hi�
i; notice that the functions hM=G

i 2 C1(M=G) are the projections of the
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components hi 2 C1(M)G, that is hM=G
i � � = hi. Moreover, if � is a solution semi-

martingale of the Hamiltonian system associated to H with initial condition �0, then so
is �M=G := � (�) with respect to HM=G, with initial condition �(�0).

(ii) Symplectic reduction: Suppose that M is now symplectic and that the group action has
a coadjoint equivariant momentum map J : M ! g� associated. Then for any � 2 g�,
the function h� : M� := J�1(�)=G� ! V � uniquely determined by the equality h� �
�� = h � i� , induces a stochastic Hamiltonian system on the symplectic reduced space
(M� := J�1(�)=G�; !�) with stochastic component X and whose Stratonovich operator
H� : TV �M� ! TM� is given by

H�(v; ��(z))(u) = Tz�� (H(v; i�(z))(u)) =
rX
i=1

h�i; uiXh�i
(��(z)); (3.48)

u; v 2 V and z 2 J�1(�), where Remark 3.31 has been implicitly used. In the previous
expression, the functions h�i 2 C1(J�1(�)=G�) are the coe¢ cient functions in the linear
combination h� =

Pr
i=1 h

�
i �
i and are related to the components hi 2 C1(M)G of h via the

relation h�i ��� = hi � i�. Moreover, if � is a solution semimartingale of the Hamiltonian
system associated to H with initial condition �0 � J�1(�), then so is �� := �� (�) with
respect to H�, with initial condition ��(�0).

Remark 3.33 In the absence of freeness of the action the orbit spaces M=G and J�1(�)=G�
cease to be regular quotient manifolds. Moreover, it could be that (even for free actions) there
is no standard momentum map available (this is generically the case for Poisson manifolds).
This situation can be handled by using the so called optimal momentum map [OR02] and its
associated reduction procedure [O02]. Given that by part (iii) of Proposition 3.29 the �bers of
the optimal momentum map are preserved by the Hamiltonian semimartingales associated to
invariant Hamiltonians one can formulate, for any proper group action on a Poisson manifold,
a theorem identical to part (ii) of Theorem 3.32 with the standard momentum map replaced
by the optimal momentum map. In the particular case of a (non-necessarily free) symplectic
proper action that has a standard momentum map associated, such result guarantees the good
behavior of the symmetric stochastic Hamiltonian systems with respect to the singular reduced
spaces in [SL91]; see also [OR06, OR06a] for the symplectic case without a standard momentum
map.

Proof of Theorem 3.32. (i) can be proved by mimicking the proof of Theorem 3.9 by
simply taking into account the fact that the G-invariance of h implies that of H and that for
any i 2 f1; : : : ; rg, one has that T� �Xhi = X

h
M=G
i

� �.
(ii) Expression (3.48) is guaranteed by the fact that Xh�i

� �� = T�� � Xhi � i�, for any
i 2 f1; : : : ; rg (see for instance [OR04, Theorem 6.1.1]). Let now � be a solution semimartingale
of the Hamiltonian system associated to H with initial condition �0 � J�1(�). Notice �rst that
by part (ii) in Proposition 3.29, � � J�1(�) and hence the expression �� := �� (�) is well
de�ned. In order to prove the statement, we have to check that for any one-form �� 2 
(M�)Z

h��; ���i =
Z
hH�

�(X;��)��; �Xi:



3.6 Examples 139

This equality follows in a straightforward manner from (3.48). Indeed,Z
h��; ���i =

Z
h��; � (�� � �)i =

Z
h�����; ��i

=

Z
hH�(X;�)

�
�����

�
; �Xi =

Z
hH�

�(X;��)��; �Xi;

as required. �
As to the reconstruction problem of solutions of a symmetric stochastic di¤erential equation

starting from a solution of the Poisson or symplectic reduced stochastic di¤erential equation,
Theorem 3.10 can be trivially modi�ed to handle this situation. In the Poisson reduction case
the theorem works without modi�cation and when working with a solution of the symplectic
reduced space it su¢ ces to change the principal �ber bundle � :M !M=G by �� : J�1(�)!
J�1(�)=G� all over.

3.6 Examples

3.6.1 Stochastic collective Hamiltonian motion

Our �rst example shows a situation in which the symplectic reduction of a symmetric stochastic
Hamiltonian system o¤ers, not only the advantage of cutting its dimension, but also of making
it into a deterministic system. From the point of view of obtaining the solutions of the system,
the procedures introduced in the previous section allow in this case the splitting of the problem
into two parts: �rst, the solution of a standard ordinary di¤erential equation for the reduced
system and second, the solution of a stochastic di¤erential equation in the group at the time
of the reconstruction.
Let (M;!) be a symplectic manifold, G a Lie group and � : G�M !M a free, proper, and

canonical action. Additionally, suppose that this action has a coadjoint equivariant momentum
map J : M ! g� associated. Let h0 2 C1(M)G be a G-invariant function and consider the
deterministic Hamiltonian system with Hamiltonian function h0.
A function of the form f �J 2 C1(M), for some f 2 C1(g�), is called collective. We recall

that by the Collective Hamiltonian Theorem (see for instance [MR99])

Xf�J(z) =

�
�f

��

�
M

(z); z 2M; � = J(z); (3.49)

where the functional derivative �f�� 2 g is the unique element such that for any � 2 g
�,Df(�)�� =

h�; �f��i. A straightforward consequence of (3.49) is that the G-invariant functions, in particular
h0, commute with the collective functions. Indeed, if h 2 C1(M)G, then for any z 2M ,

fh; f � Jg(z) = dh(z) �Xf�J(z) = dh(z) �
�
�f

��

�
M

(z) = 0:

Collective functions play an important role to prove the complete integrability of certain dy-
namical systems (see [GS83]). Moreover, some relevant physical systems may be described
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using collective Hamiltonian functions. In that case, the (deterministic) equations of motion
exhibit special features and, in some favorable cases, may be partially integrated using geomet-
rical arguments (see [GS80]). The aim of this example is to study stochastic perturbations of
deterministic symmetric mechanical systems introduced by means of collective Hamiltonians.
Let Y : R+ � 
! Rr be a Rr-valued continuous semimartingale and ff1; :::; frg � C1 (g�)

a �nite family of Ad�G-invariant functions on g
�. The coadjoint equivariance of the momentum

map and the Ad�G-invariance of the functions allows us to construct the following G-invariant
Hamiltonian function

h :M �! R� Rr
m 7�! (h0 (m) ; (f1 (J (m)) ; :::; fr (J (m)))) :

Let X be the continuous semimartingale

X : R+ � 
 �! R+ � Rr
(t; !) 7�! (t; Yt (!)) :

Consider the stochastic Hamiltonian system (M;!; h;X) which is, by construction, G-invariant.
Noether�s theorem (Proposition 3.29 (ii)) guarantees that the level sets of J are left invariant
by the solution semimartingales of (M;!; h;X). As to the reduction of this system, its main
feature is that if we apply to it the reduction scheme introduced in Theorem 3.32 (ii), for any
� 2 g�, the reduced stochastic Hamiltonian system (M�; !�; h�; X) is such that

h� � �� = h0 � i�;

since J, and hence the functions fi�J, are constant on the level sets J�1 (�), for any i = 1; :::; r.
Consequently, the reduced system (M�; !�; h�; X) is equivalent to the deterministic Hamil-
tonian system (M�; !�; h�). In other words, the reduced system obtained from (M;!; h;X) co-
incides with the one obtained in deterministic mechanics by symplectic reduction of (M;h0; t;R+).
Thus, we have perturbed stochastically a symmetric mechanical system preserving its symme-
tries and without changing the deterministic behavior of its corresponding reduced system.

Remark 3.34 If we want to perturb the deterministic Hamiltonian system associated to h0
with the only prescription that the level set J�1 (�) is left invariant, for a given value � 2 g�, we
can weaken the requirement on the Ad�G-invariance of the functions fi 2 C1 (g�), i = 1; :::; r.
Indeed, if we just ask that �fi=�� 2 g�, we then have that Xh0(z); Xf1�J(z); : : : ; Xfr�J(z) 2
TzJ

�1(�), for any z 2 J�1(�). The required invariance property follows then from (3.49) and
Proposition 3.6.

Remark 3.35 In this example, the reduction-reconstruction scheme provides a global decom-
position of the system (M;!; h;X) into its deterministic and stochastic parts. If one is willing
to work only locally, this splitting could be carried out without reduction in the neighbor-
hood of any point in phase space, given that as fh0; fi � Jg = 0, for any i 2 f1; : : : ; rg, then
[Xh0 ; Xfi�J] = 0.
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3.6.2 Stochastic mechanics on Lie groups

The presence of mechanical systems whose phase space is the cotangent bundle of a Lie group is
widespread. Besides the importance that this general case has in speci�c applications it is also
very useful at the time of illustrating some of the theoretical developments in this chapter since
most of the constructions that we presented admit very explicit characterizations. We start by
recalling the main features of (deterministic) Hamiltonian systems over Lie groups. The reader
interested in further details is encouraged to check with [AM78, MR99] and references therein.
Let G be a Lie group. The tangent bundle TG of G is trivial since it is isomorphic to the

product G � g, where g =TeG is the Lie algebra of G and e 2 G is the identity element.
The identi�cation TG = G � g is usually carried out by means of two isomorphisms, denoted
by � and � and induced by left and right translations on G, respectively. More speci�cally,
let � : TG ! G � g be the map given by � (v) =

�
g; TgLg�1 (v)

�
, where g = �G (v) with

�G : TG ! G the natural projection. On the other hand, � : TG ! G � g is de�ned by
� (v) =

�
g; TgRg�1 (v)

�
. We refer to the image of � as body coordinates and to the image of � as

space coordinates. The cotangent bundle T �G is also trivial and isomorphic to G�g�. We can
introduce body coordinates and space coordinates on T �G by �� (�) = (g; T �e Lg (�)) 2 G�g�
and �� (�) = (g; T �eRg (�)) respectively, where g = �G (�) and �G : T �G ! G is the canonical
projection. The transition from body to space coordinates is as follows:�

� � ��1
�
(g; �) = � (g; TeLg (�)) =

�
g; TgRg�1 � TeLg (�)

�
= (g;Adg (�))�

�� � ���1
�
(g; �) = �

�
g; T �gLg�1 (�)

�
=
�
g; T �eRg � T �gLg�1 (�)

�
=
�
g;Ad�g�1 (�)

�
;

for any (g; �) 2 G � g and any (g; �) 2 G � g�. The group action of G by left or right
translations can be lifted to both TG and T �G. We will denote by �L : G � TG ! TG and
��L : G�T �G! T �G the lifted action of left translations on the tangent and cotangent bundle
respectively, and by �R : G� TG! TG and ��R : G� T �G! T �G the lifted actions of right
translations. The lifted actions have particularly simple expressions in suitable body or space
coordinates. Indeed, it is more convenient to express �L and ��L in body coordinates, where
for any g; h 2 G, � 2 g, and � 2 g�,

(�L)g (h; �) =
�
� � TLg � ��1

�
(h; �) = (gh; �) ;�

��L
�
g
(h; �) =

�
�� � T �Lg�1 � ��

�1
�
(h; �) =

�
g�1h; �

�
:

As to �R and ��R, space coordinates are particularly convenient; for any g; h 2 G, � 2 g, and
� 2 g�,

(�R)g (h; �) =
�
� � TRg � ��1

�
(h; �) = (hg; �)�

��R
�
g
(h; �) =

�
�� � T �Rg�1 � ���1

�
(h; �) =

�
hg�1; �

�
:

The actions ��L and ��R, being the cotangent lifted actions to T �G of an action on G, have
canonical momentum maps JL : T �G ! g� and JR : T �G ! g�, respectively, when we endow
T �G with its canonical symplectic form. Let � 2 
1 (T �G) be the Liouville canonical one-form
on T �G. Then, JL and JR are given by

hJL (zg) ; �i = hzg; (�)LG (g)i; hJR (zg) ; �i = hzg; (�)RG (g)i;
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for any zg 2 T �gG and any � 2 g. Here (�)LG 2 X (G) (respectively (�)
R
G 2 X (G)) denotes the

in�nitesimal generator associated to � 2 g by the left (respectively right)action of G on itself.
This expression clearly shows that JL is right-invariant and JR left-invariant. Observe that
JL = Ad

�
g�1 �JR. For example, in body coordinates, these momentum maps have the following

expressions ([AM78, Theorem 4.4.3])

(JL)B ((g; �)) = Ad
�
g�1 (�) and (JR)B ((g; �)) = �: (3.50)

In this context, the classical results on symplectic and Poisson reduction that we have de-
scribed in the previous section admit a particularly explicit formulation. In all that follows we
will suppose that the action with respect to which we are reducing is lifted left translations.
Using body coordinates, it is easy to see that in this case the Poisson reduced space T �G=G
coincides with the dual of the Lie algebra g� endowed with the Lie-Poisson structure given
by

ff1; f2gg�
� (�) = �

�
�;

�
�f1
��

;
�f2
��

��
;

for any � 2 g� and f1; f2 2 C1(g�). The symplectic reduced spaces J�1L (�)=G� are naturally
symplectomorphic to the symplectic leaves of the Lie-Poisson structure on g�, that is, the
coadjoint orbits endowed with the so-called Kostant-Kirillov-Souriau symplectic form !�� :

!�� (�)(�g�(�); �g�(�)) = !�� (�)(�ad���;�ad���) = �h�; [�; �]i:

Let now V be a vector space,X : R+�
! V a continuous semimartingale, and h : T �G! V � a
smooth map invariant under the lifted left translations of G on T �G. If we use body coordinates
and we visualize T �G as the product G�g�, the invariance of h : G�g� ! V � allows us to write
it as h =

Pr
i=1 hi�

i, where f�1; : : : ; �rg is a basis of V � and h1; : : : ; hr 2 C1(g�). Let fe1; : : : ; erg
be the dual basis of V and write X =

Pr
i=1X

iei. Using the left trivialized expression of the
Hamiltonian vector �elds in the deterministic case (see [OR04, Theorem 6.2.5]) it is easy to see
that the stochastic Hamiltonian equations in this setup are

��h =

rX
i=1

�
TeL�G

�
�hi
��g�

�
; ad��hi

��g�
�g�
�
�Xi (3.51)

where �G and �g� are the G and g� components of �h, respectively, that is, �h :=
�
�G;�g�

�
. In

the left trivialized representation, the reduced Poisson and symplectic Hamiltonians are simply
the restrictions hg� and hO� of h to g� and to the coadjoint orbits O� � g�, respectively.
Additionally, the reduced stochastic Hamilton equations on g� and O� are given by

��g� =

rX
i=1

ad�
�h

g�
i

��g�

�g��Xi and ��O� =
rX
i=1

ad�
�h
O�
i

��O�

�O��Xi (3.52)

where hg� =
Pr

i=1 h
g�
i �

i and hO� =
Pr

i=1 h
O�
i �i.

The combination of expressions (3.51) and (3.52) shows that in this setup, the dynamical
reconstruction of reduced solutions is particularly simple to write down. Indeed, suppose that
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we are given a solution �g� of, say, the Poisson reduced system. In order to obtain the solution
�h of the original system such that �h0 = (�

G
0 ;�

g�
0 ) and �(�

h) = �g� , with � : T �G ' G� g� !
T �G=G ' g� the Poisson reduction projection, it su¢ ces to solve the stochastic di¤erential
equation in G

��G =
rX
i=1

TeL�G

�
�hi
��g�

�
�Xi; (3.53)

with the initial condition �G0 . The reconstructed solution that we are looking for is then �
h =�

�G;�g�
�
:

3.6.3 Stochastic perturbations of the free rigid body

The free rigid body, also referred to as Euler top, is a particular case of systems introduced in
the previous section where the group G is SO(3;R). We recall that in the context of mechanical
systems on groups, a Hamiltonian system is called free when the energy of the system is purely
kinetic and there is no potential term. Let (�; �) be a left invariant Riemannian metric on G; the
kinetic energy E associated to (�; �) is E (v) = 1

2 (v; v), v 2 TG. Then, using the left invariance
of the metric, we can write in body coordinates

E (g; �) =
1

2
(�; �)e =

1

2
hI (�) ; �i ;

for any (g; �) 2 G � g, where h�; �i is the natural pairing between elements of g� and g, and
I : g! g� is the map given by � 7�! (�; �)e and usually known as the inertia tensor associated
to the metric (�; �). The Legendre transformation associated to E can be used to de�ne a
Hamiltonian function h : T �G! R that, in body coordinates, can be written as

h (g; �) =
1

2
h�;� (�)i ; (3.54)

where � = I�1. Notice that as the kinetic energy is left invariant (invariant with respect to the
lifted G-action to T �G of the action of G on itself by left translations), then the components of
JL are conserved quantities of the corresponding Hamiltonian system. In order to connect with
example in Section 3.6.1, let f 2 C1 (g�) be the function f : g� ! R given by � 7! 1

2 h�;� (�)i.
By (3.50), the Hamiltonian function h may be expressed as h = f �JR. Therefore h is collective
with respect to JR.
We now go back to the free rigid body case, that is, G = SO (3;R). We recall that the

Lie algebra so (3;R) is the vector space of three dimensional skew-symmetric real matrices
whose bracket is just the commutator of two matrices. As a Lie algebra, (so (3) ; [�; �]) is nat-
urally isomorphic to

�
R3;�

�
, where � denotes the cross product of vectors in R3. Under

this isomorphism, the adjoint representation of SO (3;R) on its Lie algebra is simply the ac-
tion of matrices on vectors of R3 and the Lie-Poisson structure on so(3)� ' R3 is given by
ff; gg(v) = �v � (rf �rg), for any f; g 2 C1(R3), where r is the usual Euclidean gradient
and � denotes the Euclidean inner product.
Given a free rigid body with inertia tensor I : R3 ! R3, since �hB=�� = �(�), for any

� 2 R3, the left-trivialized equations of motion of the system are

( _A; _�) =
�
A �[�(�); �� �(�)

�
; (3.55)
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where the dot in the right hand side of (3.55) stands for matrix multiplication and [�(�) is
the skew-symmetric matrix associated to �(�) 2 R3 via the mapping that implements the Lie
algebra isomorphism between (so (3) ; [�; �]) and

�
R3;�

�
. In the context of the free rigid body

motion the momentum map JL (respectively, JR) is called spatial angular momentum
(respectively, body angular momentum). The second component of (3.55), that is,

_� = �� �(�) (3.56)

are the well-known Euler equations for the free rigid body.

Random perturbations of the body angular momentum. We now introduce stochastic
perturbations of the free rigid body by using some of the geometrical tools that we have
introduced above. Later on we will compare this example with the model of the randomly
perturbed rigid body studied in [L97] and [LW05], whose physical justi�cation, as we will
brie�y discuss, involves the same ideas as ours.
Let V = R � so(3) ' R+ � R3 and let h be the Hamiltonian function h : T �SO(3) !

V � = R � so(3)� de�ned as h = (h0;JR), where h0 is the Hamiltonian function of the free
(deterministic) rigid body. Observe that h is a left-invariant function because so is JR. Let
Y : R+ � 
 ! g be a continuous semimartingale which we may suppose, for the sake of
simplicity, is a g-valued Brownian motion and let X : R+�
! R�� g be the semimartingale
de�ned asXt (!) = (t; Yt (!)) for any (t; !) 2 R�
. Consider the stochastic Hamiltonian system
on T �G associated to h and X. Since h is left invariant, the momentum map JL is preserved
by the solution semimartingales of this system and moreover, we can apply the reduction
scheme introduced in the previous sections. For example, if we carry out Poisson reduction we
have a reduced Hamiltonian function hg� : g� ! V � given by hg�(�) =

�
1
2 h�;� (�)i ; �

�
. Let

f�1; �2; �3g a basis of the Lie algebra g and
�
�1; �2; �3

	
� g� its dual basis. Observe that if

we write JR (�) =
P3

i=1 h�; �ii �i and Y =
P3

i=1 Y
i�i, then the reduced stochastic Lie-Poisson

equations can be expressed as

��t = �t � � (�t) �t+
3X
i=1

(�t � �i) �Y i
t : (3.57)

Regarding the reconstruction of the reduced dynamics, one has to solve the stochastic di¤er-
ential equation on the rotations group SO(3) given by (3.53) that, in this particular case, is
given by

�At = At �\� (�t)�t+
3X
i=1

At � b�i�Y i
t : (3.58)

A physical model whose description �ts well in a stochastic Hamiltonian di¤erential equation
like the one associated to h andX is that of a free rigid body subjected to small random impacts.
Each impact causes a small and instantaneous change in the body angular momenta �t at time
t that justi�es the extra term in (3.57), when compared to the Euler equations (3.56).
Our model is very similar to the one proposed in [L97] where, instead of introducing the

random perturbation by means of a Hamiltonian function, a stochastic di¤erential equation on
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the group G is introduced. This equation, also studied in detail in [LW05], is

�At = At � � �Ad�At (�) �t+
3X
i=1

�
At � � �Ad�At

�
�i
��
�Y i; (3.59)

where � 2 g� is a constant vector. It important to note that the drift terms of equations (3.58)
and (3.59) coincide. Indeed, for any (g; �) 2 G� g� we can write

� = Ad�g �Ad�g�1 (�) = Ad
�
g (JL (g; �)) :

Since in our model the spatial angular momentum is conserved, � (�t) = �
�
Ad�At

�
Ad�

A�1t
�t

��
=

�
�
Ad�At (JL(At; �t))

�
= �

�
Ad�At (�)

�
, where � = JL(At; �t) is the preserved value of the spa-

tial angular momentum of a solution (At; �t) of (3.57) and (3.58). The di¤erence between (3.58)
and (3.59) lies in the stochastic terms. The justi�cation given by the author in [L97] for the
equation (3.59) is the following: since in the (deterministic) rigid body the spatial angular mo-
mentum JL is conserved, once we have �xed the value of this conserved quantity, we can simply
study the dynamics of the free rigid body by looking at the �rst component of the ordinary
di¤erential equation (3.55), now rewritten as

_A = A (� (Ad�A (�))) (3.60)

where � 2 g� is the JL-value of the solution. Under random impacts, the spatial angular
momentum �, which was preserved in the deterministic case, is now randomly modi�ed. The
idea is then to replace �dt in (3.60) by ��t+

P3
i=1 �

i�Y i. Unlike our model, where the random
perturbation is introduced in the cotangent bundle respecting the underlying symmetries of
the deterministic system, there is no preservation of JL in the stochastic model of [L97].
One advantage of working on T �G is that, even in the stochastic context, classical quantities

such as the angular momentum, are still well de�ned. These objects do not have a clear coun-
terpart if one follows the con�guration space based approach in [L97] (see for instance [LW05]
for a non-trivial de�nition of angular velocity in the stochastic context).

Not so rigid rigid bodies. Random perturbation of the inertia tensor. In this example
we want to write the equations that describe a rigid body some of whose parts are slightly loose,
that is, the body is not a true rigid body and hence its mass distribution is constantly changing
in a random way. This will be modelled by stochastically perturbing the tensor of inertia.
For the sake of simplicity, we will write G = SO (3;R) and g = so(3). Let L (g�; g) be the

vector space of linear maps from g� to g. As we know (so (3) ; [�; �]) '
�
R3;�

�
. Furthermore, we

can establish an isomorphism R3 '
�
R3
�� using the Euclidean inner product and hence we can

write g ' g�. Let V = LS (g�; g) = fA 2 L (g�; g) j A� = Ag be the vector space of self-adjoint
linear maps from g� to g. De�ne the Hamiltonian h : T �G! V � in body coordinates as

h : T �G ' G� g� �! V �

(g; �) 7�! ��;
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where �� is such that
�� : LS (g�; g) �! R

A 7�! 1
2 h�;A (�)i :

Observe that in body coordinates the Hamiltonian h does not depend on G, so the Hamiltonian
is G-invariant by the action ��L on T �G. On the other hand, consider some �ltered probability
space

�

;F ; fFtgt2R ; P

�
and introduce a stochastic component X : R+ � 
 ! V in the

following way:
X : R+ � 
 �! LS (g�; g)

(t; !) 7�! �t+ "At (!) ;

where � 2 LS (g�; g) plays the role of the inverse of the tensor of inertia given by the determinis-
tic (rigid) description of the body, " is a small parameter, and A is an arbitrary LS (g�; g)-valued
semimartingale. In order to show how the stochastic Hamiltonian system on T �G associated
to h and X models a free rigid body whose inertia tensor undergoes random perturbations, we
write down the associated stochastic reduced Lie-Poisson equations in Stratonovich form

��t = �t � � (�t) �t+ "�t � �At (�t) :

Thus we see that these Lie-Poisson equations consist in changing � (�t) dt in the Euler equa-
tions (3.56) by � (�t) �t+"�At (�t), which accounts for the stochastic perturbation of the inertia
tensor.



4
Superposition rules and stochastic Lie-Sche¤ers
systems

A di¤erential equation is said to have a superposition rule (a more explicit de�nition is
provided in the next section) whenever any of its solutions can be written as a given (in
general nonlinear) function of the initial condition and of a �xed set of particular solutions.
The �rst characterization of the existence of superposition rules was given by the Norwegian
mathematician Sophus Lie in a remarkable piece of work [Lie93] where he established a link
between the existence of superposition rules and what we nowadays call the Lie algebraic
properties of the vector �elds that de�ne a time-dependent di¤erential equation. This result is
referred to as the Lie-Sche¤ers Theorem and systems that satisfy its hypotheses as Lie-
Sche¤ers systems.
Lie-Sche¤ers systems have been the subject of much attention due to their widespread occur-

rence in physics and mathematics. The reader is encouraged to check with [CGM00, CGM07],
and references therein, for various presentations of the classical Lie-Sche¤ers Theorem, an ex-
cellent collection of examples of applications of this theorem, and for historical remarks.
The main goal of this chapter is the extension of the Lie-Sche¤ers Theorem to stochastic

di¤erential equations. This generalization is stated in Theorem 4.7. It is worth emphasizing
that the main result of the chapter, Theorem 4.7, cannot be seen just as a mere transcription of
the deterministic Lie-Sche¤ers Theorem into the context of Stratonovich stochastic integration
by using the so called Malliavin�s Transfer Principle [Ma78]. As we will see later on, there are
purely stochastic conditions that appear in the statement of the theorem.
Additionally, in proving Theorem 4.7 we have carefully spelled out the regularity conditions

needed for the result to be valid; those conditions are only vaguely evoked in the classical
references or in the cited papers that study the deterministic case. More importantly, a care-
ful construction of the proof has lead us to realize that the hypotheses under which we can
guarantee the existence of superposition rules can be weakened: the Lie algebra condition in
the classical theorem can be replaced by an involutivity hypothesis that is, in general, less
restrictive.
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The contents of the chapter are structured as follows. Section 4.1 explains in detail the notion
of superposition rule and includes a proposition that translates this concept into geometric
terms. Section 4.2 contains the main theorem that we have already described.
Section 4.3 is dedicated to the study of Lie-Sche¤ers systems on Lie groups and homogeneous

spaces; this case is particularly relevant since, as we show in the �rst result of that section
(Proposition 4.12), classical Lie-Sche¤ers systems (roughly speaking, those generated by vector
�elds that close a Lie algebra) can be locally reduced to this case via a theorem due to Palais.
In that section we also show, as an example, how Lévy stochastic processes can be seen as
Lie group valued Lie-Sche¤ers systems. The section concludes with a brief presentation of
the classical Wei-Norman method for solving Lie-Sche¤ers systems, adapted to the stochastic
context.
Section 4.4 contains a discussion on how the existence of a superposition rule for a stochastic

di¤erential equation makes available a remarkable feature that has deserved certain attention
in the context of standard stochastic di¤erential equations, namely, the fact that the stochastic
�ow can be written as a �xed deterministic function of the Brownian forcing of the equation
in question. Indeed, a well know theorem by Ben Arous [B89], that we state in this thesis and
whose proof is based on the use of stochastic Taylor expansions, shows that this property of the
�ow is available under exactly the same hypotheses as the classical Lie-Sche¤ers Theorem. Our
main theorem allows, admittedly only to a certain extent, the generalization of this statement
to any stochastic di¤erential equation that satis�es its hypotheses; more speci�cally, any SDE
generated by vector �elds that span an involutive distribution has a superposition rule and
hence its �ow can be written as a �xed deterministic function of the initial conditions and of
a set of solutions that contain the stochastic behavior of the resulting map.
This chapter, a transcription of the paper [LO08a] witten by the author of this thesis in

collaboration with J.-P. Ortega, concludes with a section that contains a number of examples
that illustrate our developments.

4.1 Superposition rules for stochastic di¤erential equations

Let (
;F ; P ) be a probability space. We start by considering the stochastic di¤erential equation

�� = S (X;�) �X; (4.1)

where X : R+ � 
! Rl is a given Rl-valued semimartingale and S (x; z) : TxRl �! TzRn is a
Stratonovich operator from Rl to Rn. Sometimes we will choose a basis in T �Rl and will write
down the Stratonovich operator S(x; z) in terms of its components (S1 (x; z) ; : : : ; Sl(x; z)) with
respect to that basis.

De�nition 4.1 A superposition rule of the stochastic di¤erential equation (4.1) is a pair
(�; f�1; : : : ;�mg), where � : Rn(m+1) �! Rn is a (not necessarily smooth) function and f�i :
R+ � 
! Rn j i = 1; : : : ;mg is a set of particular solutions of (4.1) such that any solution �
of (4.1) can be written, at least up to a su¢ ciently small stopping time � , as

� = �
�
z1; : : : ; zn; �1; : : : ;�m

�
=: � (z; �1; : : : ;�m) ;
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where z =
�
z1; : : : ; zn

�
is a set of n arbitrary constants associated with the initial condition

of the solution �, that is, �(0; !) = (z1; : : : ; zn), for all ! 2 
. We extend to the stochastic
context the terminology used for standard di¤erential equations and we will call Lie-Sche¤ers
systems the stochastic di¤erential equations that admit a superposition rule.

Remark 4.2 As we will see in examples later on in the paper, superposition rules exist only
locally. That is why we can, without loss of generality, restrict our attention to stochastic
di¤erential equation on Euclidean spaces. Observe also that we are requiring that � does
not depend on time, the probability space, or the noise X. This prevents us from using certain
regularization techniques at the time of testing the existence of superposition rules. For example,
when dealing with a deterministic di¤erential equation, the standard transformation of a time-
dependent system _ = f (t; ) on Rn, f : Rn+1 ! Rn into the autonomous one

_ = f (t; ) and _t = 1

on Rn+1 obtained by adding an extra trivial di¤erential equation for the time, is not allowed;
indeed, if we �nd a superposition rule for the transformed autonomous system, that rule does
not yield a superposition rule for the original system that satis�es the requirements of our
de�nition, precisely due to the explicit dependence on time that appears in the superposition
function.

In order to study the implications of the presence of a superposition rules we take a more
geometric approach. Let 	 be the function de�ned by

	 : Rn(m+2) �! Rn
(z; q0; q1; : : : ; qm) 7�! q0 � � (z; q1; : : : ; qm) :

(4.2)

Notice that for any z 2 Rn, the function 	z := 	 (z; �) : Rn(m+1) ! Rn is constant on a
(m+ 1)-tuple (�;�1 : : : ;�m) of solutions of the system (4.1), at least up to a given stopping
time � , provided that �t=0 = z 2 Rn a.s.. From now on we assume that all the solutions � that
we are dealing with are constant a.s. at t = 0. Additionally, if the function � is smooth then
the map 	z : Rn(m+1) ! Rn is a submersion for any �xed z 2 Rn, because

rank

 
@	jz

@qi0

!
j;i=1;:::;n

= rank (In) = n (4.3)

where In is the identity matrix of dimension n. Consequently, for any z 2 Rn, the level set
	�1z (0) � Rn(m+1) is a closed embedded submanifold of Rn(m+1) of dimension nm . That is,
the function 	 de�nes a family G of regular nm-dimensional submanifolds Gz via the zero
level sets 	�1z (0) = fp 2 Rn(m+1) j 	(z; p) = 0g =: Gz of 	z, for any z 2 Rn. The sub-
manifolds Gz are globally di¤eomorphic to Rnm via the restriction �mjGz to Gz of the pro-
jection �m : Rn(m+1) = Rn � m+1� � � � Rn �! Rnm = Rn � m� � � � Rn onto the last m Rn
factors. This is easy to see by verifying that the inverse �z : Rmn ! Gz of �mjGz is given by
�z(q1; : : : ; qm) = (�(z; q1; : : : ; qm); q1; : : : ; qm), which is obviously a di¤eomorphism. In order
to study the signi�cance of the family of submanifolds G we start by introducing the following
de�nition.
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De�nition 4.3 Let Y : Rn ! Rn be a vector �eld. The vector �eld

eY : Rn(m+1) �! Rn(m+1)
(q0; : : : ; qm) 7�! (Y (q0) ; : : : ; Y (qm))

is called the diagonal extension of Y .

It can be easily checked that the set of diagonal extensions of vector �elds in X(Rn) are a
subalgebra of X(Rn(m+1)); more explicitly, for any Y1; Y2; Y3 2 X(Rn) and � 2 R,

[eY1; eY2 + �eY3] = ^[Y1; Y2 + �Y3]: (4.4)

The following proposition states that, roughly speaking, the family of submanifolds G com-
pletely characterizes the superposition rule.

Proposition 4.4 Suppose that the stochastic di¤erential equation (4.1) admits a smooth su-
perposition rule (�; f�1; : : : ;�mg). Suppose that (�1; : : : ;�m)t=0 = (p1; : : : ; pm) 2 Rmn a.s..
Then, there exists a family G of closed embedded nm-dimensional submanifolds of Rn(m+1)
such that for any z 2 Rn there exists Gz 2 G such that (�z;�1; : : : ;�m) � Gz, with �z the
solution of (4.1) such that (�z)t=0 = z. Moreover, for any Gz 2 G the map �mjGz : Gz ! Rnm
is a di¤eomorphism.
Conversely, let G be a family of (not necessarily embedded) submanifolds of Rn(m+1) dif-

feomorphic to Rnm via �m and f�1; : : : ;�mg a set of distinct solutions of (4.1) such that
(�1; : : : ;�m)t=0 = (p1; : : : ; pm) 2 Rmn a.s.. Then, if for any point z 2 Rn there is an element
Gz that contains the point (z; p1; : : : ; pm) and the diagonal extensions (eS1 (X; �) ; : : : ; eSl (X; �))
of the vector �elds (S1 (X; �) ; : : : ; Sl(X; �)) that de�ne (4.1) are tangent to Gz when evaluated
at (�z;�1; : : : ;�m), then (4.1) admits a (possibly nonsmooth) superposition rule.

Proof. In view of the remarks preceding De�nition 4.3 we just need to prove that having a
family G that satis�es the hypotheses in the statement allows us to recover the superposition
rule.
Let f�1; : : : ;�mg be the set of �xed distinct solutions of (4.1). Denote pi = (�i)t=0 the

(necessarily di¤erent) constant initial conditions of �i, i = 1; : : : ;m. Let z =
�
z1; : : : ; zn

�
2 Rn

be a point and let Gz be the submanifold in G such that (z; p1; : : : ; pm) 2 Gz; by hypothesis,
this manifold is di¤eomorphic to Rnm via the map 'z = �mjGz , where �m : R

n(m+1) �! Rnm
is the projection onto the last nm factors. In other words, the last nm coordinates of a point
in Rn(m+1) serve as global coordinates of Gz. Introduce the projection

�0Rn : Rn(m+1) �! Rn
(q0; : : : ; qm) 7�! q0:

(4.5)

We now de�ne
(�0)t (!) := �0Rn � '�1z ((�1)t (!) ; : : : ; (�m)t (!)) : (4.6)

It is immediate to see that (�0)t=0 = z and that �0 is a semimartingale because, by construction,
it is a composition of smooth functions with semimartingales. Let now �z be the unique solution
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of (4.1) with a.s. initial condition z 2 Rn. We will proceed by proving that �0 de�ned in (4.6)
equals �z and we will therefore have a superposition rule � given by the map �(z; �1; : : : ;�m) :=
�0Rn �'�1z (�1; : : : ;�m). Notice that unless additional hypotheses are assumed on the family G,
there is no guarantee on the smoothness of � on the z variable.
In order to prove that �0 equals �z, denote by

�
qk; k = 1; : : : ; n

�
the coordinates on Rn

and by
�
qka ; k = 1; : : : ; n; a = 0; : : : ;m

�
the coordinates on Rn(m+1). Let F ak : R

nm ! Rn and
Xa
k : R

nm ! Rn(m+1) be the maps de�ned as

F ak (q1; : : : ; qm) = T(q1;:::;qm)(�
0
Rn � '�1z � �m)

�
@

@qka

�

Xa
k

�
'�1z (q1; : : : ; qm)

�
= T(q1;:::;qm)('

�1
z � �m)

�
@

@qka

�

= (F ak (q1; : : : ; qm) ; 0;
a�1: : : ;

n entriesz }| {
(0; k�1: : : ; 1; : : : ; 0);m�a: : : ; 0);

where a = 1; : : : ;m, k = 1; : : : ; n. Observe that, by construction, the nm vector �elds Xa
k are

linearly independent and span TqGz at any q 2 Gz, since '�1z is a di¤eomorphism form Rnm to
Gz.
Now, we notice that for any j = 1; : : : ; l, the vectors

eSj (X; �z;�1; : : : ;�m) = (Sj (X;�z) ; Sj (X;�1) ; : : : ; Sj (X;�m)) (4.7)

are by hypothesis tangent to Gz. Additionally, due to (4.6) and the Stratonovich di¤erentiation
rules we can write

��0 =
mX
a=1

nX
k=1

F ak (�1; : : : ;�m) ��
k
a =

mX
a=1

nX
k=1

lX
j=1

F ak (�1; : : : ;�m)S
k
j (X;�a) �X

j : (4.8)

Moreover, 
mX
a=1

nX
k=1

F ak (�1; : : : ;�m)S
k
j (X;�a) ; Sj (X;�1) ; : : : ; Sj (X;�m)

!
2 Rn(m+1) (4.9)

belongs also to TGz for any j = 1; : : : ; l, since (4.9) can be written as a linear combination of
the nm linearly independent vector �elds Xa

k . Indeed, 
mX
a=1

nX
k=1

F ak (�1; : : : ;�m)S
k
j (X;�a) ; Sj (X;�1) ; : : : ; Sj (X;�m)

!

=
mX
a=1

nX
k=1

Skj (X;�a)X
a
k (�1; : : : ;�m) :
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Subtracting (4.9) from (4.7), we see that for any j = 1; : : : ; l,

Wj :=

 
Sj (X;�

z)�
mX
a=1

nX
k=1

F ak (�1; : : : ;�m)S
k
j (X;�a) ; 0; : : : ; 0

!
2 TGz:

Any of these vectors �elds, if di¤erent from zero, is obviously linearly independent from all the
Xa
k , a = 1; : : : ;m, k = 1; : : : ; n. If that is the case we could therefore conclude that dim(Gz) is

strictly bigger than nm, which is obviously a contradiction. Therefore, Wj = 0 necessarily, and
hence

Sj (X;�
z) =

mX
a=1

nX
k=1

F ak (�1; : : : ;�m)S
k
j (X;�a) ;

which guarantees that �0 is a solution of (4.1) because by (4.8)

��0 =

lX
j=1

Sj (X;�
z) �Xj = ��z: �

Remark 4.5 In the previous proposition we saw how the tangency of the diagonal extensions
of the vector �elds that de�ne the SDE to the submanifolds in G is a su¢ cient condition to
ensure the existence of a superposition rule. Is it necessary? Suppose that we have a smooth
superposition rule (�;�1; : : : ;�m) and let 	 be the associated map introduced in (4.2). As we
have that 	z (�z;�1; : : : ;�m) = 0, the Stratonovich di¤erentiation rules yield

0 =

nX
i=1

mX
a=0

@	z
@qia

(�z;�1; : : : ;�m) ��
i
a =

lX
j=1

nX
i=1

mX
a=0

@	z
@qia

(�z;�1; : : : ;�m)S
i
j (X;�a) �X

j :

(4.10)
A su¢ cient condition for this identity to hold is that, for any j 2 f1; ::; lg,

nX
i=1

mX
a=0

@	z
@qia

(�z;�1; : : : ;�m)S
i
j (X;�a) = 0 (4.11)

or, equivalently, that the diagonal extensions eSj (X;�z;�1; : : : ;�m) are tangent to the ele-
ments of the family of submanifolds G given by the zero �bers of the maps 	z. Additionally,
one can �nd situations in which (4.10) implies (4.11): for instance if j = 1 and (like in the
case of the Brownian motion) the quadratic variation [X;X] is a strictly increasing process,
a straightforward application of the Doob-Meyer decomposition and the Itô isometry make in
this case (4.10) and (4.11) equivalent.

Remark 4.6 If we add to the hypotheses of Proposition 4.4 that for any z 2 Rn and for
any (p1; : : : ; pm) 2 Rnm there exist a submanifold Gz in G such that (z; p1; : : : ; pm) 2 Gz (for
instance when G is a foliation of Rn(m+1) whose leaves are di¤eomorphic to Rnm via �m) then
the superposition function that we constructed in the proof of that result has the following
extremely convenient property: the superposition function is the same for any fundamental
sets of solutions f�1; : : : ;�mg that we may want to choose. In other words, once � is know, we
can take m arbitrary independent solutions of (4.1) to write down any solution. This situation
frequently occurs in mechanics; see for instance, the study of the classical Riccati equation in
([CMN98]).
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4.2 The stochastic Lie-Sche¤ers Theorem

The main goal of this section is proving a theorem that characterizes the existence of a su-
perposition rule for a stochastic di¤erential equation in terms of the integrability properties of
the distribution spanned by the vector �elds that de�ne it. This can be translated into a Lie
algebraic requirement, which allows us to recover the classical Lie-Sche¤ers Theorem in the
stochastic context (Corollary 4.11).
In order to have at hand the necessary concepts to state the main theorem, we start by

brie�y recalling some standard results on generalized distributions due to Stefan [St74a, St74b]
and Sussman [Su73]. Let M be a smooth manifold, D � X(M) be a family of smooth vector
�elds, and D the smooth generalized distribution spanned by D. Let GD be the pseudogroup of
transformations generated by the �ows of the vector �elds in D and constructed as follows: let
k 2 N� be a positive natural number, X an ordered family X = (X1; : : : ; Xk) of k elements of
D, and T a k�tuple T = (t1; : : : ; tk) 2 Rk such that F it denotes the (locally de�ned) �ow of Xi,
i 2 f1; : : : ; kg, ti; the elements FT of GD are the locally de�ned di¤eomorphisms of the form
FT = F 1t1 �F

2
t2 � � � � �F

k
tk
. Two points x and y in M are said to be GD-equivalent, if there exists

a di¤eomorphism FT 2 GD such that FT (x) = y. The relation GD�equivalent is an equivalence
relation whose equivalence classes are called the GD-orbits, that are sometimes referred to as
the accessible sets associated to the family D.
Given the family D and the associated pseudogroup GD we can de�ne another family D0 of

vector �elds as
D0 := fTFT �X j X 2 D;FT 2 GDg;

that clearly extends D, that is, D � D0. The distribution D0 spanned by the elements of D0 is
by construction GD-invariant. That is, for each FT 2 GD and for each z 2M in the domain of
FT ,

TzFT (D0(z)) = D0(FT (z)): (4.12)

Moreover, since (D0)0 = D0 by construction, the Stefan-Sussmann Theorem guarantees that it is
completely integrable in the sense that for every point z 2M , there exists an integral mani-
fold of D0 everywhere of maximal dimension which contains z. The maximal integral manifolds
of a completely integrable generalized distribution on M form a generalized foliation of M
(see for instance [D85]). A leaf of a generalized foliation is regular if it has a neighborhood
where the singular foliation induces a regular foliation by restriction. A point is regular if it
belongs to a regular leaf. Regular points are open and dense in M ([D85, Théorème 2.2]). We
will refer to D0 (respectively D0) as the Stefan-Sussmann extension of D (respectively D).
The Stefan-Sussmann�s Theorem also establishes an equivalence between the GD-invariance of
D (D0 = D) and its complete integrability; additionally, if D is a completely integrable distri-
bution, then its integral manifolds are the GD-orbits. When the distribution D has constant
dimension, the Stefan-Sussmann Theorem reduces to the celebrated and especially convenient
Frobenius Theorem which states the D is integrable if and only if D is involutive. Recall that
D is involutive if [X; Y ] takes values in D whenever X and Y are vector �elds with values in
D.

In the sequel, we will use the following notation in order to be able to handle diagonal
extensions of di¤erent dimensions. Given l 2 N and X 2 X(Rn), we will denote by eX l 2 X(Rln)
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the diagonal extension of X to Rln. For the sake of consistency with the previous section eX
means eXm+1.

Theorem 4.7 (Lie-Sche¤ers�Theorem for SDE) Let

�� = S (X;�) �X (4.13)

be a stochastic di¤erential equation on Rn, where X : R+ � 
 ! Rl is a given Rl-valued
semimartingale and S (x; z) : TxRl �! TzRn is a Stratonovich operator from Rl to Rn. Let V
be an arbitrary open neighborhood of Rn.

(i) Let V be an arbitrary open neighborhood of Rn. If the X-dependent vector �elds fS1 (X; �) ;
: : : ; Sl (X; �)g can be expressed on V as

Sj (X; z) =

rX
i=1

bij (X)Yi (z) 2 TzRn; bij 2 C1(Rl); z 2 V; (4.14)

and the distribution D spanned by the vector �elds D = fY1; : : : ; Yrg � X (V ) is involutive,
then (4.13) admits a local superposition rule.

(ii) Conversely, suppose that (4.13) admits a superposition rule (�; f�1; : : : ;�mg) and that
the diagonal extensions feS1 (X; �) ; : : : ; eSl (X; �)g to Rn(m+1) are tangent to the family G
of nm-dimensional submanifolds of Rn(m+1) associated to this superposition rule (see
Proposition 4.4). Let eD(q) := spanfeSj(Xt; q) j j 2 f1; : : : ; lg; t 2 R+g, q 2 Rn(m+1),eD0 the Stefan-Sussmann extension of eD, and G0 its associated generalized foliation. Let
z 2 Rn, pi = (�i)t=0, and suppose that p = (z; p1; : : : ; pm) 2 Rn(m+1) belongs to a regular
leaf (G0)z of G0. Then, there exists an open neighborhood V of z, a family of vector �elds
fY1; : : : ; Yrg � X (V ), and a family of functions fbijg

i=1;::;r
j=1;::;l � C1

�
Rl
�
such that

Sj (X; v) =

rX
i=1

bij (X)Yi (v) ; (4.15)

for any v 2 V . Moreover, the vector �elds fY1; : : : ; Yrg form a real Lie algebra.

Proof. (i) Given l 2 N, we de�ne V l := V � l): : :� V and dl := maxq2V lfdim(spanfeY l
1 (q); : : : ;eY l

r (q)g)g. Notice that for any l 2 N one has dl � dl+1 and dl � r. Let m 2 N be the smallest
number for which dm = dm+1 and let q0 2 V m+1 be such that

dim
�
spanfeY m+1

1 (q0); : : : ; eY m+1
r (q0)g

�
= dm+1: (4.16)

The maximality of the dimension of spanfeY m+1
1 ; : : : ; eY m+1

r g at q0 implies that there exists a
neighborhood U of q0 in V m+1 for which dim(spanfeY m+1

1 (q); : : : ; eY m+1
r (q)g) = dm+1, for all q 2

U . Indeed, the expression (4.16) is equivalent to saying that the r�n(m+1) matrixM(q) with
entries Mij(q) := (eY m+1

i (q))j has rank dm when evaluated at q0 which, in turn, amounts to the
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existence of a non-vanishing minorMdm+1(q0) ofM(q0) of order dm+1. Since the minorMdm+1(q)
depends smoothly on q andMdm+1(q0) 6= 0, there exists an open neighborhood U of q0 in V m+1

for whichMdm+1(q) 6= 0, for any q 2 U . This implies that dim(spanfeY m+1
1 (q); : : : ; eY m+1

r (q)g) �
dm+1, for all q 2 U . However, the maximality used in the de�nition of dl+1 implies that the
previous inequality is necessarily an equality.
Consequently, we have found an open set U � V m+1 in which the distribution D spanned

by the family feY m+1
1 ; : : : ; eY m+1

r g has constant rank. Moreover, (4.4) and the hypothesis on
fY1; : : : ; Yrg being in involution imply by the classical Frobenius Theorem that D is integrable.
Let G0 be the family of maximal integrable leaves of D that form a foliation of Um+1. Now,
shrinking U if necessary and using foliation coordinates for G0, we extend the distribution D to
another integrable distribution D � D of rank nm whose integrable leaves G contain those of
G0, and for which the restrictions of �m : Rn(m+1) ! Rmn to the leaves in G are di¤eomorphisms
onto their images.
Let now fp1; : : : ; pmg be a set of m distinct points in V such that (p1; : : : ; pm) 2 �m(U)

and f�1; : : : ;�mg the solutions of of (4.13) such that (�1; : : : ;�m)t=0 = (p1; : : : ; pm) a.s.. Let
� := (�1; : : : ;�m) and � the stopping time de�ned as � := infft > 0 j �t 6= �m(U)g. Since the
vector �elds eSm+1j (X;�) =

rX
i=1

bij (X)
eY m+1
i (�)

are tangent to the integral leaves of G0 and hence to those of G, at least up to time � , Propo-
sition 4.4 guarantees the existence of a local superposition rule.

(ii) We start the proof by providing a lemma that will be needed in our argument.

Lemma 4.8 Let fY1; : : : ; Yrg � X(Rn) with r � mn and let feY1; : : : ; eYrg be the corresponding
diagonal extensions to Rn(m+1). Suppose that fTq�m(eY1(q)); : : : ; Tq�m(eYr(q))g are linearly in-
dependent for any q in a neighborhood U � Rn(m+1). If the sum

Pr
i=1 b

i eYi with bi 2 C1 (U),
i = 1; : : : ; r, is again a diagonal extension then the functions bi are necessarily the pull-back by
�m of a family functions in C1(�m (U)). More speci�cally, if (q

j
a; j = 1; : : : ; n; a = 0; : : : ;m)

are coordinates for Rn(m+1), then the functions fbigi=1;::;r do not depend on (qj0; j = 1; : : : ; n).

Proof. Using the coordinates
�
qj ; j = 1; : : : ; n

�
for Rn, there exists a family of functions

Aji 2 C1(Rn), i 2 f1; : : : ; rg , j 2 f1; : : : ; ng, such that the vector �elds fY1; : : : ; Yrg � X(Rn)
can be written as

Yi(q) =

nX
j=1

Aji (q)
@

@qj

which implies that the diagonal extensions have the expression

eYi(q0; : : : ; qm) = mX
a=0

nX
j=1

Aji (qa)
@

@qja
:

Then, if we assume that
rX
i=1

bi (q0; : : : ; qm) eYi(q0; : : : ; qm) = rX
i=1

mX
a=0

nX
j=1

bi (q0; : : : ; qm)A
j
i (qa)

@

@qja
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is a diagonal extension on U , then there exist some functions fBigi=1;:::;r � C1 (Rn) such that
rX
i=1

bi (q0; : : : ; qm)A
j
i (qa)

���
U
= Bj(qa)

��
U
; a = 0; : : : ;m; j = 1; : : : ; n:

That is, the r functions bi (q0; : : : ; qm) solve the following subsystem of linear equations0BBB@
A(q0)
A(q1)
...

A(qm)

1CCCA
0B@ b1(q0; : : : ; qm)

...
br(q0; : : : ; qm)

1CA =

0BBB@
B(q0)
B(q1)
...

B(qm)

1CCCA (4.17)

where A and B are the n(m+1)�r and n(m+1)�1 matrices, respectively, de�ned as A(qa)ij =
Aij(qa) and B(qa)i = Bi(qa), a = 0; : : : ;m. Now, the hypothesis on the linear independence of

fT�m(eY1); :::; T�m(eYr)g implies that the rank of the matrix (A(q1); : : : ;A(qm)) is r � nm and
hence (4.17) has a unique solution which coincides with the unique solution of the system0B@ A(q1)

...
A(qm)

1CA
0B@ b1(q0; : : : ; qm)

...
br(q0; : : : ; qm)

1CA =

0B@ B(q1)
...

B(qm)

1CA : (4.18)

Since there is no dependence on the coordinates q0 in the augmented matrix associated to the
system (4.18), its solution (b1; : : : ; br) does not therefore depend on q0, as required. H
Suppose now that the stochastic di¤erential equation (4.13) admits a superposition rule and

that we are in the hypotheses of the theorem. We start by emphasizing that since the vector
�elds feS1 (X; �) ; : : : ; eSl (X; �)g are, by hypothesis, tangent to the elements of the family G then
their �ows leave invariant those submanifolds and hence, the Stefan-Sussmann extension eD0 ofeD is also tangent to the elements of G. This argument guarantees that, given the regular leaf
(G0)z of G0, then there exists an element Gz in G that contains it.
Now since p = (z; p1; : : : ; pm) 2 Rn(m+1) belongs to a regular leaf (G0)z of G0, then there is an

open neighborhood U of p where we can choose (taking regular foliation coordinates) a family
of linearly independent vector �elds feY1; : : : ; eYrg � X(Rn(m+1)) that span the tangent spaces
to the leaves of G0 \U . The vector �elds feY1; : : : ; eYrg can be chosen as the diagonal extensions
of r vector �elds fY1; : : : ; Yrg � X(Rn), since the Stefan-Sussmann extension eD0 = spanfT eFT �eSi (X; �) j i 2 f1; : : : ; lg; eFT 2 GDg of eD is made of diagonal extensions. Indeed, in order to see
that eD0 is spanned by diagonal extensions, it su¢ ces to notice that the �ow eFt of the diagonal
extension eY 2 X(Rn(m+1)) of a vector �eld Y 2 X(Rn) is eFt(q0; : : : ; qm) = (Ft(q0); : : : ; Ft(qm)),
with Ft the �ow of Y ; hence

Tq eFt(eY (q)) = (Tq0Ft � : : :� TqmFt) (eY (q))
= (Tq0Ft(Y (q0)); : : : ; TqmFt(Y (qm)) =

^(TFt(Y ))(q)

is again a diagonal extension. Given that by (4.4) diagonal extensions form an algebra, the
statement follows.
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Moreover, since the distribution eD0jU is regular and integrable then it is necessarily integrable
in the sense of Frobenius, that is, there exist functions fckijgi;j;k=1;::;r � C1(Rn(m+1)) such that

heYj ; eYii = rX
k=1

ckji eYk: (4.19)

Now, as [eYj ; eYi] = ^[Yj ; Yi], we conclude that
Pr

k=1 c
k
ji
eYk is a diagonal extension. Also, as the

projection �m is a local di¤eomorphism when restricted to U \ Gz, the family of vectors
fT�m(eY1); : : : ; T�m(eYr)g is necessarily linearly independent. In these circumstances Lemma
4.8 implies that the coe¢ cients fckijgi;j;k=1;::;r do not depend on the �rst n coordinates q

j
0,

j = 1; : : : ; n. We now apply �0Rn (see (4.5)) on both sides of (4.19) and we obtain

[Yj ; Yi] (v) =
rX

k=1

ckji(q1; : : : ; qm)Yk(v) (4.20)

where v 2 V := �0Rn(U) and (q1; : : : ; qm) 2 Rnm is any arbitrary point such that (v; q1; : : : ; qm) 2
U . Since the left hand side of (4.20) does not depend on (q1; : : : ; qm) then the dependence of the
coe¢ cients ckji(q1; : : : ; qm) on those coordinates is necessarily trivial which allows us to conclude
that fY1; : : : ; Yrg close a Lie algebra.
Finally, since the vector �elds eSj (X; �) are tangent to G0, j = 1; : : : ; l, then there is a family

of X-dependent functions bij (X; �) 2 C1 (U) such that

eSj (X; q) = rX
i=1

bij (X; q)
eYi (q) ;

for any q 2 U . As eSj (X; �) is also a diagonal extension, we can use again Lemma 4.8 in order
to prove that the functions fbijg

i=1;::;r
j=1;::;l do not depend on q0. Consequently,

eSj (X; q) = rX
i=1

bij (X; (q1; : : : ; qm)) eYi (p) : (4.21)

As we did in the previous paragraph, we apply �0Rn on both sides of (4.21)

Sj (X; v) =

rX
i=1

bij (X; (q1; : : : ; qm))Yi (v) ;

for any v 2 V . Again, we realize that since the left hand side of this equation is independent of
(q1; : : : ; qm), the dependence of the functions bij on the coordinates (q1; : : : ; qm) is necessarily
trivial, which yields expression (4.15). �

Remark 4.9 Theorem 4.7 is a generalization for stochastic di¤erential equations of the classi-
cal Lie-Sche¤ers Theorem stated for time-dependent ordinary di¤erential equations. That the-
orem claims that a di¤erential equation _y = Y (t; y) on Rn given by a time-dependent vector
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�eld Y (t; �) 2 X (Rn), t 2 R, admits a superposition rule if and only if Y can be locally written
in the form Y (t; y) =

Pr
i=1 f

i(t)Yi(y), where ff igi=1;:::;r � C1(R) and fY1; : : : ; Yrg � X (Rn)
form a (real) Lie subalgebra of (X(M); [�; �]) (see [CGM07] and [CGM00]). In relation to the
traditional presentation of the Lie-Sche¤ers Theorem, our Theorem 4.7:

(i) weakens the hypotheses under which we can guarantee the existence of superposition
rules. The involutivity of the vector �elds fY1; : : : ; Yrg is, in general, less restrictive than
requiring that they form a Lie algebra over the reals. We know a posteriori by the second
part of Theorem 4.7 that, around regular points, if there exists a superpositon rule, the
components fS1; : : : ; Slg of the Stratonovich operator can also be expressed in terms of
a family of vector �elds that close a Lie algebra.

(ii) carefully spells out the regularity conditions under which we have a converse; those con-
ditions are only vaguely evoked in the already cited deterministic papers.

(iii) It is worth noticing that, apart from the two points that we just explained, Theorem 4.7
cannot be seen as a mere transcription of the deterministic Lie-Sche¤ers Theorem into the
context of Stratonovich stochastic integration by using the so called Malliavin�s Transfer
Principle [Ma78] due to the purely stochastic conditions that appear in the statement of
the theorem. Those additional requirements have to do with the tangency of the diagonal
extensions of the components of the Stratonovich operator to the family of submanifolds
associated to the superposition rule (see also Remark 4.5).

Remark 4.10 An interesting research problem would be the formulation of a Lie-Sch¤ers
Theorem in the context of Rough Paths Theory [CLT04]. Such result seems to us plausible and
would yield Theorem 4.7 as a particular case.

In the next corollary, we show for the sake of completeness how the classical statement of
the Lie-Sche¤ers Theorem (generalized to SDEs) can be easily obtained out of Theorem 4.7.

Corollary 4.11 Using the notation in Theorem 4.7, suppose that the X-dependent family of
vector �elds fS1 (X; �) ; : : : ; Sl (X; �)g that de�ne the stochastic di¤erential equation (4.1) can
be expressed as

Sj (X; z) =

rX
i=1

bij (X)Yi (z) 2 TzRn; bij 2 C1(Rl); z 2 Rn:

Let LiefY1; : : : ; Yrg be the real Lie subalgebra of (X(Rn); [�; �]) generated by the family fY1; : : : ; Yrg
� X(Rn). If LiefY1; : : : ; Yrg is �nite dimensional then (4.1) has a superposition rule.

Proof. Let D and D2 be the generalized distributions associated to the families of vector
�elds D = fY1; : : : ; Yrg and D2 = LiefY1; : : : ; Yrg, respectively. Observe that if D(z)  D2(z),
z 2 Rn, then since LiefY1; : : : ; Yrg is �nite dimensional, we can always complete the family
fY1; : : : ; Yrg with a �nite number of vectors fZ1; : : : ; Zsg � D such that D(z) = D2(z). We
then write the X-dependent vector �elds fS1 (X; �) ; : : : ; Sl (X; �)g as

Sj (X; z) =

rX
i=1

bij (X)Yi (z) +

sX
k=1

akj (X)Zk(z); z 2 Rn;
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with akj = 0 for any j = 1; : : : ; l and any k = 1; : : : ; s. Therefore, we may simply suppose that
D(z) = spanfLiefY1; : : : ; Yrg(z)g, z 2 Rn and since D2 is trivially involutive, the corollary
follows from Theorem 4.7 (i). �

4.3 Lie-Sche¤ers systems and stochastic di¤erential equations on Lie
groups and homogeneous spaces

The Lie-Sche¤ers systems that are de�ned by a set of vector �elds that generate a �nite dimen-
sional Lie algebra, that is, those that satisfy the hypothesis of Corollary 4.11 or of Theorem
4.16 can be reformulated in the language of group actions. More speci�cally, as we see in the
next proposition, such systems come down locally to studying the solutions of an equivalent
Lie-Sche¤ers system on a Lie group.

Proposition 4.12 Consider a stochastic di¤erential equation that satis�es the hypotheses of
Corollary 4.11. Let z 2M be a point such that there exists a neighborhood V of z in which the
dimension of Lie fY1; : : : ; Yrg is constant. Then, shrinking V if necessary, there exists a Lie
group G such that dim (G) = dim (LiefY1; : : : ; YrgjV ), a group action � : G� V ! V , and Lie
algebra elements f�1; : : : ; �rg � g such that

Yi(z) = �Mi (z) :=
d

dt

����
t=0

� (exp (t�i) ; z) ; z 2 V: (4.22)

Moreover, the solution starting at z 2 M of the restriction to V of the stochastic di¤erential
equation can be expressed as

�zt = �(gt; z) ; (4.23)

where gt : R+�
! G is the semimartingale solution of the stochastic di¤erential equation on
G

�gt =

rX
i=1

�Gi (gt) �X
i
t (4.24)

with initial condition gt=0 = e a.s.

Proof. Since the statement of the proposition is local we can always assume that the vector
�elds fY1; : : : ; Yrg are complete by multiplying them by a compactly supported bump function
and by restricting ourselves to an open neighborhood V consistent with that construction. In
that situation and if dim (LiefY1; : : : ; YrgjV ) <1, Palais showed in [P57] (see Corollary in page
97 and Theorem III in page 95) that there exists a unique connected Lie group G contained in
the group of di¤eomorphisms of M and a left action � : G �M ! M such that (4.22) holds
and Te�z : g! LiefY1; : : : ; Yrg(z) is an isomorphism, for any z 2 V .
Let now gt : R+ � 
 ! G be the solution semimartingale of the stochastic di¤erential

equation on G

�gt =
rX
i=1

�Gi (gt) �X
i
t ; (4.25)
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where �Gi 2 X (G) denotes the right invariant in�nitesimal generator associated to �i 2 g via
the left translations of G on G. Given that any two in�nitesimal generators �G and �M , � 2 g,
are related by the formula Tg�z(�G) = �M (� (g; z)), g 2 G, z 2 V , it is straightforward to
verify that if gt is a solution of (4.24) with initial condition gt=0 = e a.s., then

�zt = �(gt; z) ;

is the solution of ��t =
Pr

i=1 Yi (�t) �X
i
t such that �0 = z, a.s. �

Remark 4.13 Observe that (4.23) may be understood as a general reformulation of (4.38)
(see also [B89, Théorème 19]). Processes of the type �zt = �(gt; z) de�ned using a group action
are sometimes called one point motions ([L04]).

The proposition that we just proved shows that for Lie-Sche¤ers systems de�ned by vector
�elds that generate a �nite dimensional Lie algebra g, it is the associated Lie-Sche¤ers system
on the Lie group G (4.24) that really matters. This is the subject of the rest of this section.

Stochastic di¤erential equations on Lie groups. Let now G be an arbitrary connected
Lie group and g its Lie algebra. Let f�1; : : : ; �lg and

�
�1; : : : ; �l

	
be dual bases of g and g�,

respectively. Left (respectively, right) translations on G will be denoted by L : G � G ! G
(respectively, R : G�G! G). With the same notation that we have used so far, let

S (�; g) : T�g ' g �! TgG

� 7�!
Pl

i=1 �
G
i (g)



�i; �

�
= �G(g)

(4.26)

be a Stratonovich operator from g to G, where �G denotes the in�nitesimal generator associ-
ated to the G-action on itself by left translations. Consider the stochastic di¤erential equation
associated to (4.26),

�gt =
lX

i=1

�Gi (gt) �X
i
t ; (4.27)

for some driving noise (semimartingale) X : R+ �
! g. Using the equivariance of the vector
�elds �G 2 X(G) with respect to right translations, that is, ThRg(�G(h))) = �G(Rg(h)) for any
g, h 2 G, and � 2 g, it is immediate to check that if �e is the solution of (4.27) with initial
condition �et=0 = e a.s., then the solution �gt starting at g 2 G is given by

�gt = L�et g = Rg (�
e
t ) (4.28)

In other words, the stochastic di¤erential equation (4.27) has a superposition rule in the sense
of De�nition 4.1 and the superposition function � is given by

� : G�G �! G
(h; g) 7�! Lhg = Rgh:

It is also worth noticing that (4.27) is stochastically complete ([E82, Chapter VII §6]) since
it is a left-invariant system. Therefore any solution of (4.27) is de�ned for all (t; !) 2 R+ � 
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and, consequently, so is any one point motion and, in particular, any solution of any Lie-
Sche¤ers system on a manifold M which can be globally considered as induced by a group
action � : G�M !M .

Lévy processes and Lie-Sche¤ers systems. This is an important class of Lie group valued
stochastic processes and, as we will now see, a class of examples of Lie-Sche¤ers systems.
Recall that a continuous process g : R+ � 
 ! G is called a right Lévy process if, for any
0 = t0 < t1 < t2 < : : : < tn, the increments

gt0 ; gt0g
�1
t1
; gt1g

�1
t2
; : : : ; gtn�1g

�1
tn (4.29)

are independent and stationary. This means that the random variables in (4.29) are mutually
independent and that their distributions only depend on the di¤erences ti�ti�1, i 2 f1; : : : ; ng.
If gt0 6= e a.s., we de�ne get = gtg

�1
t0
, which is a right Lévy process starting at the identity.

We are now going to see that continuous Lévy processes and Lie-Sche¤ers systems are closely
related. First of all, recall that any right Lévy process on a locally compact topological group
with a countable basis of open sets is a Markov process with a right invariant Feller transition
semigroup fPtgt2R+ given by Ptf (g) := E [f (get g)], g 2 G, where f : G! R is any measurable
function. Conversely, any right invariant continuous Markov process is a right Lévy process
([L04, Proposition 1.2]). Moreover, if g : R+ � 
 ! G is a right Lévy process, then there
exists a l-dimensional Brownian motion B : R+�
! Rl with respect to the natural �ltration
fFet gt2R+ of the process get , l = dim (g), with covariance matrix (aij)i;j=1;:::;l and some constants
fcigi=1;:::;l such that

f (gt) = f (g0) +

lX
i=1

Z t

0
�Gi [f ] (gs) �B

i
s +

lX
i=1

ci

Z t

0
�Gi [f ] (gs) ds;

for any f 2 C2 (G) and where, as before, f�1; : : : ; �lg is a basis of g ([L04, Theorem 1.2]). This
expression amounts to saying that the Lévy process g : R+ � 
 ! G satis�es the stochastic
di¤erential equation

�gt =

lX
i=1

ci�
G
i (gs) �s+

lX
i=1

�Gi (gs) �B
i
s;

and hence by Corollary 4.11 we can conclude that any continuous right Lévy process is a
solution of a right invariant Lie-Sche¤ers system. Additionally, it can be shown in this context
(see [L04, Theorem 1.2]) that one point motions obtained out of a G-action � : G �M ! M
are Markov processes with Feller transition semigroup

�
PMt

	
t2R+

PMt f (z) = E [f(� (get ; z))] ; z 2M; f 2 C (M) :

Lie-Sche¤ers systems on homogeneous spaces. Let H � G be a closed subgroup of G
and consider the homogeneous space G=H = fgH j g 2 Gg with the unique smooth structure
that makes the projection �H : G! G=H into a submersion. The group G acts on G=H via the
map � : G�G=H ! G=H on G=H de�ned by (h; gH) 7! (hg)H. It is immediate to check that
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the in�nitesimal generators associated to the left G-actions on G and on G=H are �H -related,
that is,

Tg�H
�
�G (g)

�
= �G=H (�H (g))

for any g 2 G, any � 2 g, and where �G=H (gH) = d
dt

��
t=0

�exp(t�) (gH). This straightforward
observation has as an immediate consequence the next proposition:

Proposition 4.14 Let X : R+ � 
 ! g be a g-valued semimartingale, G a Lie group, and
H � G a closed subgroup. Let � be a solution of the Lie-Sche¤ers system de�ned by X and
the Stratonovich operator (4.26) with initial condition �t=0. Then, �H (�) is a solution of the
Lie-Sche¤ers system on G=H

�� =

lX
j=1

�
G=H
j

�
�t
�
�Xj

t (4.30)

with initial condition �H (�t=0).

Observe that since the Stratonovich operator (4.26) is right invariant by the action of G, and
therefore H-invariant, and that since this action is free and proper, the previous proposition
can be seen as a particular case of the Reduction Theorem 3.9. The next theorem is a
transcription of the Reconstruction Theorem 3.10 into the present context and describes
how to construct solutions in the opposite direction, that is, it tells us how to construct a
solution � of the Lie-Sche¤ers system (4.27) out of the solutions of two other dimensionally
smaller Lie-Sche¤ers systems: �rst, a solution of the reduced system (4.30) and second, another
solution of a new Lie-Sche¤ers system, now on H.

Theorem 4.15 Let X : R+ � 
 ! g be a g-valued semimartingale, G a Lie group, H � G
a closed subgroup, and S the Stratonovich operator de�ned in (4.26). Let R : H � G ! G be
the (right) action of H on G by right translations and A an auxiliary principal connection on
�H : G! G=H. Then, any solution � of the system (4.27) can be written in the form

�t = Rhtgt = gtht:

In this statement, g : R+ � 
! G is a G-valued semimartingale horizontal with respect to A,
i.e.

R
hA; �gti = 0 2 g, gt=0 = �t=0, and such that �H (gt) is a solution of the reduced system

(4.30). On the other hand, h : R+ � 
 ! H is a H-valued semimartingale that satis�es the
stochastic di¤erential equation

�ht = eR (Yt; ht) �Yt (4.31)

with initial condition ht=0 = e, and associated to the Stratonovich operatoreR(�; h) : T�h �! ThH
� 7�! TeRh(�) = �H(h);

(4.32)

and the stochastic component Y : R+ � 
! h given by

Y =

lX
i=1

Z
Agt

�
�Gi (gt)

�
�Xi:

Proof. See Chapter 3 Theorem 3.10 and Proposition 3.12. �
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4.3.1 The Wei-Norman method for solving stochastic Lie-Sche¤ers systems

The method that we are going to develop in this subsection is a generalization to stochas-
tic systems of the one proposed by Wei and Norman in [WN63, WN64] in order to solve by
quadratures time evolution equations of the form dUt

dt = HtUt that appear in quantum me-
chanics, where both Ut and Ht are bounded linear operators on a suitable Hilbert space. This
method has already been adapted by Cariñena and Ramos [CR01] to the study of deterministic
Lie-Sche¤ers systems on Lie groups and it is their approach that we will follow. As we will see
later on, the power of this method and the ease of its implementation depends strongly on the
algebraic structure of the Lie algebra g of the group G where the solutions of the stochastic
di¤erential equation take values.
Let � : R � 
 ! G be the solution of (4.27) such that �t=0 = e 2 G a.s.; we write it down

in terms of second kind canonical coordinates with respect to a basis f�1; : : : ; �lg of the Lie
algebra g. That is,

�t = exp(d
1
t �1) � � � exp(dlt�l); (4.33)

where fd1t ; : : : ; dltg is a family of real-valued semimartingales, di : R+ � 
 ! R, such that
dit=0 = 0 a.s. for any i = 1; : : : ; l. Notice that the expression (4.33) is only valid up to the exit
time of � from the neighborhood Ue of e 2 G where the second kind canonical coordinates
for G around the origin are valid. The key idea in this method is that if the functions di were
di¤erentiable then

d�t
dt

= TeR�t

�Xl

i=1
_dit

�Y
j<i
Ad

exp(djt�j)

�
�i

�
(see [CR01, Eq. (33) and (34)]), where Adg(�) 2 g is the adjoint representation of G on g,
g 2 G, � 2 g. In our setup we obviously cannot invoke the di¤erentiability of the functions
di, however applying the Stratonovich di¤erentiation rules to (4.33) with di our real-valued
semimartingales, i = 1; : : : ; l, we have

��t = TeR�t

�Xl

i=1
�dit

�Y
j<i
Ad

exp(djt�j)

�
�i

�
:

This expression implies that for any right invariant one-form �G 2 
(G), that is, �G(g) =
T �gRg�1(�) for any g 2 G and a �xed � 2 g�,Z 


�G; ��
�
= h�;

rX
i=1

Z �Y
j<i
Ad

exp(
Pl
j=1 d

j
t�j)

�
�i�d

i
ti: (4.34)

At the same time, it is clear that
R 


�G; ��
�
= h�;Xi and hence (4.34) implies that

X =

lX
i=1

Z �Y
j<i
Ad

exp(djt�j)

�
�i�d

i
t:

Using the identity Adexp(�) = ead(�) =
P

n�0
1
n! ad(�) � n: : : � ad(�), for any � 2 g, and writing

X =
Pl

i=1X
i�i, we get the relation

lX
i=1

Xi�i =

lX
i=1

Z �Y
j<i
e ad(d

j
t�j)
�
�i�d

i
t: (4.35)
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The system of stochastic di¤erential equations (4.35) can be solved for the semimartingales
dit, i = 1; : : : ; l by quadratures if the Lie algebra g is solvable (see [WN63, WN64]) and, in
particular, for nilpotent Lie algebras. The solvable case was extensively studied in [K80] where
similar conclusions were presented using a di¤erent approach.
As a simple example consider the a¢ ne group in one dimension A1,that is, the group of

a¢ ne transformations of the real line. Any element of A1 can be expressed as a pair of real
numbers (a0; a1) with a1 6= 0 de�ning the a¢ ne transformation x 7! a1x + a0. The product
� : A1 �A1 ! A1 in A1 is

(a0; a1) � (b0; b1) = (a0 + a1b0; a1b1) :

If f�0 = (1; 0) ; �1 = (0; 1)g is a basis of the Lie algebra a1 of A1, it is immediate to check that

[�0; �1] = ad�0(�1) = ��0: (4.36)

Furthermore, the in�nitesimal generators associated to the left action of A1 on itself are

�A10 (x; y) =
@

@x
and �A11 (x; y) = x

@

@x
+ y

@

@y
:

A typical Lie system on A1 would be, for instance, the following Stratonovich di¤erential
equation on the upper half-plane H+ =

�
(x; y) 2 R2 j y > 0

	
,

��x = dt+ �x�Bt; ��y = �y�Bt

obtained as a particular case of (4.26) when G = A1,

��t = �A10 dt+ �A11 �Bt

where X = (t; B) and B : R+ � 
 ! R is a Brownian motion. More generally, let X :
R+ � 
 ! a1 be an a1-valued semimartingale and write X = X0�0 +X1�1, with X

0 and X1

real semimartingales. Then, using (4.36), (4.35) reads in this particular case

X0�0 +X
1�1 =

Z
�0�d

0
t +

Z �
�1 � d0t �0

�
�d1t =

�Z
�d0t �

Z
d0t �d

1
t

�
�0 +

�Z
�d1t

�
�1:

Putting together the terms that go both with �1 and �0 respectively, we obtain

d1t = X1
t ; d0t = X0

t +

Z t

0
d0s�X

1
s ;

and hence �d0t = �X0
t + d

0
s�X

1
t , whose solution is

d0t = e
X1
t

�Z t

0
�X0

s e
�X1

s

�
:
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4.4 The �ow of a stochastic Lie-Sche¤ers system

Theorem 4.7 claims, roughly speaking, that the stochastic system (4.1) admits a superposition
rule (�; f�1; : : : ;�mg) if the components of the Stratonovich operator S (x; z) : TxRl �! TzRn,
x 2 Rl, p 2 Rn, that de�ne it may be written as Sj(X; z) =

Pr
i=1 b

i
j (X)Yi (z), where

bij 2 C1(Rl) and fY1; : : : ; Yrg � X (Rn) span an involutive distribution. The converse of
this statement is also true provided that, for a given initial condition z 2 Rn, the point
(z; (�1; : : : ;�m)t=0) is a regular point of the foliation G0 generated by the diagonal extensions
of fS1(X; �); : : : ; Sm(X; �)g. Notice that this is a reasonable condition since the set of regular
points of a generalized foliation is open and dense ([D85, Théorème 2.2]). Moreover, when this
happens, the vector �elds fY1; : : : ; Yrg form a real Lie algebra.
The condition on the vector �elds fY1; : : : ; Yrg forming a real �nite dimensional Lie algebra or,

more generally, dim (LiefY1; : : : ; Yrg) <1, are particularly appealing since these are algebraic
requirements that we may expect to be easily veri�ed for stochastic di¤erential equations of
a certain type. Moreover, these conditions have consequences that go beyond Corollary 4.11.
More speci�cally, we will show that if dim (LiefY1; : : : ; Yrg) < 1, then the general solution
of a stochastic di¤erential equation can be written by composing a deterministic function with
a suitable noise. In the following paragraphs we are going to give a precise meaning to this
statement and to put it in the context of well known results available in the literature.
Traditionally, stochastic di¤erential equations on a manifold M have been presented as

��t = Y0(�t)dt+

rX
i=1

Yi (�t) �B
i
t; (4.37)

where fY0; : : : ; Yrg � X (M) and B : R+�
! Rr is a r-dimensional Brownian motion de�ned
on a standard �ltered probability space (
;Ft; P ). For the sake of having a more compact
notation, we write B0t := t. The �ow of such a stochastic di¤erential equation may be locally
written, that is, up to a given stopping time � , by means of a Taylor series expansion that
comes out of Picard�s iterative method for solving stochastic di¤erential equations. In order to
be more explicit we introduce some notation. Let J = fj1; : : : ; jng, ji 2 f0; : : : ; rg, 1 � i � n,
be a multi-index of size n. kJk will denote the degree of J that, by de�nition, is the size of J
plus the number of zeros in the n-tuple (j1; : : : ; jn). For any J = fj1; : : : ; jng, we consider the
iterated Stratonovich multiple integral

BJ
t =

Z t

0
� � �
Z t3

0

Z t2

0
0<t1<:::<tn<t

�Bj1
t1
� � � �Bjn

tn :

In addition, YJ will denote

YJ := [Yj1 ; [Yj2 ; : : : ; [Yjn�1 ; Yjn ]]:

If Y 2 X (M) is a vector �eld on the manifold M , we will use the following notation for its
�ow: exp (sY ) (z) denotes the solution at time s of the ordinary di¤erential equation _ = Y ()
with initial condition (0) = z. Then,
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Theorem 4.16 ([B89, Théorème 20])With the notation introduced so far, if dim(LiefY0; : : : ;
Yrg) <1 and spanfLiefY0; : : : ; Yrgg has constant dimension on a neighborhood V of the point
z 2M , then there exists a stopping time � such that the solution of (4.37) with initial condition
z can be expressed as

�zt = exp

0@ 1X
n=1

X
kJk=n

�JB
J
t

1A (z) (4.38)

up to time � . In this expression,

�J :=
X
�2Sn

(�1)e(�)

n2
�
n�1
e(�)

�Y�(J);
Sn denotes the permutation group of n elements, and e(�) is the cardinality of the set fj 2
f1; : : : ; n� 1g j �(j) > �(j + 1)g.

If the �niteness condition on the dimensionality of the Lie algebra generated by the vector
�elds is not available but, nevertheless, fY0; : : : ; Yrg are Lipschitz vector �elds, then the solution
of (4.37) starting at z 2M can always be approximated by a process like (4.38): if �Nt denotes
the �nite sum

PN
n=1

P
kJk=n �JB

J
t , then

�zt = exp
�
�Nt
�
(z) + tN=2RN (t)

where the error term RN (t) is bounded in probability when t tends to 0 ([C93, Theorem 2.1]).
The expression (4.38) also holds if instead of the hypotheses of Theorem 4.16 we require M to
be an analytic manifold and fY0; : : : ; Yrg a family of real analytic vector �elds ([B89, Théorème
10]). An important consequence of Theorem 4.16 lies in the fact that the general solution of
the stochastic di¤erential equation (4.37) may be written, at least locally and up to a suitable
stopping time � , as the composition of a deterministic and smooth function, namely, the �ow
exponential, with the di¤usion that de�nes the stochastic di¤erential equation (see [H92] for
a complementary reading). From this point of view, there is a strong resemblance between
Theorem 4.16 and Theorem 4.7:

� First, by Corollary 4.11, all the systems that satisfy the hypotheses of Theorem 4.16
admit a superposition rule.

� Second, the superposition rule allows us to write any solution as the composition of the
deterministic function � and the set of solutions f�1; : : : ;�mg that are responsible for
the stochastic behavior of the resulting �ow.

We conclude by quoting two references that study the nilpotent case (that is, the Lie algebra
LiefY0; :::; Yrg is nilpotent); this case has deserved special attention in the literature (see, for
example, [K80]) because in that situation the Taylor series expansion of the �ow in terms of
iterated integrals in (4.38) becomes �nite. We also recommend the excellent exposition in [B04]
for a complementary approach to the subject of Taylor series approximation of the general
solution of (4.37); in this book it is shown that, for instance, the Carnot group of depth
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N = dim (LiefY0; : : : ; Yrg) can be used in the nilpotent case to integrate the Lie algebra action
of LiefY0; : : : ; Yrg when one writes, as we did in the previous section, a Lie-Sche¤ers system as
a stochastic di¤erential equation on a Lie group that acts on the manifold in question.

4.5 Examples.

4.5.1 Inhomogeneous linear systems.

Let Ak : R! Mn(R) a n� n time-dependent real matrix and Bk : R! Rn a time-dependent
vector for any k = 1; : : : ; l. Let X : R+ � 
 ! Rl be a semimartingale. An inhomogeneuous
linear system is a system of stochastic di¤erential equations on Rn that may be written as

��t =

lX
k=1

(Ak(t)(�t)�Bk(t))�Xk
t (4.39)

Let
�
q1; : : : ; qn

�
be coordinates for Rn. It is an exercise to check that (4.39) can be equivalently

written as

��t =
lX

k=1

nX
i;j=1

(Ak)
j
i (t)Y

i
j (�t)�X

k
t +

lX
k=1

nX
i;j=1

(Bk)
j(t)Zj(�t)�X

k
t

where the vector �elds Y i
j , Zj 2 X(Rn), i; j; k = 1; : : : ; n, are given by

Y i
j = qi

@

@qj
, Zj =

@

@qj
:

Given that
[Y i
j ; Y

k
l ] = �kjY

i
l � �ilY k

j , [Y i
j ; Zk] = ��ikZj , and [Zi; Zj ] = 0

we see that the vectors fY i
j ; Zk j i; j; k = 1; : : : ; ng � X(Rn) span a Lie algebra isomorphic to

the (n2 + n)-dimensional Lie algebra of the group of a¢ ne transformations of Rn. Therefore,
the system (4.39) satis�es the hypotheses of Theorem 4.7 and hence it admits a superposition
rule. In order to explicitly construct the superposition rule, let �ej be the solution of the
homogeneous part of (4.39),

��t =

lX
k=1

Ak(t)(�t)�X
k
t

with initial solution �ejt=0 = ej 2 Rn a.s., where ej = (0; j�1: : : ; 0; 1; 0; : : : ; 0) for any j = 1; : : : ; n.
Let � be a particular solution of (4.39) with initial condition �t=0 = 0 2 Rn a.s.. Then,

�t =

nX
j=1

zj�
ej
t + �t

is the general semimartingale solution of (4.39) starting at z = (z1; : : : ; zn) 2 Rn.
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4.5.2 The stochastic exponential of a Lie group.

Let G be a Lie group and g its Lie algebra. Let f�1; : : : ; �lg a basis of g and X : R+ � 
 ! g

be a g-valued semimartingale. Observe that X can be written as X =
Pr

i=1 a
i
t�i for a family

of real semimartingales ai : R+ � 
! R, i = 1; : : : ; l. Following [HL86] and [EP01], we de�ne
the (left) stochastic exponential E(X) : R+ � 
 ! G of X as the unique solution of the
Lie-Sche¤ers system on G given by

��t =

lX
i=1

(�i)
G(�t)�a

i
t

with initial condition �t=0 = e 2 G a.s.. Unlike the conventions used in Section 4.3, the vector
�elds (�i)

G 2 X(G) here are not the right-invariant vector �elds built from �i, i = 1; : : : ; l, but
the left-invariant ones. That is,

(�i)
G(g) = TeLg(�i); g 2 G:

Except for the fact that (�i)
G 2 X(G), i = 1; : : : ; l, are now left-invariant, solving a Lie-

Sche¤ers system on a Lie group such as those presented in Section 4.3 amounts to computing
the stochastic exponential of a given g-valued semimartingale X.
The stochastic exponential establishes a bijection between g-valued local martingales and

martingales on G with respect to certain connections. Recall that, given an a¢ ne connection
r : X(M)�X(M)! X(M) on a manifold M , a M -valued semimartingale � : R+ �
!M is
said to be a r-martingale (or a martingale with respect to r) provided that

f(�)� f(�t=0)�
1

2

Z
Hess f (d�; d�)

is a real local martingale for any f 2 C1(M), where Hess f : X(M)� X(M)! C1(M) is the
bilinear form de�ned as

Hess f (Y; Z) = Y [Z [f ]]�rZY [f ]

for any Y , Z 2 X(M) (see [E89, Chapter IV]). When M = G is a Lie group, one can construct
left invariant connections r by using bilinear skew-symmetric forms � : g� g!R on the Lie
algebra g via the de�nition

r�G�
G := �(�; �); �; � 2 g:

The curves exp(t�) 2 G, where � 2 g and exp : g ! G is the Lie algebraic exponential,
coincide with the geodesics c(t) with respect to these connections that start at e 2 G and
that satisfy _c(0) = �. It can be shown ([EP01, Lemma 1.4]) that the connections built from
� = 0 and �(�; �) = 1

2 [�; �] induce the same r-martingales on G. Moreover, with respect to
these two connections, the set of r-martingales consists precisely of the processes of the form
�0E(X) where X is a g-valued local martingale and �0 a G-valued F0-measurable random
variable ([EP01, Proposition 1.9]). This expression provides the bijection between g-valued
local martingales and r-martingales on G that we announced above.
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4.5.3 Geometric Brownian motion.

Let (R+; �) be the Abelian Lie group of strictly positive real numbers endowed with the standard
product. Its Lie algebra is simply R and, for any � 2 R, the Lie algebra exponential coincides
with the standard exponential, that is exp � = e�; consequently, the in�nitesimal generator
(right or left-invariant) is

�R+(q) = �q; for any q 2 R:

Let G = R+� n: : :�R+ be the Lie group constructed as the direct product of n copies of (R+; �).
Its product map � : G � G ! G is obviously (a1; : : : ; an) � (b1; : : : ; bm) = (a1b1; : : : ; anbn), ai,
bi 2 R+ for any i = 1; : : : ; n, and its Lie algebra is g =T1R+� n: : :�T1R+ ' R� n: : :�R = Rn. Let
f�i = (0; i�1: : :; 0; 1; 0; : : : ; 0) j i = 1; : : : ; ng be the canonical basis of g = Rn, � = (�1; : : : ; �n),
� = (�1; : : : ; �n) 2 g a couple of elements of g, B : R+ � 
 ! g a n-dimensional Brownian
motion on some �ltered probability space

�

; P; fFtgt2R+

�
, and consider the following Lie-

Sche¤ers system on G

��t =

�
�� 1

2
�2
�G

(�t)dt+

nX
i=1

�i�Gi (�t)�B
i
t; (4.40)

where �2 = ((�1)2; : : : ; (�n)2). Using coordinates
�
q1; : : : ; qn

�
in G we can rewrite (4.40) as

�qit =

�
�i � 1

2
(�i)2

�
qitdt+ �

iqit�B
i
t; i = 1; : : : ; n;

which may be rewritten in terms of Itô integrals as

dqit = �iqitdt+ �
iqitdB

i
t; i = 1; : : : ; n: (4.41)

The solutions of the n-dimensional system of stochastic di¤erential equations (4.41) are usually
referred to as the geometric Brownian motion which is well-known for its use in the Black-
Scholes theory of derivatives pricing as a model for the time evolution of the prices of n assets
in a complete and arbitrage-free �nancial market.
The well-known solution of the di¤erential equation (4.41) can be easily obtained by using

the stochastic version of the Wei-Norman method that we introduced in Section 4.3.1. Indeed,
let qt = exp(a1t �1) � � � exp(ant �n) be the solution of (4.41) starting at e = (1; : : : ; 1) 2 G as in the,
where ai : R+ � 
 ! R are real semimartingales such that ait=0 = 0 a.s. for any i = 1; : : : ; n.
Since the Lie algebra g of G is Abelian, and (4.40) is written in Lie-Sche¤ers form

��t =
lX

i=1

�Gi (�t) �X
i
t

by taking the noise semimartingale X :=
��
�1 � (�1)2

2

�
t+ �1B1t ; : : : ;

�
�n � (�n)2

2

�
t+ �nBn

t

�
,

the equation (4.35) in the Wei-Norman method reduces to

�
�1 � (�1)2=2; : : : ; �n � (�n)2=2

�
t+
�
�1B1t ; : : : ; �

nBn
t

�
=

nX
i=1

�ia
i
t;
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which implies that ait = (�
i� (�i)2=2)t+ �iBi

t for any i = 1; : : : ; n. Now, since the exponential
map is given by

exp : g �! G = Rn+
� =

Pn
i=1 �

i�i 7�!
�
e�
1
; : : : ; e�

n
�

where ex is the standard exponential function, we recover the well-known result that the general
solution qt of (4.41) starting at q0 2 Rn+ is

qt =
�
q10 e

(�1�(�1)2=2)t+�1B1t ; : : : ; qn0 e
(�n�(�n)2=2)t+�nBnt

�
:

4.5.4 Brownian motion on reductive homogeneous spaces and symmetric spaces.

LetG a Lie group andH � G a closed subgroup. We say that the homogeneous spaceM = G=H
is reductive if the Lie algebra g of G may be decomposed into as a direct sum g = h�m where
h is the Lie algebra of H and m is a subspace invariant under the action of AdH . That is,
Adh (m) � m for any h 2 H and, consequently, [h;m] � m. The symmetric spaces introduced
in the Example 3.17 are a particular case of reductive homogeneous spaces. Suppose now that
the reductive homogeneous space M is Riemann manifold with Riemannian metric � and that
the transitive action of G leaves the metric � invariant. As in the Example 3.17, we want to
de�ne Brownian motions on (M;�) by reducing a suitable process de�ned on G.
Let o 2M denote the equivalent class of H inM . We have assumed that (M;�) is a Riemann

manifold with a (left) G-invariant metric �. Since � is G-invariant and � is transitive, the only
thing that really matters as far as the characterization of � is concerned is the symmetric
bilinear form �o : ToM � ToM ! ToM . It can be easily proved that there is a natural one-
to-one correspondence between the G-invariant Riemannian metrics � on M = G=H and the
AdH -invariant positive de�nite symmetric bilinear forms B on ToM = g=h ([KN69, Chapter X
Proposition 3.1]). The correspondence is given by

�
�
�M1 ; �

M
2

�
= B (Te� (�1) ; Te� (�2)) ;

where �1; �2 2 g, � : G ! G=H is the canonical submersion, and �M 2 X (M) denotes the
in�nitesimal generator associated to � 2 g. In addition, ifM is reductive then the bilinear form
B may be regarded as de�ned on m, B : m � m ! R, since ToM is naturally isomorphic to
m, which is an AdH -invariant subspace of g. The Riemannian connection r of the metric �
associated to such a bilinear form B is given by

r�M1
�M2 =

1

2

�
�M1 ; �

M
2

�
+ (U (�1; �2))

M ; (4.42)

([KN69, Chapter X Theorem 3.3]). In this expression �1 and �2 belong to m and U : m�m! m

is the bilinear mapping de�ned by

2B (U (�1; �2) ; �3) = B
�
�1;
�
�3;�2

�
m

�
+B

��
�3;�1

�
m
; �2

�
;
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where [�; �]m is such that [�; �] = [�; �]h + [�; �]m with [�; �]h 2 h and [�; �]m 2 m. A consequence of
(4.42) is that the Laplacian � takes the expression

�(f) (m) =

rX
i=1

(L�Mi � L�Mi + U (�i; �i)
M ) (f) (m); m 2M = G=K;

where f�M1 ; : : : ; �Mr g is an orthonormal basis of TmM .
As we said, the most important examples of reductive homogeneous spaces are symmetric

spaces. In that case, G is the connected component of the isometric group I(M) � Di�(M)
of the symmetric space (M;�) containing e = Id. We saw in the Example 3.17 that, for a
symmetric space, the Lie algebra g can be written as g = h�m such that

[h; h] � h; [h;m] � m; [m;m] � h;

and AdH (m) � m ([KN69, Chapter XI Proposition 2.1 and 2.2]). Moreover, the symmetric
space G=K has a unique a¢ ne connection r invariant under the action of G. This is actually
the Riemannian connection ([KN69, Chapter XI Theorem 3.3]) so that (4.42) reads

r�M1
�M2 = 0

for any pair of left-invariant vector �elds �M1 and �M2 .
Returning to the general case, let f�1; : : : ; �rg be a basis of m such that fTe� (�1) : : : ; Te� (�r)g

is an orthonormal basis of To(G=K) with respect to �o and let f�G1 ; : : : ; �Gr g � X (G) be now
the corresponding family of right-invariant vector �elds built from f�1; : : : ; �rg. Observe that
f�M1 (m); : : : ; �Mr (m)g is an orthonormal basis of Tm(G=K) due to the transitivity of the action
and to the G-invariance of the metric �. Consider now the Stratonovich stochastic di¤erential
equation

�gt =

rX
i=1

�Gi (gt)�B
i
t +

rX
i=1

U (�i; �i)
G (gt)dt; (4.43)

where
�
B1t ; : : : ; B

r
t

�
is a Rr-valued Brownian motion. The stochastic system (4.43) is by de-

�nition K-invariant with respect to the natural right action R : K � G ! G, Rk (g) = gk
for any g 2 G and k 2 K. In addition, it is straightforward to check that the projection
� : G ! G=K send any right-invariant vector �eld �G 2 X (G), � 2 g, to the in�nitesimal
generator �M 2 X (M) of the G-action � : G�M !M . Hence (4.43) projects to the stochastic
system

��t =
rX
i=1

�Mi (�t)�B
i
t +

rX
i=1

U (�i; �i)
M (�t) dt (4.44)

on M by Proposition 4.14. It is evident that the solutions of (4.44) have as a generator the
second order di¤erential operator 1

2

Pr
i=1(L�Mi � L�Mi + U (�i; �i)

M ) and they are therefore
Brownian motions.
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5
Conclusions and Outlook

The main goal of this thesis is taking advantage of tools coming from di¤erential geometry
in the qualitative study of stochastic di¤erential equations. Some questions arose during this
work which are still open and may constitute topics of further research. A brief summary and
conclusions of the results achieved, as well as hints about the possible directions for future work
are presented in what follows.

1. We have generalized the concept of stochastic Hamiltonian system in two aspects. First of
all, allowing the driving noise of such a system to be an arbitrary continuous semimartin-
gale instead of a standard Brownian motion and, secondly, de�ning them on general
Poisson manifolds in terms of intrinsically de�ned structures. It is worth pointing out
that the geometric language that we use improves the presentation of stochastic Hamil-
tonian systems that Bismut made in his seminal work [B81]. This geometric framework
turns out to be extremely convenient at the time of studying the qualitative behavior of
Hamiltonian systems. Indeed, we could for example give simple criteria that characterize
conserved quantities, or to provide su¢ cient conditions for the stability (almost sure or in
probability) of a given equilibrium point (see the Stochastic Dirichlet Criterion Theorem
2.15 and the Stochastic Lyapunov Theorem 2.17). However, the most important contri-
bution in Chapter 2 is the Variational Principle introduced in Theorem 2.34. Not only do
we de�ne a stochastic action which can be naturally seen as a generalization of that of
a deterministic Hamiltonian systems; more importantly, we also prove that the solutions
of the stochastic Hamiltonian equations are in one-to-one correspondence with the semi-
martingales that make that action critical under a suitable set of (pathwise) variations.
This improves other attempts found in the literature. As far as we know, this is the �rst
time that such a characterization is proved.

2. The stochastic action is not only important because it characterizes the solutions of the
stochastic Hamiltonian equations but also because, when appropriately regarded as a
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function on the con�guration space, it satis�es a stochastic version of the Hamilton-
Jacobi equation. As a consequence, we showed in Example 2.41 that the stochastic action
of some particular Hamiltonian systems can be used to build solutions of the heat equation
modi�ed with a potential term. As we saw, these solutions are obtained by exponentiation
of the action and then taking expectations. It is worth noticing that except for the
absence of the imaginary complex unit i, this equation is formally equivalent to the
Schrödinger equation. We must confess that we tried to conveniently insert the complex
numbers in the derivation of that heat equation and therefore obtain solutions of the
Schrödinger�s, obviously following the ideas of the Feynman path integral quantization
procedure. Unfortunately, we did not obtain any satisfactory result. However, we think
that Example 2.41 and its utility to �nd solutions of the Schrödinger equation needs
further investigation. In particular, it may be useful to write down the wave function of
stationary states since, in this particular case, time dependence, and therefore the role of
the complex unit i in the Schrödinger equation, can be removed.

3. In Chapter 2, we provide several examples of stochastic Hamiltonian systems. Despite
their intrinsic interest, they are rather illustrative and we have the feeling that more
physical consequences could be obtained if they were pushed forward. For example, the
stochastic models for a randomly perturbed rigid body introduced in Subsection 3.6.3
could be further explored as far as its stability properties is concerned; on the other
hand, some numerical schemes such as Monte Carlo methods could be implemented and
tested to compute expected values of observable quantities.

We also have the impression that stochastic Hamiltonian systems may play an important
role in the description of some systems arising in statistical physics which, by their own
nature, are described in probabilistic terms. Indeed, statistical physics tries to build a
bridge between classical mechanics and thermodynamics using probability theory and
statistics. Therefore, as the example in Subsection 2.2.3 suggests, the appearance of the
Langevin equation as a consequence of an underlying stochastic Hamiltonian equation
seems not to be a coincidence. In any case, this relation should be investigated more
carefully. It is worth noticing that the use of stochastic processes in the statistical study
of some, a priori, deterministic Hamiltonian systems is nothing new. One of the most
illustrative examples are the Kac-Zwanzig heat bath models which still deserve a lot
of attention from both physicists and mathematicians (see [AV08, K04]). We plan to
consider these models in the future.

4. Nowadays, mathematical �nance is probably the �eld where stochastic processes �nd
a larger number of practical applications. Consequently, one lack of the present thesis
is the absence of any comment about the stochastic models used in �nance, whether
Hamiltonian or not. We hope to �x this situation in a near future. In particular, one
should consider the stochastic volatility models widely used in the industry. Unlike the
standard Black-Scholes model for the price of an asset which assumes constant volatility,
stochastic volatility models allow it to depend on time (see for instance [HW78, H93]).
Then, volatility evolves with time satisfying a suitable stochastic di¤erential equation and,
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consequently, can be regarded as a generalized momentum for the asset price. In other
words, stochastic volatility models could be good candidates for Hamiltonian systems.

5. A substantial contributions of this thesis is the systematic treatment of symmetries of
stochastic di¤erential equations carried out in Chapter 3, a subject that had so far re-
ceived little attention in the literature, when compared with its deterministic counterpart.
Using mechanics as a model, we showed in the Reduction Theorem 3.9 and the Recon-
struction Theorem 3.10 how to cope with the degeneracies of a stochastic di¤erential
equation invariant under the (free) action of a Lie group of symmetries. In some cases, we
related the presence of such symmetries to the skew-product decomposition of the in�n-
itesimal generators associated to the symmetric stochastic equations under study. As we
pointed out in Chapter 3, skew-product decompositions have deserved special attention
by some authors in the last decades. For a non-free Lie group action, more interesting
decompositions were obtained in Theorem 3.20.

6. The theory of Lie algebroids has recently proved to be extremely fruitful in tackling some
problems in the context of geometric mechanics ([CM01]). Nowadays, the formulation
of Lagrangian and Hamiltonian mechanics in the context of Lie algebroids is fully un-
derstood. Recall that the dual of a Lie algebroid admits a canonical Poisson structure
and, therefore, one can naturally consider Hamiltonian systems on them. According to
the results and the acceptance of this new formalism, one should investigate the conse-
quences of having stochastic processes taking values on Lie algebroids or their duals for
mechanical purposes.

7. In Chapter 4, we introduce the notion of superposition rule for stochastic di¤erential
equations. Roughly speaking, a superposition rule exists for stochastic di¤erential equa-
tions if (up to a non-zero stopping time) any solution of the equation can be expressed
using a given set of particular solutions. In this context, our contribution consist in for-
mulating the stochastic version of the Lie-Sche¤ers Theorem. Indeed, Theorem 4.7 gives
su¢ cient and necessary conditions for a given stochastic di¤erential equation to admit a
superposition rule. The proof of the theorem, which includes the classical Lie-Sche¤ers
Theorem as a particular case, �lls the gaps and clari�es some points in the proofs of the
previous versions of the deterministic Lie-Sche¤ers Theorem. Connections with existing
results, applications and illustrations of this theorem are given in the setting of Lie groups
and homogeneous spaces.

8. Finally, we would like to say a few words about rough paths. The theory of rough paths was
introduced to de�ne integration with respect to non-di¤erentiable functions ([CLT04]).
Unlike stochastic integration, rough paths integration does not refer to any probabilistic
concept. However, it extends it in the sense that paths need not have �nite quadratic
variation. We are convinced that most of the results of the present thesis can be reformu-
lated replacing stochastic di¤erential equations with di¤erential equations driven by rough
paths, something that would considerable reduce the di¢ culty of some proofs. Indeed,
dealing with a single path instead of a whole process seems a priori more manageable. It
would be advisable to carry out this generalization in a future work.
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Appendix A
Auxiliary results about integrals and stopping times

In the following paragraphs we collect some results that are used in Chapter 2 in relation with
the interplay between stopping times and integration limits.

Proposition A.1 Let X be a continuous semimartingale de�ned on [0; �X) and � a continuous
semimartingale. Let � ; � be two stopping times such that � � � < �X : Then,

(X � �)� =
�
1[0;� ]X

�
� � = (X � �� ) and (X � �)� � (X � �)� =

�
1(�;�]X

�
� �

An equivalent result holds when dealing with the Stratonovich integral, namely�Z
X��

��
=

Z
X��� =

�Z
X���

��
:

Proof. By [P05, Theorem 12, page 60] we have that 1[0;� ]X �� = (X � �)� = (X � �� ). Therefore,

(X � �)� � (X � �)� = 1[0;�]X � �� 1[0;� ]X � � =
��
1[0;�] � 1[0;� ]

�
X
�
� � =

�
1(�;�]X

�
� �:

As to the Stratonovich integral, sinceX and � are semimartingales, we can write [P05, Theorem
23, page 68] that�Z

X��

��
= (X � �)� + 1

2
[X;�]� = (X � �� ) + 1

2
[X;�� ] =

Z
X��� :

Finally, observe that for any process, (X� )� = X� . On the other hand, taking into account
that 1[0;� ]X = 1[0;� ]X

� and [�; X] = [X;�], we have�Z
X��

��
= 1[0;� ]X � � + 1

2
[X;�]� = 1[0;� ]X

� � � +
�
1

2
[X;�]�

��
= (X� � �)� +

�
1

2
[X� ;�]

��
=

�
X� � � + 1

2
[X� ;�]

��
=

�Z
X���

��
:
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Proposition A.2 Let X : R+ �
! R be a real valued process. Let f�ngn2N be a sequence of
stopping times such that a.s. �0 = 0, �n � �n+1, for all n 2 N, and supn2N �n =1. Then,

X = lim
ucp
n!1

X�n :

In particular, if � : R+ � 
 ! M is a continuous M -valued semimartingale and � 2 
2 (M)
then, Z

h�; d�i = lim
ucp

k!1

�Z
h�; d�i

��k
= lim

ucp

k!1

k�1X
n=0

Z
1(�n;�n+1] h�; d�i :

Proof. Let " > 0 and t 2 R+. Then for any s 2 [0; t] one has

fjX�n �Xjs > "g � f�n < sg � f�n < tg :

Hence for any t 2 R+
P (fjX�n �Xjs > "g) � P (f�n < tg) :

The result follows because P (f�n < tg) ! 0 as n ! 1 since �n ! 1 a.s., and hence in
probability. Let now � be a M -valued continuous semimartingale and � 2 
2 (M). Notice �rst

that
�Z

h�; d�i
��0

= 0 because �0 = 0. Consequently, by Proposition A.1 we can write

�Z
h�; d�i

��k
=

k�1X
n=0

�Z
h�; d�i

��n+1
�
�Z

h�; d�i
��n

=
k�1X
n=0

Z
1(�n;�n+1] h�; d�i

and the result follows.

Lemma A.3 Let fXngn2N be a sequence of real processes converging in ucp to a process X. Let
� be a stopping time such that � <1 a.s.. Then, the sequence of random variables f(Xn)�gn2N
converge in probability to (X)� .

Proof. First of all we show that since � <1 a.s., then P (f� > tg) converges to zero as t!1.
By contradiction, suppose that this is not the case. Then, denoting An := f� > ng, we have
that An+1 � An, so P (An) forms a non-increasing sequence of real numbers in the interval
[0; 1]. Since this sequence is bounded below, it must have a limit. This limit corresponds to the
probability of the event f� =1g. If it is strictly positive then there is a contradiction with the
fact that � <1 a.s.. So P (f� > tg) tends to zero as t!1.
We now prove the statement of the lemma. Take some " > 0 and an auxiliary t 2 R+. The

set fj(Xn)� �X� j > "g can be decomposed as the disjoint union of the following two events,

(fj(Xn)� �X� j > "g \ f� � tg)
[
(fj(Xn)� �X� j > "g \ f� > tg) :

The �rst one is contained in the set
�
sup0�s�t j(Xn)s �Xsj > "

	
whose probability, by hypoth-

esis, converges to zero as n!1. Regarding the second one,

P (fj(Xn)� �X� j > "g \ f� > tg) � P (f� > tg) :
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But P (f� > tg) can be made arbitrarily small by taking the auxiliary t big enough. In conclu-
sion, for any " > 0,

P (fj(Xn)� �X� j > "g) �!
n!1

0

in probability.

Lemma A.4 Let fXngn2N be a sequence of real processes converging in ucp to a real process
X and � a stopping time. Then, the stopped sequence fX�

ngn2N converges in ucp to X� as well.

Proof. We just need to observe that, for any t 2 R+,

sup
0�s�t

j(X�
n)s �X

�
s j = sup

0�s�t
j(Xn)�^s �X�^sj � sup

0�s�t
j(Xn)s �Xsj

and, consequently, for any " > 0,�
sup
0�s�t

j(Xn)s �Xsj � "

�
�
�
sup
0�s�t

j(X�
n)s �X

�
s j � "

�
:

Hence, since by hypothesis P
��
sup0�s�t j(Xn)s �Xsj � "

	�
converges to 1 as n!1, then so

does P
��
sup0�s�t j(X�

n)s �X�
s j � "

	�
.

Proposition A.5 Let X and Y be two real semimartingales. Suppose that X is continuous
and X0 = 0. Then, for any t 2 R+, the Stratonovich integral

R �
1[0;t]Y

�
�X is well de�ned and

equal to
�R
Y �X

�t.
Proof. If

R �
1[0;t]Y

�
�X was well de�ned, it should be equal to

R �
1[0;t]Y

�
dX + 1

2

�
1[0;t]Y;X

�
.

Since
R �
1[0;t]Y

�
dX is well de�ned, the only thing that we need to check is that

�
1[0;t]Y;X

�
exists. On the other hand, recall that ([P05, Theorem 12 page 60 and Theorem 23 page 68])�Z

Y �X

�t
=

Z �
1[0;t]Y

�
dX +

1

2
[Y;X]t =

Z �
1[0;t]Y

�
dX +

1

2

�
Y t; X

�
:

Hence, what we are actually going to proceed by showing that
�
1[0;t]Y;X

�
is equal to

�
Y t; X

�
.

Let �n =
�
0 = Tn0 � Tn1 � ::: � Tnkn <1

	
be a sequence of random partitions tending to the

identity (in the sense of [P05, page 64]). Given two real processes X and Y , their quadratic
variation, if it exists, can be de�ned as the limit in ucp when n!1 of the following sums

[Y;X] = lim
ucp
n!1

kn�1X
i=0

�
Y Tni+1 � Y Tni

��
XTni+1 �XTni

�
:

Let now

Hn :=

kn�1X
i=0

��
Y t
�Tni+1 � �Y t

�Tni ��XTni+1 �XTni

�
;

Gn :=

kn�1X
i=0

��
1[0;t]Y

�Tni+1 � �1[0;t]Y t
�Tni ��XTni+1 �XTni

�
:
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It is clear that the sequence fHngn2N converges uniformly on compacts in probability to�
Y t; X

�
. We are going to prove that there exists such a convergence for the sequence of processes

fGngn2N by showing that the elements (Gn)s coincide with (Hn)s, for any s 2 R+, up to a set
whose probability tends to zero as n!1. We will consider two cases:
1. The case s � t. Given a speci�c i 2 f0; :::; kn � 1g, and recalling that by construction
Tni � Tni+1 a.s., it is clear that

��
Y t
�Tni+1 � �Y t

�Tni �
s
= YTni+1^s�YTni ^s is di¤erent from 0 only

for those ! 2 
 in fTni < sg in which case it takes the value

YTni+1^s � YTni : (A.1)

On the other hand,
��
1[0;t]Y

�Tni+1 � �1[0;t]Y t
�Tni �

s
is again di¤erent from 0 only in the set

fTni < sg and there it is equal to (A.1). Therefore, (Gn)s = (Hn)s whenever s � t.

2. The case s > t. In this case,
��
Y t
�Tni+1 � �Y t

�Tni �
s
= Yt^Tni+1 � Yt^Tni which is di¤erent

from 0 only in the set fTni < tg, where it takes the value

Yt^Tni+1 � YTni (A.2)

However, in this case
��
1[0;t]Y

�Tni+1 � �1[0;t]Y t
�Tni �

s
= 1fTni+1�tgYt^Tni+1�1fTni �tgYt^Tni , which

is equal to (A.2) in the set
�
Tni+1 � t

	
(which contains fTni < tg since Tni � Tni+1), but di¤ers

from (A.2) in
Ani (t) :=

�
Tni � t < Tni+1

	
where it takes the value �YTni . For any other ! 2 
 not in these sets,��

1[0;t]Y
�Tni+1 � �1[0;t]Y t

�Tni �
s
(!) = 0:

Therefore, whenever s > t, (Gn)s and (Hn)s are di¤erent only for the ! 2 Ani (t). Observe that,
since t is �xed, only one of the sets fAni (t)gi2f0;:::;kn�1g is non-empty and, on it,

(Hn)s � (Gn)s = Yt
�
Xt �XTni

�
:

To sum up, the analysis that we just carried out shows that for any u 2 R+

sup
0�s�u

j(Hn)s � (Gn)sj = 1Ani (t) jYtj
���Xt �XTni

���
for some i 2 f0; :::; kn � 1g. If X is continuous, this expression tells us that

sup
0�s�u

j(Hn)s � (Gn)sj ! 0 a.s. as n!1

which, in turn, implies that sup0�s�u j(Hn)s � (Gn)sj converges to 0 in probability as well.
That is, for any " > 0,

P

��
sup
0�s�u

j(Hn)s � (Gn)sj > "

��
! 0; as n!1;
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which is the same as saying that Hn � Gn converges to 0 in ucp. Thus, since Gn = Hn �
(Hn �Gn) and the limit in ucp as n!1 exist for the both sequences fHngn2N and fHn �Gngn2N,
so does the limit of fGngn2N which, by de�nition, is the quadratic variation

�
1[0;t]Y;X

�
. More-

over, as (Hn �Gn)! 0 in ucp as n!1,�
Y t; X

�
= lim

ucp
n!1

Hn = lim
ucp
n!1

Gn =
�
1[0;t]Y;X

�
;

which concludes the proof.
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