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Este trabajo recopila la investigación desarrollada y los resultados obtenidos durante
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tutor he contado con Rafael Orive Illera, Profesor Titular de la Universidad Autónoma de
Madrid. De la tarea de lector se ha encargado Marco Castrillón López, Profesor Titular
de la Universidad Complutense de Madrid.

La monografía versa sobre teoría clásica de campos de orden superior. El lector podrá
encontrar en sus capítulos iniciales una revisión de algunos de los hechos conocidos en
mecánica clásica y teoría clásica de campos (de primer orden). En los capítulos �nales,
se expone la parte original de la memoria con la extensión de estas teorías a campos
clásicos de orden superior, centrándose en la problemática de un formalismo canónico
hamiltoniano. Algunos ejemplos son propuestos con el �n de facilitar la comprensión y
análisis de los resultados obtenidos.

Se ha pretendido dar una organización gradual y un tratamiento uni�cado de la ma-
teria de tal manera que pueda ser usada en posibles desarrollos futuros.
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Introducción

Una teoría de campos es una teoría física que describe como uno o más campos físicos
interactúan con la materia. Un campo físico puede ser entendido como una asignación
continua de una magnitud física en cada punto del espacio y el tiempo: por ejemplo,
la velocidad de un �uido, el electromagnetismo o incluso la gravedad. Estos son ejemp-
los de campos macroscópicos o �clásicos� en contraste a los microscópicos o �cuánticos�.
Nos centraremos en los primeros. En cierto sentido, la teoría clásica de campos es una
generalización de la mecánica clásica, en la cual el único campo es la linea temporal.

Desde un punto de vista matemático, los campos clásicos pueden ser descritos como
secciones φ de un �brado π : E → M . El marco se completa introduciendo una función
que abarca la dinámica del sistema físico, la función lagrangiana. Para una teoría clásica
de campos, esto es una función L : J1π → R, donde J1π es el �brado de jets de orden uno
de π. Este �brado de jets ofrece una descripción geométrica de las derivadas parciales
de las coordenadas �bradas de E con respecto a las de M , donde una sección es �jada.
Buscamos pues aquellas secciones φ del �brado π : E → M , los campos, que extremizan
el funcional

AL(φ,R) =

∫
R

L(j1φ)η,

donde η es una forma de volumen pre�jada (se da por supuesto que M es orientable),
R ⊆M es una región compacta de M y j1φ es la primera prolongación jet de φ.

Uno de los resultados más básicos del cálculo variacional es la construcción a partir
del funcional anterior de un conjunto de ecuaciones en derivadas parciales, las ecuaciones
de Euler-Lagrange

∂L

∂uα
− d

dxi
∂L

∂uαi
= 0,

las cuales deben ser satisfechas por cualquier extremal suave. Más interesante, la propiedad
de extremización del problema no depende de la elección particular del sistema de coor-
denadas (hecho que notó J. L. Lagrange durante sus estudios de mecánica analítica), por
tanto debe ser posible escribir las ecuaciones de Euler-Lagrange de forma intrínseca.

La interpretación geométrica de las ecuaciones de Euler-Lagrange se realiza por medio
de la así llamada forma de Poincaré-Cartan ΩL. Esta forma está construida usando la
geometría del �brado de jets y también está relacionada con el trasfondo variacional
[97]. Usando esta forma, es posible escribir la ecuaciones de Euler-Lagrange de forma
intrínseca. Es más, φ satisface las ecuaciones de Euler-Lagrange (es decir, es un punto
crítico de la acción AL) si y sólo si

(j1φ)∗(iV ΩL) = 0, para todos los vectores tangentes V en TJ1π.

Además, esta forma juega un papel importante en la conexión entre las simetrías y las
leyes de conservación (see [53]).
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xvi INTRODUCCIÓN

Otra manera de describir la evolución de los campos es introduciendo una función
dinámica el dual a J1π, esto es, una función hamiltoniana H : J1π† → R, donde J1π†

es el dual extendido del �brado de jets de primer orden de π. Entonces, la dinámica
del sistema viene descrita gracias a las soluciones de las bien conocidas ecuaciones de
Hamilton

∂H

∂uα
= −∂p

i
α

∂xi
y

∂H

∂piα
=
∂uα

∂xi
,

las cuales son extremales para el principio variacional dado en J1π† (véanse [31, 61, 115,
134, 147]).

La relación entre estos dos marcos, el formalismo lagrangiano y el hamiltoniano, es de-
scubierto por la transformada de Legendre. Dado un lagrangiano L : J1π → R, podemos
de�nir el mapa LegL : J1π → J1π†. Esta función tiene interesantes propiedades como
enviar las soluciones de las ecuaciones de Euler-Lagrange a soluciones de las ecuaciones
de Hamilton, o bien retrotraer la (m+1)-forma de Cartan ΩH de J1π† a la (m+1)-forma
de Poincaré-Cartan J1π (véanse [35, 61, 134, 147]). Es más, cuando L es regular, esto es
cuando su �hessiano� (

∂2L

∂vα∂vβ

)
es regular, la transformada de Legendre LegL es un difeomor�smo local en su imagen, la
cual es a su vez difeomorfa al dual reducido del �brado de jets de primer orden, J1π◦.

En la actualidad, se posee una muy buena comprensión de las teorías de campos de
primer orden. Pero muchos lagrangianos que aparecen las teorías de campos son de orden
superior (como por ejemplo en elasticidad o gravitación), por tanto es de sumo interés
encontrar un marco completamente geométrico también para estas teorías de campos, esto
cuando uno considera una función lagrangiana L : Jkπ → R, donde Jkπ es el �brado de
jets de orden k de π. Durante las últimas décadas del pasado siglo, han habido diferentes
estudios e intentos para de�nir de manera global e intrínseca el cálculo variacional de
orden superior en varias variables. Los objetivos principales son describir las ecuaciones
de Euler-Lagrange asociadas para secciones del �brado, derivar las formas de Poincaré-
Cartan como versión intrínseca las ecuaciones anteriores, y construir transformadas de
Legendre adecuadas que nos permitan escribir estas ecuaciones en el marco hamiltoniano
(véanse, por ejemplo, [4, 6, 65, 66, 89, 94, 106, 113, 63, 62, 140] para más información).

El marco geométrico estándar de la teoría de campos de orden superior se inicia con
la búsqueda de extremales del funcional

AL(φ,R) =

∫
R

L(jkφ)η,

donde como antes η es una forma de volumen pre�jada, R ⊆M es una región compacta
y jkφ es la prolongación k-jet de φ. El calculo variacional establece que los extremales de
esta acción integral deben satisfacer las ecuaciones de Euler-Lagrange de orden superior

k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uαJ
=

∂L

∂uα
− d

dxi
∂L

∂uαi
+

d2

dxij
∂L

∂uα1i+1j

− · · ·+ (−1)k
dk

dxJ
∂L

∂uαJ
= 0,

las cuales son un conjunto de ecuaciones en derivadas parciales en J2kπ. Al igual que
en el caso de primer orden, estas ecuaciones no dependen de la elección de coordenadas.
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Por tanto, uno puede llegar a preguntarse si existe un objeto canónico que describa
geométricamente este conjunto de ecuaciones y sus soluciones. En tal caso, debería de
ser una forma de Poincaré-Cartan de orden superior.

La situación está bien establecida para el caso de una variable dependiente (mecánica
de orden superior) y para el caso de primer orden [85, 91, 93, 105]. En este último caso,
la expresión típica de la forma de poincaré-Cartan asociado en mecánica clásica a un
lagrangiano L : J1π → R puede ser escrita como S∗(dL) + Ldt, donde S∗ es el adjunto
del endomor�smo vertical actuando sobre 1-formas. Con el objetivo de generalizar este
concepto a teorías de campos de orden superior, uno necesita de�nir una aplicación de las
1-formas (la diferencial de L) a m-formas e incorporar de manera global las derivadas de
orden superior. Esta es una de las razones para el grado de arbitrariedad en la de�nición
de la forma de Cartan para funciones lagrangianas L : Jkπ → R, con k > 1 y dimM > 1.
En otras palabras, habrán diferentes formas de Cartan de�nidas a partir de la misma
función que de�nan una formulación intrínseca de las ecuaciones de Euler-Lagrange. La
razón principal de este problema es la conmutatividad de las derivadas parciales iteradas.
Por tanto, la forma de Cartan es única si (y sólo si) bien k o bien m es igual a uno.

En la literatura, encontramos diferentes aproximaciones para �jar la forma de Cartan
en teorías de campos de orden superior. Un trato directo es la aproximación de Aldaya y
Azcárraga [4, 6]. Otro punto de vista es el de Arens [8], que consiste en inyectar el �brado
de jets Jkπ en un �brado de jets de orden 1 apropiado, con la introducción de numerosas
variables dentro de una teoría de multiplicadores de Lagrange. Desde un punto de vista
más geométrico, García y Muñoz describen un método global para la construcción de
formas de Poincaré-Cartan en el calculo de variaciones de orden superior de espacios
�brados por medio de conexiones (see [88, 89]). En particular, construyen formas de
Cartan que dependen de la elección de dos conexiones, una conexión lineal en la base y otra
conexión lineal en el �brado vertical V π. Más tarde, Crampin y Saunders [140] proponen
el uso de operadores análogos a la estructura casi tangente canónicamente de�nida en el
�brado tangente de una variedad de con�guración dada M para la construcción global
de formas de Poincaré-Cartan; este operador depende de la forma de volumen elegida en
la base.

En esta monografía, propones un camino alternativo, evitando el uso de estructuras
adicionales y trabajando únicamente con objetos intrínsecos del lado lagrangiano y del
hamiltoniano. Los resultados pueden encontrase publicados en [24, 25, 26, 27] (para un
punto de vista complementario, se sugiere el trabajo de Vitagliano [152]). Con vistas a
tratar sistemas lagrangianos singulares, Skinner y Rusk construyen un sistema hamilto-
niano en la suma de Whitney TQ ⊕ T ∗Q de los �brados tangente y cotangente de una
variedad de con�guración Q. La ventaja de su acercamiento yace en el hecho de que
la condición de segundo orden de la dinámica es satisfecha automáticamente. Esto no
ocurre en el lado lagrangiano de la formulación de Gotay y Nester, donde la condition de
segundo orden debe de ser considerada tras la implementación del algoritmo de ligaduras
(ver [100, 101, 102]), aunque otros formalismos incluyen esta condición de segundo orden
desde el principio (ver [34, 36]).

En teorías de campos de orden superior, empezamos con un lagrangiano de�nido en
Jkπ. Consideramos el �brado πW,M : W → M , donde W = Jkπ ×Jk−1π Λm

2 (Jk−1π)
es un producto �brado, el espacio de velocidades y momentos. En W construímos una
forma premultisimpléctica haciendo el �pull back� de la forma multisimpléctica canónica
de Λm

2 (Jk−1π), y de�nimos un formalismo hamiltoniano conveniente gracias al pairing
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natural canónico y la función lagrangiana dada. Las soluciones de la ecuación de campos
son entendidas como secciones integrales de conexiones de Ehresmann en el �brado πW,M :
W → M . En este espacio, obtenemos una expresión global, intrínseca y única de una
ecuación tipo Cartan para las ecuaciones de Euler-Lagrange para teorías de campos de
orden superior. Adicionalmente, obtenemos algoritmo de ligaduras. Nuestro esquema es
aplicado a diferentes ejemplos para ilustrar el método.

A parte de la carencia de ambigüedad inherente a nuestra construcción, vale la pena
enfatizar que este formalismo se puede extender fácilmente a teorías de campos de orden
superior con restricciones o problemas de control óptimo en ecuaciones en derivadas par-
ciales. En este sentido, obtenemos una descripción uni�cadora y geométrica de ambos
tipos de sistemas, con posibles aplicaciones futuras a teorías de reducción por simetrías y
la construcción de métodos numéricos que preserven la estructura geométrica (ver [116]).
Por tanto, introducimos restricciones en el marco de trabajo, las cuales están represen-
tadas geométricamente como una subvariedad C de Jkπ. En otras palabras, imponemos
restricciones en el espacio de secciones donde la acción está de�nida. El formalismo in-
troducido en [27] es adaptado al caso de teorías de campos restringidas, derivando así un
marco intrínseco de las ecuaciones de Euler-Lagrange restringidas. Para la descripción
geométrica, inducimos una subvariedad W C

0 de W usando las restricciones dadas por C.
Algunos ejemplos son dados para ilustrar la teoría, la cual está recogida en [26].

El Capítulo �1 recopila la notación utilizada a lo largo de la monografía así como
el fondo matemático necesario: distribuciones, las diferentes geometrías simplécticas, la
estructura del �brado tangente, etc. También contiene un esquema del algoritmo de
Gotay-Nester-Hinds.

El Capítulo �2 es una somera revisión de la mecánica clásica. Describe los principales
resultados de la teoría desde el lado lagrangiano y el hamiltoniano.

El Capítulo �3 es una breve introducción a la teoría clásica de campos. Desarrolla la
teoría (generalmente sin pruebas) en los diferentes formalismos, el lagrangiano y el hamil-
toniano, y los diferentes posibles acercamientos, el variacional y el geométrico. También
muestra la relación entre ellas e introduce el formalismo de Skinner y Rusk para teorías
de campos.

El Capítulo �4 está dedicado al estudio de la teoría clásica campos clásicos de orden
superior. El lector podrá encontrar una primera generalización de los principales objetos
geométricos de la teoría de primer orden, señalando las causas de la ambigüedad inherente
a la teoría de orden superior. En adelante, el capítulo se centra en la resolución de esta
ambigüedad por medio del formalismo de Skinner y Rusk. También introduce restric-
ciones en el esquema. Finalmente, hay una presentación de algunos resultados parciales
en la reducción de la arbitrariedad en el espacio de soluciones de la teoría.

Por último, el Capítulo �5 expone un resumen de los principales resultados obtenidos
a lo largo de mis estudios, junto con algunas conclusiones y los trabajos futuro que se
inician con este tratado.



Introduction

A �eld theory is a physical theory that describes how one or more physical �elds interact
with matter. A physical �eld can be thought of a continuous assignment of a physical
quantity at each point of space and time: For instance, the velocity of a �uid, electro-
magnetism or even gravitation. These are macroscopic or �classical� �eld examples in
contrast to �microscopic� or quantum ones. We will focus on the former. In some sense,
classical �eld theory is a generalization of classical mechanics, in which the only �eld is
the time line.

From the mathematical point of view, classical �elds may be described by sections φ
of a �ber bundle π : E → M . The picture is completed by introducing a function that
encompasses the dynamics of the physical system, the Lagrangian. For �rst order �eld
theories, it is a function L : J1π → R, where J1π is the �rst-jet bundle of π. This jet
bundle gives a geometrical description of the partial derivatives of the �ber coordinates
of E with respect to those of M , where a section is �xed. We then look for those sections
φ of the �ber bundle π : E →M , the �elds, that extremize the functional

AL(φ,R) =

∫
R

L(j1φ)η,

where η is a �xed volume form (it is assumed that M is orientable and oriented), R ⊆M
is a compact region of M and j1φ is the 1st-jet prolongation of φ.

The most basic result on variational calculus is the construction from the above func-
tional of a set of partial di�erential equations, the Euler-Lagrange equations

∂L

∂uα
− d

dxi
∂L

∂uαi
= 0,

which must be satis�ed by any smooth extremal. More interesting, the property of
extremizing the problem does not depend on the particular chosen coordinate system
(fact noted by J. L. Lagrange during his studies of analytical mechanics), therefore it
must be able to write the Euler-Lagrange equations in an intrinsic way.

The geometric interpretation of the Euler-Lagrange equations is done by means of the
so-called Poincaré-Cartan form ΩL, which is an (m + 1)-form (dimM = m) univocally
associated to the Lagrangian. This form is constructed using the geometry of the jet
bundle and it is also related with the variational background [97]. Using this form, it
is possible to write down the Euler-Lagrange equations in an intrinsic way. Indeed, φ
satis�es the Euler-Lagrange equations (that is, it is a critical point of the action AL) if
and only if

(j1φ)∗(iV ΩL) = 0, for all tangent vector V in TJ1π.

Moreover, this form plays an important role in the connection between symmetries and
conservation laws (see [53]).

xix
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Besides, another way to describe the evolution of the �elds is by introducing a dynami-
cal function in the dual side of J1π, that is, by introducing the HamiltonianH : J1π† → R,
where J1π† is the extended dual �rst-jet bundle of π. Then, the dynamics of the system
is described by means of the solutions of the well known Hamilton's equations

∂H

∂uα
= −∂p

i
α

∂xi
and

∂H

∂piα
=
∂uα

∂xi
,

which are extremals of a variational principle given in J1π† (see [31, 61, 115, 134, 147]).
The relation between these two pictures, the Lagrangian and the Hamiltonian for-

malisms, is unveiled by the Legendre transformation. Given a Lagrangian L : J1π → R,
we may de�ne a mapping LegL : J1π → J1π†. This function has interesting properties
like it maps the solutions of the Euler-Lagrange equation to solutions of the Hamilton's
equations or it pulls back the Cartan (m+ 1)-form ΩH of J1π◦ into the Poincaré-Cartan
(m + 1)-form of J1π (see [35, 61, 134, 147]). Moreover, when L is regular, that is when
its �Hessian� (

∂2L

∂vα∂vβ

)
is regular, the Legendre map LegL is a local di�eomorphism into its image, which is in
its turn di�eomorphic to the reduced dual �rst-jet bundle J1π◦.

So far, the �rst-order case of �eld theories is pretty well understood. But many of the
Lagrangians which appear in �eld theories are of higher order (as for instance in elasticity
or gravitation), therefore it is interesting to �nd a fully geometric setting also for these
�eld theories, that is when one considers a Lagrangian function L : Jkπ → R, where Jkπ
is the kth-order jet bundle of π. During the last decades of the past century, there have
been di�erent studies and attempts to de�ne in a global and intrinsic way the higher-
order calculus of variations in several independent variables. The main objectives are to
describe the associated Euler-Lagrange equations for sections of the �ber bundle, to derive
Poincaré-Cartan forms for use in intrinsic versions of the above equations, and to construct
adequate Legendre maps which permit to write the equations in the Hamiltonian side (see,
for instance, [4, 6, 65, 66, 89, 94, 106, 113, 63, 62, 140] for further information).

The standard geometric framework of higher-order �eld theories starts by looking for
the extremals of the functional

AL(φ,R) =

∫
R

L(jkφ)η,

where as before η is a �xed volume form, R ⊆M is a compact region and jkφ is the k-jet
prolongation of φ. Variational calculus states that the extremizers of this integral action
must satisfy the higher-order Euler-Lagrange equations

k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uαJ
=

∂L

∂uα
− d

dxi
∂L

∂uαi
+

d2

dxij
∂L

∂uαij
− · · ·+ (−1)k

dk

dxJ
∂L

∂uαJ
= 0,

which is a set of partial di�erential equations in J2kπ. As in the �rst order case, these
equations do not depend on the chosen coordinates. Thus, one may wonder if there is a
canonical object that describes geometrically this set of equations and their solutions. In
such a case, it should be a higher-order Poincaré-Cartan form.
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The situation is well established for the case of one independent variable (higher order
mechanics) and for the case of �rst order calculus of variations [85, 91, 93, 105]. In this
last situation, the typical expression of the Poincaré-Cartan form associated in classical
mechanics to a Lagrangian L : J1π → R may be written as S∗(dL) + Ldt, where S∗
is the adjoint of the vertical endomorphism acting on 1-forms. In order to generalize
this concept to higher order �eld theories, one needs to de�ne a mapping from 1-forms
(the di�erential of L) to m-forms and to incorporate in a global way the higher order
derivatives. This is one of the reasons for the degree of arbitrariness in the de�nition of
Cartan forms for Lagrangian functions L : Jkπ → R, with k > 1 and dimM > 1. In
other words, there will be di�erent Cartan forms which carry out the same function in
order to de�ne an intrinsic formulation of Euler-Lagrange equations. The main reason
of this problem is the commutativity of repeated partial di�erentiation. Therefore, the
Cartan form is unique if (and only if) either k or m equals one.

In the literature, we �nd di�erent approaches to �x the Cartan form for higher order
�eld theories. A direct attempt is the approach by Aldaya and Azcárraga [4, 6]. Another
point of view is that by Arens [8], which consists of injecting the jet bundle Jkπ to an
appropriate �rst-order jet bundle by the introduction of a great number of variables into
the theory and Lagrange multipliers. From a more geometrical point of view, García and
Muñoz described a method of constructing global Poincaré-Cartan forms in the higher
order calculus of variations in �bered spaces by means of linear connections (see [88, 89]).
In particular they show that the Cartan forms depend on the choice of two connections, a
linear connection on the baseM and a linear connection on the vertical bundle V π. Later,
Crampin and Saunders [140] proposed the use of an operator analogous to the almost
tangent structure canonically de�ned on the tangent bundle of a given con�guration
manifold M for the construction of global Poincaré-Cartan forms; this operator depends
on the chosen volume form on the base.

In this monograph, we propose an alternative way, avoiding the use of additional
structures, working only with intrinsic objects from both the Lagrangian and Hamiltonian
sides. The results main be found published here [24, 25, 26, 27] (for a complementary
point of view, see the work by Vitagliano [152]). This formalism is strongly based on
the one developed by Skinner and Rusk [142, 143, 144]. In order to deal with singular
Lagrangian systems, Skinner and Rusk construct a Hamiltonian system on the Whitney
sum TQ ⊕ T ∗Q of the tangent and cotangent bundles of the con�guration manifold Q.
The advantage of their approach lies on the fact that the second order condition of
the dynamics is automatically satis�ed. This does not happen in the Lagrangian side
of the Gotay and Nester formulation, where the second-order condition problem has
to be considered after the implementation of the constraint algorithm (see [100, 101,
102]), besides other formalisms which include the second-order condition from the very
beginning (see [34, 36]).

For higher-order �eld theories, we start with a Lagrangian function de�ned on Jkπ.
We consider the �bration πW,M : W →M , where W = Jkπ×Jk−1π Λm

2 (Jk−1π) is a �bered
product, the velocity-momentum space. OnW we construct a premultisymplectic form by
pulling back the canonical multisymplectic form of Λm

2 (Jk−1π), and we de�ne a convenient
Hamiltonian from a natural canonical pairing and the given Lagrangian function. The
solutions of the �eld equations are viewed as integral sections of Ehresmann connections
in the �bration πW,M : W → M . In this space we obtain a global, intrinsic and unique
expression for a Cartan type equation for the Euler-Lagrange equations for higher-order
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�eld theories. Additionally, we obtain a resultant constraint algorithm. Our scheme is
applied to several examples to illustrate our method.

Apart from the lack of ambiguity inherent in our construction, it is worth to empha-
size that this formalism is easily extended to the case of higher-order �eld theories with
constraints and optimal control problems for partial di�erential equations. In this way,
we obtain a uni�ed, geometric description of both types of systems, with possible future
applications in the theory of symmetry reduction and the construction of numerical meth-
ods preserving geometric structure (see [116]). Therefore, we introduce constraints in the
picture, which are geometrically de�ned as a submanifold C of Jkπ. In other words, we
impose the constraints on the space of sections where the action is de�ned. The formalism
introduced in [27] is adapted to the case of constrained �eld theories, deriving an intrinsic
framework of the constrained Euler-Lagrange equations. For the geometrical description,
we induce a submanifold W C

0 of W using the constraints given by C. Some examples are
given to illustrate the theory, which appears in [26]

Chapter �1 gathers the notation used along the monograph and the basic mathematical
background needed: distributions, the di�erent symplectic geometries, the structure of
the tangent bundle, etc. There is also a sketch of the Gotay-Nester-Hinds algorithm.

Chapter �2 is a short review of Classical Mechanics. It depicts the main results of the
theory from the Lagrangian and the Hamiltonian side.

Chapter �3 is a brief introduction to Classical Field Theory. It develops the theory
(generally without proofs) within the di�erent formalisms, Lagrangian and Hamiltonian,
and the di�erent approaches, variational and geometrical. It also shows the relation
between them and introduces the Skinner-Rusk formalism for �eld theories.

Chapter �4 is devoted to the study of Higher-Order Classical Field Theory. The reader
will may �nd �rst a generalization of the main geometric objects of the �rst order theory,
pointing out the causes of the ambiguity inherent to the higher-order theory. Then the
chapter focuses on resolution of this ambiguity by means of the Skinner-Rusk formalism.
It also introduces constraints in the pictures. Finally there is a presentation of the partial
results on the reduction of the arbitrariness in the space of solutions of the theory.

Finally, Chapter �5 exposes a summary of the main results obtained along my studies,
together with some conclusions and the future work that starts with this treatise.



Chapter 1

Mathematical background

1.1 Distributions and connections

See [1, 122] for an introduction to the theory of connections.

De�nition 1.1. A distribution D of dimension m on a manifold P is an assignment to
each p ∈ P of a vector subspace D(p) ⊆ TpP of dimension m.

1. A distribution D of dimension m is smooth if, for each p0 ∈ P , there exist an
open neighborhood Up0 of p0 and local vector �elds Y1, . . . , Ym ∈ X(Up0), such that
Y1(p), . . . , Ym(p) span D(p) for every p ∈ Up0 .

2. A submanifold S ↪→ P is said to be an integral manifold of a smooth distribution
D in TP if TS = D along the points of S. In such a case, D is said to be integrable.

3. A smooth distribution D is involutive if it is stable under the Lie bracket, that is,
if [D,D] ⊆ D.

Theorem 1.2 (Frobenius' Theorem). A smooth distribution D is integrable if and only
if it is involutive.

De�nition 1.3. A connection Γ in a �ber bundle πP,M : P → M is given by a πP,M -
horizontal distribution H in TP , i.e. a distribution H in TP which is complementary to
the vertical one V πP,M , that is

TP = D ⊕ V πP,M ,

where V πP,M(p) = {V ∈ TpP : TpπP,M(V ) = 0}. This decomposition allow us to de�ne:

1. The horizontal projector associated to the connection Γ is the linear map h : TP →
D de�ned in the obvious manner.

2. The horizontal lift of a tangent vector X ∈ TM is the unique vector Xh ∈ D that
projects to X, TπP,M(Xh) = X.

3. If (xi, ya) are �bered coordinates on P , then D is locally spanned by the local vector
�elds (

∂

∂xi

)h
=

∂

∂xi
+ Γai (x, y)

∂

∂ya
.

The coe�cients Γai are the Christo�el symbols of the connection.

1
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Assume that πQ,M : Q → M and πP,M : P → M are two �brations with the same
base manifold M , and that Υ : Q → P is a surjective submersion (in other words, a
�bration as well) preserving the �brations, say, πP,M ◦ Υ = πQ,M (Diagram 1.1). Let Γ′

be a connection in πQ,M : Q→M with horizontal projector h′.

Q Υ //

πQ,M   @@@@@@@@ P

πP,M

��
M

Figure 1.1: Preserved �bration

De�nition 1.4. Γ′ is said to be projectable if the subspaces (TqΥ)(D′(q)) are constant
along the �bers of Υ, i.e. (Tq1Υ)(D′(q1)) = (Tq2Υ)(D′(q2)) for every q1, q2 ∈ Υ−1(p),
p ∈ P .

If Γ′ is projectable, then we de�ne a connection Γ in the �bration πP,M : P → M as
follows: The horizontal subspace at p ∈ P is given by

Dp = (TqΥ)(D′(q)),

for an arbitrary q in the �bre of Υ over p. It is routine to prove that D de�nes a horizontal
distribution in the �bration πP,M : P →M .

We can choose �bered coordinates (xi, ya, zα) on Q such that (xi, ya) are �bered
coordinates on P . The Christo�el components of Γ′ are obtained by computing the
horizontal lift (

∂

∂xi

)h
=

∂

∂xi
+ Γai (x, y, z)

∂

∂ya
+ Γαi (x, y, z)

∂

∂zα
.

A simple computation shows that Γ′ is projectable if and only if the Christo�el compo-
nents Γai are constant along the �bres of Υ, say Γai = Γai (x, y). In this case, the horizontal
lift of ∂/∂xi with respect to Γ is just(

∂

∂xi

)h
=

∂

∂xi
+ Γai (x, y)

∂

∂ya
.

Conversely, given a connection Γ in the �bration πP,M : P → M and a surjective sub-
mersion Υ : Q → P preserving the �brations, one can construct connections Γ′ in the
�bration πQ,M : Q → M which project onto Γ (�rst, locally and then globally by means
of a partition of the unity).

The notion of connection in a �bration admits a useful generalization to submanifolds
of the total space. Let πP,M : P →M be a �bration and N a submanifold of P .

De�nition 1.5. A connection in πP,M : P → M along the submanifold N of P consists
of a family of linear mappings

hp : TpP −→ TpN

for all p ∈ N , satisfying the following properties

h2
p = hp, kerhp = Vp πP,M ,

for all p ∈ N . The connection is said to be smooth (�at) if the distribution imh ⊆ TN
is smooth (integrable).
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We have the following.

Proposition 1.6. Let h be a connection in πP,M : P →M along a submanifold N of P .
Then:

1. πP,M(N) is an open subset of M .

2. (πP,M)|N : N → πP,M(N) is a �bration.

3. There exists an induced true connection ΓN in the �bration (πPM)|N : N → πPM(N)
with the same horizontal subspaces.

4. ΓN is �at if and only if h is �at.

Proof. See [55, 50].

1.2 Multivectors

De�nition 1.7. Let P be a n-dimensional di�erentiable manifold. Sections of Λm(TP )
(with 1 ≤ m ≤ n) are called m-multivector �elds in P . The set of m-multivector �elds
in P is denoted by Xm(P ).

Given X ∈ Xm(P ), for every p ∈ P , there exists an open neighborhood Up ⊂ P and
X1, . . . , Xr ∈ X(Up) such that

X =
Up

∑
1≤i1<...<im≤r

f i1...imXi1 ∧ . . . ∧Xim

with f i1...im ∈ C∞(Up) and m ≤ r ≤ n. Of particular interest are those multivector �elds
whose decomposition may be reduced to a single term.

De�nition 1.8. A multivector �eld X ∈ Xm(P ) is locally decomposable if, for every
p ∈ P , there exists an open neighborhood Up ⊂ P and X1, . . . , Xm ∈ X(Up) such that

X =
Up
X1 ∧ . . . ∧Xm.

The set of locally decomposable m-multivector �elds in P is denoted by Xm
d (P ).

Let D ⊆ TP be an m-dimensional distribution. The sections of ΛmD are locally
decomposable m-multivector �elds in P .

De�nition 1.9. A locally decomposable m-multivector �eld X ∈ Xm
d (P ) and an m-

dimensional distribution D ⊆ TP are associated whenever X is a section of ΛmD.

If X,X ′ ∈ Xm
d (P ) are non-vanishing multivector �elds associated with the same dis-

tribution D, then there exists a non-vanishing function f ∈ C∞(P ) such that X ′ = fX.
This fact de�nes an equivalence relation in the set of non-vanishing m-multivector �elds
in P , whose equivalence classes will be denoted by D(X).

Theorem 1.10. There is a bijective correspondence between the set of m-dimensional
orientable distributions D in TP and the set of the equivalence classes D(X) of non-
vanishing, locally decomposable m-multivector �elds X in P .



4 CHAPTER 1. MATHEMATICAL BACKGROUND

By abuse of notation, D(X) will also denote them-dimensional orientable distribution
D in TP with whom X is associated.

De�nition 1.11. An m-dimensional submanifold S ↪→ P is said to be an integral mani-
fold of X ∈ Xm(P ) if X spans ΛmTS. In such a case, X is said to be integrable.

Note that integrable multivector �elds are necessarily locally decomposable.

De�nition 1.12. A non-vanishing, locally decomposable m-multivector X ∈ Xm
d (P ) is

involutive if its associated distribution D(X) is involutive.

If a non-vanishing multivector �eld X ∈ Xm
d (P ) is involutive, so is every other in

its equivalence class D(X). Furthermore, by Frobenius' theorem we have the following
result.

Corollary 1.13. A non-vanishing and locally decomposable multivector �eld is integrable
if, and only if, it is involutive.

De�nition 1.14. Let πP,M : P →M be a �ber bundle with dimM = m. A multivector
�eld X ∈ Xm(P ) is said to be π-transverse if Λmπ∗(X) does not vanish at any point of
M , hence M must be orientable.

Proposition 1.15. If X ∈ Xm(P ) is integrable, then X is π-transverse if, and only if,
its integral manifolds are sections of π : P →M . In this case, if S is an integral manifold
of X, then there exists a section φ ∈ Γπ shuch that S = Im(φ).

For more details on multivector �elds and their relation with �eld theories, we refer
to [72, 73].

1.3 The geometry of the tangent bundle

Through this section, Q denotes an n-dimensional smooth manifold. Local coordinates
in Q are denoted (qi), and the induced adapted coordinates of TQ and TTQ are denoted
(qi, vi) and (qi, vi, q̇i, v̇i), respectively. According to this, vectors v ∈ TqQ and V ∈ Tv(TQ)
are respectively of the form

v = vi
∂

∂qi

∣∣∣
q
and V = q̇i

∂

∂qi

∣∣∣
v

+ v̇i
∂

∂vi

∣∣∣
v
.

If τQ : v ∈ TqQ 7→ q ∈ Q denotes the natural projection of TQ onto Q then, given a
tangent vector V ∈ Tv(TQ), we have that τTQ(V ) = v. Besides, we also have the following
coordinate expressions (see Diagram 1.2)

τQ(qi, vi) = (qi), τTQ(qi, vi, q̇i, v̇i) = (qi, vi) and TτQ(qi, vi, q̇i, v̇i) = (qi, q̇i).

De�nition 1.16. Let v ∈ TqQ be a vector tangent to Q at some point q ∈ Q. The
vertical lift of v at a �point� w ∈ TqQ is the tangent vector vv

w ∈ Tw(TQ) given by

vv
w(f) =

d

dt
f(w + tv)

∣∣
t=0
, ∀f ∈ C∞(TqQ). (1.1)
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TTQ

τTQ

��

TτQ // TQ

τQ

��
TQ

τQ // Q

Figure 1.2: The natural projections

Given a smooth function f ∈ C∞(Q),

(TwτQ)(vv
w)(f) = vv

w(f ◦ τQ)

=
d

dt
(f ◦ τQ)(w + tv)

∣∣
t=0

=
d

dt
f(q)

∣∣
t=0

= 0.

Thus, the vertical lift takes values into the vertical �ber bundle V τQ ⊂ TTQ. Indeed, for
each w ∈ TqQ, the vertical lift at w,

(·)v
w : TqQ −→ Vw τQ ⊂ TwTQ,

is a linear isomorphism. It may also be seen as a morphism X ∈ X(Q) 7→ Xv ∈ Xv(TQ),
where Xv(TQ) is the module of vector �elds over TQ that are vertical with respect to the
projection τQ. In local coordinates, if v = vi ∂

∂qi
|q = (qi, vi) and w = wi ∂

∂qi
|q = (qi, wi),

then

vv
w = vi

∂

∂vi

∣∣∣
w

= (qi, wi, 0, vi)

for the induced adapted local coordinates of TTQ.

De�nition 1.17. The vertical endomorphism is the linear map S : TTQ −→ TTQ that,
for any vector V ∈ TTQ, gives the value

S(V ) = ((TvτQ)(V ))v, (1.2)

where v = τTQ(V ) ∈ TQ.

In adapted coordinates (qi, vi) of TQ, the vertical endomorphism has the local expres-
sion

S = dqi ⊗ ∂

∂vi
or S(qi, vi, q̇i, v̇i) = (qi, vi, 0, q̇i). (1.3)

De�nition 1.18. The Liouville or dilation vector �eld is the vector �eld ∆ over TQ
de�ned by

∆v = (vv)v, (1.4)

for any v ∈ TQ.

In adapted coordinates (qi, vi) of TQ, ∆ is given by

∆ = vi
∂

∂vi
= (qi, vi, 0, vi). (1.5)

Another way to de�ne the Liouville vector �eld is as the in�nitesimal generator of the
1-parameter group of transformations φt : v ∈ TQ 7→ etv ∈ TQ. This de�nition can
easily be translated to any vector bundle.



6 CHAPTER 1. MATHEMATICAL BACKGROUND

De�nition 1.19. A second order vector �eld or di�erential equation (usually abbreviated
SODE ) is a vector �eld X ∈ X(TQ) such that TτQ ◦X = IdTQ.

In adapted coordinates (qi, vi) of TQ, a SODE is a vector �eld

X = X i ∂

∂qi
+ Y i ∂

∂vi
such that X i = vi.

Thus, neither the Liouville vector �eld nor the vertical lift of a vector �eld are second
order vector �elds. Even though, SODEs are characterized by the equation

S(X) = ∆.

De�nition 1.20. Given a smooth curve c : I −→ Q, its (�rst) lift to TQ is the smooth
curve c(1) : I −→ TQ such that

(c(1)(t0))(f) =
d

dt
(f ◦ c)

∣∣∣
t=t0

.

In local adapted coordinates, c(1) = (ci, dci/ dt).

Proposition 1.21. A vector �eld X ∈ X(TQ) is a SODE if and only if the integral
curves of X are lifts of their own projections to Q; that is, if c̃ is an integral curve of X,
then

c̃ = (τQ ◦ c̃)(1). (1.6)

The curve c = τQ ◦ c̃ : I −→ Q is called a base integral curve of X or a solution of the
SODE given by X.

If c̃ : I −→ TQ is an integral curve of a SODE X ∈ X(TQ) locally given by X =
(qi, vi, vi, ai) and c : I −→ Q denotes its base integral curve, then

qi = ci, vi =
dci

dt
and ai =

d2ci

dt2
.

Alternatively, the base integral curve c of c̃ satis�es the system of second order di�erential
equations

d2ci/ dt2 = ai(ci, dci/ dt) (intrinsically c̃(1)(t) = X(c(1)(t))).

1.4 Symplectic geometry

In some sense, symplectic geometry is complementary to Riemannian geometry. While
Riemannian geometry is based on the study of smooth manifolds that carry a non-
degenerate symmetric tensor, symplectic geometry covers the study of smooth manifolds
that are equipped with a non-degenerate skewsymmetric tensor. Although both have
several similarities, by their nature they also show to have strong di�erences.

Along this section, V and M respectively denote a real vector space and a smooth
manifold. They do not necessarily have �nite dimension.
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De�nition 1.22. Let ω : V × V −→ R be a bilinear map and de�ne the morphism
ω[ : V −→ V ∗ by 〈

ω[(v)|w
〉

= ω(v, w).

We say that ω is weakly (resp. strongly) non-degenerate whenever ω[ is a monomorphism
(resp. an isomorphism).

It turns out that, if V is �nite-dimensional, weak and strong non-degeneracy coincide.
Thus, in this case, we simply use the term non-degenerate.

Proposition 1.23. Let V be a �nite-dimensional real vector space and let ω ∈ Λ2V ∗ be
a skew-symmetric bilinear map. The following holds,

1. ω is non-degenerate if and only if V is even-dimensional (dimV = 2n) and the
exterior nth-power ωn is a volume form on V ;

2. if ω is non-degenerate, then there exists a basis (εi)2n
i=1 in V ∗ such that

(ωij) =

(
0 I
−I 0

)
,

where ω = ωij ε
i⊗εj, 0 is the n-by-n null matrix and I is the n-dimensional identity

matrix. Equivalently, ω =
∑n

i=1 ε
i∧ εn+i.

De�nition 1.24. A weak (resp. strong) symplectic form on a real vector space V is a
weakly (resp. strongly) non-degenerate 2-form ω on V . The pair (V, ω) is called a weak
(resp. strong) symplectic vector space.

As before, we avoid the use of the terms weak and strong in the case of �nite-
dimensional vector spaces.

Example 1.25. Let V be a real vector space of dimension n. Let (ei)
n
i=1 be a basis of

V and let (εi)ni=1 be its dual counterpart (i.e. εi(ej) = δij). Then, with some abuse of
notation, ω =

∑n
i=1 ε

i∧ ei is a non-degenerate 2-form in V × V ∗. Note that ω does not
depend on the chosen basis (ei)

n
i=1 of V . In fact, ω may be de�ned intrinsically by the

following expression,
ω((v1, α1), (v2, α2)) = α2(v1)− α1(v2).

De�nition 1.26. Let M be a smooth manifold, a tensor �eld ω ∈ Ω2(M) is weakly
(resp. strongly) non-degenerate if the bilinear map ωx : TxM × TxM −→ R is weakly
(resp. strongly) non-degenerate, for each x ∈M .

Proposition 1.27. Given a tensor �eld ω over M of type (0, 2), let ω[ : X(M) −→ Ω(M)
be the mapping de�ned by the contraction ω[(X) = iXω. We have that ω[ is C∞(M)-
linear. Moreover, if ω is weakly (resp. strongly) non-degenerate, then ω[ is injective
(resp. bijective).

De�nition 1.28. Let M be a smooth manifold, a weak (resp. strong) symplectic form is
a weakly (resp. strongly) non-degenerate 2-form ω ∈ Ω2(M) which is in addition closed.
The pair (M,ω) is called a weak (resp. strong) symplectic manifold.
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Theorem 1.29 (Darboux). Let ω be a 2-form over a �nite-dimensional smooth manifold
M . Then, (M,ω) is a symplectic manifold if and only ifM has even dimension (dimM =
2n) and there exist local coordinates (q1, . . . , qn, p1, . . . , pn) such that ω has locally the form

ω = dqi ∧ dpi.

Such coordinates are called Darboux or canonical coordinates.

Example 1.30 (T ∗Q as a symplectic manifold). Let Q be a smooth manifold of dimension
n and consider its cotangent bundle T ∗Q. We de�ne on T ∗Q a 1-form Θ ∈ Ω(T ∗Q) by

Θα(X) = α((TαπQ)(X)), X ∈ Tα(T ∗Q), α ∈ T ∗Q.

The 1-form Θ is known as the Liouville 1-form, or also as the canonical or tautological
1-form. In adapted coordinates (qi, pi) of T ∗Q, Θ has the local expression

Θ = pi dq
i.

We now de�ne on T ∗Q the canonical 2-form:

Ω = − dΘ.

From the local expression of Θ, we have that Ω is locally written as

Ω = dqi ∧ dpi

for the local coordinates (qi, pi) of T ∗Q. We thus infer that Ω is symplectic and hence it
endows T ∗Q with a canonical symplectic structure, (T ∗Q,Ω).

1.4.1 The Gotay-Nester-Hinds algorithm

By de�nition, if (M,ω) is a strongly symplectic manifold (posibly of �nite dimension),
then the equation

iXω = α (1.7)

has always a unique solution X ∈ X(M), whatever the 1-form α ∈ T ∗M is (Proposition
1.27). In the �nite dimensional case and we suppose that dimM = 2n, the solution vector
�eld X ∈ X(M) is locally given by

X = ω](α) = (ω[)−1(α) =
2n∑
i,j=1

ωijαj
∂

∂xi
, (1.8)

where (x1, . . . , x2n) are arbitrary local coordinates on M , ωij is the inverse coe�cient
matrix of ω, with ω =

∑
1≤i<j≤2n ωij dxi ∧ dxj, and α =

∑2n
j=1 αj dxj. If we instead

choose Darboux coordinates (q1, . . . , qn, p1, . . . , pn) for M and write

X = X i ∂

∂qi
+Xi

∂

∂pi
and α = αi dq

i + αi dpi,

then
X i = αi and Xi = −αi. (1.9)
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This equations will appear again in later sections in slightly di�erent ways.
The aim of the Gotay-Nester-Hinds (GNH) algorithm (see reference [100, 101, 102])

is to study the equation (1.7) whenever the closed 2-form ω is weakly symplectic or
degenerate, that is, when ω is presymplectic. It manages to circumvent the degeneracy
problems that often appear in mechanics, even though it is totally geometric and may
be studied appart of any physical meaning. Equation (1.7) could not be solvable for a
presymplectic form ω over the whole manifold M , but it could be at some points of M .
The objective of the GNH algorithm is to �nd a submanifold N of M such that equation
(1.7) has solutions in N , more precisely, to �nd the biggest submanifold N of M such
that there exists a vector �eld X ∈ X(N) that satis�es

ij∗Xω|N = α|N (1.10)

for a prescribed 1-form α ∈ Ω(M), where j is the inclusion j : N ↪→M . The manifold N
will, of course, depend on the 1-form α.

Remark 1.31. Even though they are quite similar, Equation (1.10) should not be confused
with the following one

iX(j∗ω) = j∗α.

While the latter must be satis�ed for any vector �eld Y �over� N , that is

(j∗ω)(X, Y ) = (j∗α)(Y ), ∀Y ∈ X(N),

the former is more restrictive and must be satis�ed for any vector �eld Y �along� N , that
is

ω(j∗X, Y ) = α(Y ), ∀Y ∈ X(j).

Given a presymplectic 2-form ω over a manifold M , let α ∈ Ω(M) be any 1-form. We
start de�ning the subset M1 of points x of M such that α(x) is in the range of ω[(x),
that is,

M1 :=
{
x ∈M : α(x) ∈ ω[(TM)

}
.

The subset M1 needs not to be a manifold, fact that is imposed, being j1 : M1 ↪→M the
inclusion. The equation (1.7) restricted to M1,

iXω|M1 = α|M1 ,

is solvable, but this does not imply that X is a solution in the sense of equation (1.10).
It could be possible that, at some point x ∈M1, the vector X(x) dont be tangent to M1,
what will happen when α(x) dont be in the range of ω[(x) restricted to j1∗(TM1). We
are then obliged to de�ne a new �submanifold� j2 : M2 ↪→M1 by

M2 :=
{
x ∈M1 : α(x) ∈ ω[(j1∗(TM1))

}
.

As before, the solutions of the equation (1.7) restricted to M2,

iXω|M2 = α|M2 ,

may not be tangent to M2, therefore we require that α|M2 be in the range of ω[ restricted
to (j2 ◦ j1)∗(TM2).
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We thus continue this process, de�ning a chain of further constraint submanifolds

. . . ↪→Ml

jl
↪→Ml−1 ↪→ . . . ↪→M1

j1
↪→M

as follows
Ml+1 :=

{
x ∈Ml : α(x) ∈ ω[((j1 ◦ · · · ◦ jl)∗(TMl))

}
. (1.11)

At each step, we must assume that the constraint set Ml is a smooth manifold (an
alternate algorithm for the case when the constraint sets are not smooth submanifolds
may be found in [114]). In the end, the algorithm will stop when, for some k ≥ 0,
Mk+1 = Mk. We then take N := Mk and j := jk ◦ · · · ◦ j1. Mainly, two di�erent cases
may happen:

� dimN = 0 : The Hamiltonian system (M,ω, α) has no dynamics. Furthermore, if
N = ∅, there are no solutions at all and (M,ω, α) does not accurately describe the
dynamics of any system. On the contrary, if N 6= ∅, then N consists of (steady)
isolated points.

� dimN 6= 0 : (M,ω, α) describes a dynamical system restricted to N and we have
completely consistent equations at motion on N of the form

(iXω − α)|N = 0.

1.5 Cosymplectic geometry

While symplectic geometry deals with even- dimensional spaces, cosymplectic geometry
is the natural extension to study analog structures in odd-dimensional spaces. Through
this section, V and M respectively denote a real vector space and a smooth manifold of
dimension 2n+ 1.

De�nition 1.32. A cosymplectic vector space is a triple (V, ω, η) where V is an odd-
dimensional real vector space (dimV = 2n+ 1), ω is a 2-form on V and η is a 1-form on
V such that the exterior product ωn ∧ η is not null.

Proposition 1.33. Let V be an odd-dimensional real vector space (dimV = 2n + 1).
Given a 2-form ω and a 1-form η on V , de�ne the morphism [ : V −→ V ∗ by

[(v) = ivω + η(v)η.

If (V, ω, η) is cosymplectic, then [ is an isomorphism. In that case, the vector R = [−1(η)
is called the Reeb vector of the cosymplectic space (V, ω, η).

Note that the Reeb vector is characterized by the equations

iRω = 0, iRη = 1.

Example 1.34. Let V be a real vector space of dimension n. Let (ei)
n
i=1 be a basis of V and

let (εi)ni=1 be its dual counterpart. De�ne ω =
∑n

i=1 ε
i∧ ei, the canonical non-degenerate

2-form in V × V ∗ (see example 1.25). Let η be a non-zero covector in R. Then, with
some abuse of notation, (V × V ∗ × R, ω, η) is a cosymplectic vector space.
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De�nition 1.35. A cosymplectic manifold is a triple (M,ω, η) where M is an odd-
dimensional smooth manifold (dimM = 2n + 1), ω is a closed 2-form on M and η be
a closed 1-form on M such that (TxM,ωx, ηx) is a cosymplectic vector space for each
x ∈M .

Proposition 1.36. Let M be an odd-dimensional smooth manifold. Given a 2-form ω
and a 1-form η on M , de�ne the map [ : X(M) −→ Ω(M) by

[(X) = iXω + η(X)η.

If (M,Ω, η) is cosymplectic then [ is an isomorphism of C∞(M)-modules. In that case,
R = [−1(η) is known as the Reeb vector �eld of the cosymplectic manifold (M,ω, η).

Again, note that the Reeb vector �eld is characterized by the equations

iRω = 0, iRη = 1.

Proposition 1.37. Let M be an odd-dimensional smooth manifold (dimM = 2n + 1).
Given a 2-form ω and a 1-form η on M , the triple (M,Ω, η) is a cosymplectic manifold
if and only if there exist local coordinates (q1, . . . , qn, p1, . . . , pn, t) such that ω and η have
locally the expression

Ω = dqi ∧ dpi, η = dt.

Such coordinates are called Darboux or canonical coordinates.

Example 1.38 (T ∗Q × R as a cosymplectic manifold). Let Q be a smooth manifold of
dimension n and consider its cotangent bundle T ∗Q. Let Ω be the canonical 2-form on
T ∗Q (see example 1.30) and let η a volume form on R, for instance, η = dt. Then,
(T ∗Q× R,Ω, η) is a cosymplectic manifold.

1.6 Multisymplectic geometry

For an introduction to multisymplectic geometry and its use within classical �eld theory,
the reader is refereed to [31, 32]. See also [124, 132].

Through this section, V and M respectively denote a real vector space and a smooth
manifold, both of �nite dimension.

De�nition 1.39. Amultisymplectic k-form on a real vector space V is a k-form ω ∈ ΛkV ∗

with trival kernel, kerω = 0, where the kernel is kerω := {v ∈ V : ivω = 0}. The pair
(V, ω) is said to be a multisymplectic vector space.

A necessary condition to be satis�ed by a multisymplectic k-form ω is that 1 < k ≤
dimV . The non-degeneracy condition kerω = 0 is sometimes written as

ivω = 0⇔ v = 0.

Note also that a multisymplectic 2-form is a symplectic one.

De�nition 1.40. Given a k-form ω ∈ ΛkV ∗, we de�ne the mappings

ω[j : ΛjV −→ Λk−jV ∗

v 7→ ivω

for any 1 ≤ j ≤ k.
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If any of the linear maps ω[j is null, then ω must be the zero k-form (and conversely).
Thus, ω[k−1 is surjective whenever ω is not zero. If ω is multisymplectic, then ω[1 is
injective.

Example 1.41. Given any real vector space V of dimension n, consider the product VV =
V × ΛkV ∗, with 1 < k ≤ n. We de�ne the (k + 1)-form ΩV in VV by

ΩV ((v1, ω1), . . . , (vk+1, ωk+1)) :=
k+1∑
i=1

(−1)iωi(v1, . . . , v̂i, . . . , vk+1)

where (vi, ωi) ∈ VV for i = 1, . . . , k + 1 and where the hat symbol � ˆ� means that the
underlying vector is ommited. If (ei) is a basis for V , (εi) is the corresponding dual basis
for V ∗ and (ei1···ik = ei1 ∧ · · · ∧ eik) is the basis for ΛkV , where 1 ≤ i1 < · · · < ik ≤ k,
then

ΩV =
∑

1≤i1<···<ik≤k

−ei1···ik ∧ εi1 ∧ · · · ∧ εik .

It is easly seen from here that, when k = 1, we recover the symplectic 2-form given in
the example 1.25.

If E is a proper vector subspace of V , we denote by Λk
rV
∗ the collection of k-forms in

V that are anihilated when r vectors of E are applied to it,

Λk
rV
∗ =

{
α ∈ Λk

rV
∗ : ivr · · · iv1α = 0, ∀v1, . . . , vr ∈ E

}
.

We then have that VrV = V × Λk
rV
∗ equiped with the restriction of ΩV to it is a multi-

symplectic space. Note that, if E = {0}, we then recover the whole VV .

De�nition 1.42. A multisymplectic k-form on a smooth manifold M is a closed k-form
ω ∈ Ωk(M) such that (TxM,ωx) is a multisymplectic vector space for each x ∈ M . The
pair (M,ω) is said to be a multisymplectic manifold.

Example 1.43. Given a smooth manifold of dimension n, consider the �ber bundle ΛkM
of k-forms. We de�ne on ΛkM the k-form Θ ∈ Ωk(ΛkM) by

Θα(X1, . . . , Xk) = α((Tαπ
k
M)(X1), . . . , (Tαπ

k
M)(Xk)), Xi ∈ Tα(ΛkM), α ∈ ΛkM,

where πkM : ΛkM → M is the canonical projection. The k-form Θ is known as the
Liouville k-form, or also as the canonical or tautological k-form. In adapted coordinates
(qi, pi1···ik) of ΛkM , Θ has the local expression

Θ =
∑

1≤i1<···<ik≤k

pi1···ik dqi1 ∧ · · · ∧ dqik .

We now de�ne on ΛkM the canonical (k + 1)-form:

Ω = − dΘ.

From the local expression of Θ, we have that Ω is locally written as

Ω =
∑

1≤i1<···<ik≤k

− dpi1···ik ∧ dqi1 ∧ · · · ∧ dqik
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for the local coordinates (qi, pi1···ik) of ΛkM . We thus infer that Ω is multisymplectic and
hence it endows ΛkM with a canonical multisymplectic structure, (ΛkM,Ω). It is easily
seen from here that, when k = 1, we recover the canonical symplectic 2-form given in the
example 1.30.

If M �bers over a manifold N , π : M → N , we denote by Λk
rM the collection of

k-forms over M that are anihilated when r π-vertical vectors are applied to it,

Λk
rM =

{
α ∈ ΛkM : ivr · · · iv1α = 0, ∀v1, . . . , vr ∈ V π

}
.

We then have that Λk
rM equiped with the restriction of Ω to it is a multisymplectic space.

Nota that, if N = M , we then recover the whole ΛkM .
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Chapter 2

Classical Mechanics

2.1 The Lagrangian formalism for autonomous systems

The Lagrangian formulation of mechanics is set (for simplicity) in a �nite dimensional
manifold Q (the in�nite dimensional case is depicted in [122]), the con�guration space,
whose tangent, TQ, describes the states �position plus velocity� of the system under
study. Local coordinates (qi) on Q induce �ber coordinates (qi, vi) on TQ, such that a
tangent vector v ∈ TqQ at some point q ∈ Q is written as

v = vi
∂

∂qi
= v1 ∂

∂q1
+ · · ·+ vn

∂

∂qn
.

One introduces the Lagrangian of the system, a smooth function L : TQ −→ R, which
is in some sense the density cost of a motion in the system. Typically, the Lagrangian is
the kinetic energy minus the potential energy of the system,

L(qi, vi) =
1

2
mgijv

ivj − U(qi) (L(qi, vi) =
1

2
mg(vq, vq)− U(q)),

where gij = gij(q) is a given metric tensor and m the mass of the particle in motion.
We seek for curves that describe the motion of a particle in our system. It is well

known that the trajectories of the system are obtained from a variational procedure. We
will thus consider twice di�erentiable curves c : [t0, t1] → Q joining two �xed points q0

and q1 in Q. The set of such curves is

C2([t0, t1], Q, q0, q1) =
{
c ∈ C2([t0, t1], Q) : c(ti) = qi, i = 0, 1

}
,

or C2(q0, q1) for short. Given c ∈ C2(q0, q1), denote by c̃(t) its lift to TQ, that is, the
curve in TQ that describes the position and velocity of a particle following the original
curve (see De�nition 1.20). Formally, c̃ is the vector �eld over c such that

c̃(t)(f) =
d

dt
(f ◦ c)(t),

for any smooth function f ∈ C∞(Q). If (qi, vi) are adapted coordinates in TQ, then

c̃(t) = (qi(t), vi(t)),

where one regards vi = dqi/ dt as the velocity of a particle moving along c(t).
If (qi, vi) are adapted coordinates on TQ, locally

c̃(t) = (ci(t), ċi(t)),

where ci(t) = (qi ◦ c̃)(t) = (qi ◦ c)(t) and ċi(t) = vi ◦ c̃)(t) = ( dci/ dt)(t) .

15
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2.1.1 Variational approach

De�nition 2.1. Given a Lagrangian function L : TQ −→ R, two �xed points q0, q1 ∈ Q
and a �xed time interval [t0, t1], the associated integral action is the real valued map A
de�ned on C2([t0, t1], Q, q0, q1) given by

AL(c) =

∫ t1

t0

L(c̃(t)) dt =

∫ t1

t0

L(qi(t), vi(t)) dt. (2.1)

Since we look for a variational approach of the problem, we must describe how the
integral action AL changes under small perturbations of c and what these perturbations
are. One shows that C2(q0, q1) may be endowed with an in�nite-dimensional smooth
manifold structure, see [21]. In fact,

TcC2(q0, q1) =
{
δc ∈ C1([t0, t1], TQ) : τQ ◦ δc ≡ c, δc(ti) = 0, i = 0, 1

}
.

De�nition 2.2. Let c ∈ C2([t0, t1], Q, q0, q1), a variation of c is a curve cs in C2(q0, q1),
de�ned for a small interval [−ε, ε], such that c0 ≡ c. An in�nitesimal variation of c is a
vector �eld δc over c that vanishes at the end points, δc(ti) = 0, for i = 0, 1.

With this de�nition, the tangent space TcC2(q0, q1) at a curve c ∈ C2(q0, q1) is the set
of in�nitesimal variations δc of c, which are induced by variations cs of c. More precisely,

δc(t) =
dcs(t)

ds

∣∣∣
s=0

,

where t ∈ [t0, t1] is �xed.

De�nition 2.3. Let F : C2(q0, q1) −→ R be a functional of class C1. A critical point of
F is a point c ∈ C2(q0, q1) such that

d(F ◦ cs)
ds

∣∣∣
s=0

= 0,

for any variation cs of c.

Equivalently, one could say that c is a critical point of a functional F ∈ C1(C2(q0, q1))
if and only if

δF(c) · δc = 0,

for any in�nitesimal variation δc of c, which is classically written as

δF(c) = 0 or
δF(c)

δc
= 0.

We are now in position to formulate one of the main results in Classical Mechanics, the
variational principle of Hamilton, which states that the dynamics of our physical system
is determined from the variational problem related to the integral action AL.

Statement 2.4 (Hamilton's principle). The motion of a particle in the Lagrangian sys-
tem (Q,L) is a critical point of the action functional AL, that is, a curve c ∈ C2(q0, q1)
such that δAL(c) = 0.
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An easy calculation help us to write this statement in terms of the Lagrangian, ob-
taining the well known Euler-Lagrange equations.

Theorem 2.5 (The Euler-Lagrange equations). Consider a given Lagrangian system
(Q,L), where L ∈ C2(TQ). A twice di�erentiable curve c : [t0, t1] −→ Q joining two
points q0, q1 ∈ Q is a motion of (Q,L) if and only if the lift c̃ of c to TQ satis�es the
di�erential equations:

∂L

∂qi
◦ c̃− d

dt

(
∂L

∂vi
◦ c̃
)

= 0, (2.2)

where (qi, vi) are adapted coordinates in a neighborhood of c̃.

Proof. Given a curve c ∈ C2(q0, q1), let δc be an in�nitesimal variation of c tangent to a
variation cs of c. By de�nition and di�erentiating under the integral sign, we have that

δAL(c) · δc =
d(AL ◦ cs)

ds

∣∣∣
s=0

=
d

ds

[∫ t1

t0

L(c̃s(t)) dt

] ∣∣∣
s=0

=

∫ t1

t0

d

ds

[
L(cis(t), ċ

i
s(t))

] ∣∣∣
s=0

dt

=

∫ t1

t0

[
∂L

∂qi
· δci(t) +

∂L

∂vi
· δċi(t)

]
dt,

provided that ε is small enough such that the image of c̃s : [−ε, ε] × [t0, t1] −→ TQ
is covered by a single chart with adapted coordinates (qi, vi). Integrating by parts the
second term and taking into account that δc vanishes at t0 and t1, we obtain

δAL(c) · δc =

∫ t1

t0

[
∂L

∂qi
− d

dt

(
∂L

∂vi

)]
· δci(t) dt.

Now, let us suppose that c is a motion of the system. Then, δAL(c) · δc = 0 for every
in�nitesimal variation δc, which holds if and only if

∂L

∂qi
− d

dt

∂L

∂vi
= 0.

2.1.2 Geometric formulation

De�nition 2.6. The Poincaré-Cartan 1-form is the pull-back of the di�erential of the
Lagrangian function by the vertical endomorphism S, that is, the form

ΘL = S∗( dL). (2.3)

The Poincaré-Cartan 2-form is then given by

ΩL = − dΘL. (2.4)
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In adapted coordinates, the Poincaré-Cartan 1-form reads

ΘL =
∂L

∂vi
dqi (2.5)

and the Poincaré-Cartan 2-form

ΩL =
∂2L

∂vi∂qj
dqi ∧ dqj +

∂2L

∂vi∂vj
dqi ∧ dvj. (2.6)

By de�nition, the Poincaré-Cartan 2-form is exact, and hence closed, but in general needs
not to be non-degenerate.

Proposition 2.7. The Poincaré-Cartan 2-form is non-degenerate if and only if the La-
grangian function is regular, that is when the Hessian matrix(

∂2L

∂vi∂vj

)
(2.7)

is invertible.

De�nition 2.8. The Lagrangian energy is the smooth function EL ∈ C∞(TQ) de�ned
by

EL = ∆L− L, (2.8)

where ∆ denotes the Liouville vector �eld given in De�nition 1.18.

De�nition 2.9. Any vector �eld X ∈ X(TQ) that satis�es the equation of motion

iXΩL = dEL (2.9)

is called a Lagrangian vector �eld.

Theorem 2.10. If the Lagrangian function L is regular, then there exists a unique vector
�eld X ∈ X(TQ) which is solution of the equation of motion. The Lagrangian vector �eld
X is a second order di�erential equation and its base integral curves are solutions of the
Euler-Lagrange equations (2.2).

Proof. The existence and uniqueness of a Lagrangian vector �eld comes out from the fact
that ΩL is non-degenerate when L is regular, hence ΩL is symplectic and Proposition 1.27
applies. Let X be a generic vector �eld on TQ whose local expression is

X = q̇i
∂

∂qi
+ v̇i

∂

∂vi

for adapted coordinates (qi, vi) of TQ and let suppose that X satis�es the equation (2.9).
The contraction of the Poincaré-Cartan 2-form ΩL with X is

iXΩL =

(
q̇j

∂2L

∂vj∂qi
− q̇j ∂2L

∂vi∂qj
− v̇j ∂2L

∂vj∂vi

)
dqi + q̇j

∂2L

∂vj∂vi
dvi,

and the di�erential of the Lagrangian energy EL is

dEL =

(
vj

∂2L

∂vj∂qi
− ∂L

∂qi

)
dqi + vj

∂2L

∂vj∂vi
dvi.
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Equating coe�cients, we have on the one hand that

q̇j
∂2L

∂vj∂vi
= vj

∂2L

∂vj∂vi
.

Thus, if L is regular, q̇j = vj, which proves that X is second order. On the other hand,
provided that L is regular, we have that

∂L

∂qi
− vj ∂2L

∂qj∂vi
− v̇j ∂2L

∂vj∂vi
= 0.

Let c : I −→ Q be a base integral curve of the Lagrangian vector �eld X, then q̇i = ċi =
dc/ dt and v̇i = c̈i = d2c/ dt2. Substituting this in the previous equation and denoting
c̃ = (ci, ċi) the lift of c to TQ, we obtain

0 =
∂L

∂qi
◦ c̃− dcj

dt

∂2L

∂qj∂vi
◦ c̃− dċj

dt

∂2L

∂vj∂vi
◦ c̃ =

∂L

∂qi
◦ c̃− d

dt

(
∂L

∂vi
◦ c̃
)
,

which are precisely the Euler-Lagrange equations (2.2).

2.2 The Hamiltoniam formalism for autonomous sys-

tems

For a more extended description of the Hamiltonian formalism, please refer to [1, 64, 122].
As for the Lagrangian formalism, the Hamiltonian formulation of mechanics is set

in a �nite dimensional manifold Q, the con�guration space, but in contrast, the states
�position plus momentum� of the system under study are described by the cotangent
bundle T ∗Q of Q. Local coordinates (qi) on Q induce �ber coordinates (qi, pi) on T ∗Q,
such that a 1-form α ∈ T ∗qQ at some point q ∈ Q is written as

α = pi dq
i = p1 dq1 + · · ·+ pn dqn.

One introduces the Hamiltonian of the system, a smooth function H : T ∗Q −→ R, which
is in some sense the is the total energy density of the system being described. Typically,
the Hamiltonian is the kinetic energy plus the potential energy of the system,

H(qi, pi) = K(pi) + U(qi) (= T (pi) + V (qi)).

De�nition 2.11. Given a Hamiltonian function H : T ∗Q −→ R, the Hamiltonian vector
�eld with energy function H is the unique vector �eld X ∈ X(M) such that

iXHΩ = dH,

where Ω is the canonical symplectic form of T ∗Q.

Theorem 2.12 (Hamilton's equations). A di�erentiable curve c : I −→ T ∗Q is an
integral curve of XH if and only if the Hamilton's equations hold:

q̇i =
∂H

∂pi
and ṗi =

∂H

∂qi
,

where c(t) = (qi(t), pi(t)).

Proposition 2.13. Given an integral curve c(t) of XH , we have that H(c(t)) is constant.

Proposition 2.14. Let Ft ∈ Diff(M) be the �ow of XH , then F ∗t ω = ω, for each t, i.e.
{Ft} is a family of symplectomorphisms.
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2.3 The Legendre transformation

The Legendre transformation is the master key that relates the Lagrangian and the Hamil-
tonian formalisms. Although the technique is usually used to go from the Lagrangian side
to the Hamiltonian one, it can be restated to pass from the latter to the former.

De�nition 2.15. Given a Lagrangian function L : TQ −→ R, the Legendre transforma-
tion associated to L is the �bered mapping legL : TQ −→ T ∗Q given by

〈legL(v), w〉 :=
d

dε
L(v + ε · w)

∣∣∣
ε=0

.

If (qi, vi) and (qi, pi) denote �ber coordinates on TQ and T ∗Q respectively, we then
have

legL(qi, vi) =

(
qi, pi =

∂L

∂vi

)
.

Proposition 2.16. If L is regular, then legL : TQ −→ T ∗Q is a local di�eomorphism.

De�nition 2.17. A Lagrangian function L : TQ −→ R is said to be hyper-regular
whenever legL is a global di�eomorphism.

Theorem 2.18. Given a Lagrangian function L : TQ −→ R, we have that

ΘL = leg∗L Θ and ΩL = leg∗L Ω.

Moreover, if L is hyper-regular and we de�ne the Hamiltonian

H := EL ◦ leg−1
L = vi

∂L

∂vi
− L,

then the Lagrangian vector �eld XL and the Hamiltonian vector �eld XH are legL-related,
i.e. XH = (legL)∗XL.

2.4 The Tulczyjew's triple

In [147, 148], W. Tulczyjew introduced a purely geometric construction based on a triple
of tangent and cotangent bundles in which the theory of classical mechanics �ts perfectly.
While its extension to higher-order mechanics has been completely achieved (see [30, 45,
48]), there have been some attempts to reproduce it for �eld theory but with only partial
success (for instance, [52, 109]).

Before we give the full picture, we start with two basic de�nitions.
The canonical involution of TTQ is the smooth map κQ : TTQ −→ TTQ given by

κM

(
d

ds

(
d

dt
χ(s, t)

∣∣∣
t=0

) ∣∣∣
s=0

)
:=

d

ds

(
d

dt
χ̃(s, t)

∣∣∣
t=0

) ∣∣∣
s=0

,

where χ : R2 −→ Q and χ̃(s, t) := χ(t, s). Note that d
dt
χ(s, t)|t=0 : R −→ TQ.

The tangent pairing between TT ∗Q and TTQ is the �bered map 〈·, ·〉T : TT ∗Q ×Q
TTQ −→ R given by〈

d

dt
γ(t)

∣∣∣
t=0
,

d

dt
δ(t)

∣∣∣
t=0

〉T
:=

d

dt
〈γ(t), δ(t)〉T

∣∣∣
t=0
,

where γ : R −→ T ∗Q and δ : R −→ TQ are such that πQ ◦ γ ≡ τQ ◦ δ.
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De�nition 2.19. The Tulczyjew's isomorphism is the map α : TT ∗Q −→ T ∗TQ given
by

〈α(V ),W 〉 := 〈V, κQ(W )〉T , V ∈ TT ∗Q, W ∈ TTQ.

In coordinates,
α(qi, pi, q̇i, ṗi) = (qi, q̇i, ṗi, pi).

De�nition 2.20. De�ne the map β : TT ∗Q −→ T ∗T ∗Q by

β(V ) := iV Ω, V ∈ TT ∗Q,

where Ω is the canonical symplectic form of T ∗Q.

In coordinates,
β(qi, pi, q̇i, ṗi) = (qi, q̇i, ṗi, pi).

By means of α and β, TT ∗Q may be endowed with two (a priori) di�erent symplectic
structures: Let ΩTQ and ΩT ∗Q be the canonical symplectic forms of T ∗TQ and T ∗T ∗Q
(as cotangent bundles), respectively. Then, both of Ωα = α∗ΩTQ and Ωβ = β∗ΩT ∗Q de�ne
symplectic structures on TT ∗Q which turn out to be the same; more precisely, Ωα = −Ωβ.
Moreover, there is a third canonical symplectic structure on TT ∗Q which comes from the
complete lift of the canonical symplectic form ΩQ of Q to TT ∗Q, which we denote Ω

(1)
Q ,

and which coincides with the previous ones; more precisely, Ω
(1)
Q = Ωα. In coordinates,

Θα = α∗ΘTQ = ṗ dq + p dq̇ and Θβ = β∗ΘT ∗Q = −ṗ dq + q̇ dp,

where ΘTQ and ΘT ∗Q are the Liouville 1-forms on TQ and T ∗Q, respectively.

Theorem 2.21. Given a Hamiltonian function H : T ∗Q −→ R, consider the associated
Hamiltonian vector �eld XH ∈ X(T ∗Q). The following holds,

1. The image of XH is a Lagrangian submanifold SXH of (TT ∗Q,Ωβ).

2. The image of dH is a Lagrangian submanifold S dH of (T ∗T ∗Q,ΩT ∗Q).

3. The isomorphism β maps one into another, i.e. β(SXH ) = SdH .

Lemma 2.22. Given a Lagrangian function L : TQ −→ R, then the image of dL is a
Lagrangian submanifold S dL of (T ∗TQ,ΩTQ).

Proposition 2.23. Given an hyper-regular Lagrangian function L : TQ −→ R, consider
the associated Hamiltonian H = EL ◦ leg−1

L . We have that α−1(SdL) = SXH = β−1(S dH)

T ∗TQ

πTQ

��88888888888888
TT ∗Qαoo β //

TπQ

����������������

τT∗Q

��99999999999999
T ∗T ∗Q

πT∗Q

�����������������

TQ
legL //

dL

NN

T ∗Q

dH

PP
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Chapter 3

Classical Field Theory

The main reference for this chapter is the book by Saunders [139], although it does not
cover all the sections (references will be provided when necessary). Besides, other basic
references are [21, 91, 97, 109, 61, 136].

3.1 Jet bundles

Through this section, (E, π,M) denotes a �ber bundle whose base space M is a smooth
manifold of dimension m, and whose �bers have dimension n, thus E is (m + n)-
dimensional. Adapted coordinate systems in E will be of the form (xi, uα), where (xi) is
a local coordinate system in M and (uα) denotes �ber coordinates.

De�nition 3.1. Given a point x ∈ M , two local sections φ, ψ ∈ Γxπ are 1-equivalent at
x if their value coincide at x, φ(x) = ψ(x), as well as their tangent maps, Txφ = Txψ.
This de�nes an equivalence relation in Γxπ. The equivalence class containing φ is called
the �rst order jet of φ at x and is denoted j1

xφ.

An alternative de�nition of the previous equivalence relation would be in terms of
partial derivatives. Let (xi, uα) be a system of adapted local coordinates around φ(x), ψ
will be 1-equivalent to φ at x if and only if

φα(x) = ψα(x) and
∂φα

∂xi

∣∣∣∣
x

=
∂ψα

∂xi

∣∣∣∣
x

. (3.1)

De�nition 3.2. The �rst order jet manifold of π, denoted J1π, is the whole collection
of �rst order jets of arbitrary local sections of π, that is,

J1π :=
{
j1
xφ : x ∈M, φ ∈ Γxπ

}
.

The functions given by
π1 : J1π −→ M

j1
xφ 7−→ x

(3.2)

and
π1,0 : J1π −→ E

j1
xφ 7−→ φ(x)

(3.3)

are called the source projection and the target projection respectively, and are smooth
surjective submersions.

23
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Proposition 3.3. The �rst jet manifold of π, J1π, may be endowed with a structure
of smooth manifold. A system of adapted coordinates (xi, uα) on E induces a system
of coordinates (xi, uα, uαi ) on J1π such that xi(j1

xφ) = xi(x), uα(j1
xφ) = uα(φ(x)) and

uαi (j1
xφ) = ∂φα

∂xi

∣∣
x
.

In the induced local coordinates (xi, uα, uαi ), the source and the target projections are
written

π1(xi, uα, uαi ) = (xi) and π1,0(xi, uα, uαi ) = (xi, uα). (3.4)

From here, it is clear that π1 and π1,0 are certainly projections (surjective submersions)
over M and E, respectively. Therefore, (J1π, π1,M) and (J1π, π1,0, E) are �ber bundles.
If we consider a change of coordinates (xi, uα) 7→ (yj(xi), vβ(xi, uα)) in E, it induces
a change of coordinates (xi, uα, uαi ) 7→ (yj(xi), vβ(xi, uα), vβj (xi, uα, uαi )) in J1π. In this
case, the �velocities� transform by the following rule:

vβj =

(
∂vβ

∂xi
+
∂vβ

∂uα
uαi

)
∂xi

∂yj
. (3.5)

Note that the change of coordinates is not linear, like in the tangent bundle, but a�ne.

Proposition 3.4. The �rst jet manifold of π, J1π, together with the target projection,
π1,0, is an a�ne bundle over E. The �ber in J1π over a point u ∈ Ex, J1

uπ, is di�eomor-
phic to the a�ne space

{A ∈ Lin(TxM,TuE) : Tuπ ◦ A = IdTxM} .
The underlying vector bundle has typical �ber

{A ∈ Lin(TxM,TuE) : Tuπ ◦ A = 0} = Lin(TxM,Vu π).

Moreover, the induced coordinate systems (xi, uα, uαi ) are adapted to the a�ne bundle
structure.

Formally, the associated vector bundle to J1π is the bundle over E whose total space
is the tensor product T ∗M ⊗E V π, that is, the bundle

(T ∗M ⊗E V π, (τE|V π) ◦ pr 2, E).

Let j1
xφ ∈ J1π and consider a typical element A ∈ T ∗xM ⊗ Vφ(x) π, the action of A on

j1
xφ is the 1-jet j1

xψ = j1
xφ + A such that ψ(x) = φ(x) and Txψ = Txφ + A. In adapted

coordinates,
uαi (j1

xφ+ A) = uαi (j1
xφ) + Aαi ,

where

A = Aαi dxi ⊗ ∂

∂uα
.

Despite (J1π, π1,0, E) is a�ne, if we consider a preferred global section and see it as
�the zero section�, one could thought of J1π as a vector bundle. Obviously, in general,
there is no such preferred global section. But, when E is trivial, there it is. Suppose that
E = M × F . For each u ∈ E we de�ne the constant section φu ∈ Γπ by

φu(x) := (x, pr 2(u)).

We then de�ne the zero section z ∈ Γπ1,0 by

z(u) := j1
xφu = (xi, uα, uαi = 0).

In the particular case where π is the bundle (R× F, pr 1,R), J1π turns to be isomorphic
to R× TF .
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3.1.1 Prolongations, lifts and contact

De�nition 3.5. Let φ ∈ Γπ be a (local) section, its �rst prolongation is the (local)
section of π1,0 given by

(j1φ)(x) := j1
xφ,

for every x ∈ M . An arbitrary (local) section σ of π1 is said to be holonomic if it is the
�rst prolongation of a (local) section φ ∈ Γπ, that is, if σ = j1φ.

De�nition 3.6. Let f : E → F be a morphism between two �ber bundles (E, π,M) and
(F, ρ,N), such that the induced function on the base, f̌ : M → N , is a di�eomorphism.
The �rst prolongation of f is the map j1f : J1π → J1ρ given by

(j1f)(j1
xφ) := j1

f̌(x)
φf , ∀j1

xφ ∈ J1π,

where φf := f ◦ φ ◦ f̌−1.

J1π
j1f //

π1,0

��

J1ρ

ρ1,0

��
E

f //

π

��

F

ρ

��
M

f̌ //

φ

HH
j1φ

FF

N

φf

VV
j1φf

XX

Note that the �rst prolongation j1f of a morphism f is both, a morphism between
(J1π, π1,0, E) and (J1ρ, ρ1,0, F ), and a morphism between (J1π, π1,M) and (J1ρ, ρ1, N).
In each case, the induced functions between the base spaces are f and f̌ , respectively.

If (xi, uα, uαi ) and (yj, vβ, vβj ) denote adapted coordinates in J1π and J1ρ, respectively,
then we have

yj(j1f) = f j, vβ(j1f) = fβ and vβj (j1f) =

(
∂fβ

∂xi
+ uαi

∂fβ

∂uα

)
· ∂f̌

−i

∂yj
.

The expression between brackets in the last equation is called the total derivative of fβ

with respect to xi. We will come back to it later.

De�nition 3.7. Let φ : M → E be a section of π, x ∈ M and u = φ(x). The vertical
di�erential of the section φ at the point u ∈ E is the map

dv
uφ : TuE −→ Vu π

v 7−→ v − Tu(φ ◦ π)(v)

Namely, dv
uφ := Idu−Tu(φ ◦ π).
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Notice that the image of dv
uφ is certainly in Vu π since Tuπ ◦ dv

u = 0 and that, in fact,
dv
uφ depends only on j1

xφ. In adapted local coordinates (xi, uα) of E,

dv
uφ =

(
duα − ∂φα

∂xi
dxi
)
⊗ ∂

∂uα
. (3.6)

De�nition 3.8. The canonical structure form of J1π is the 1-form θ on J1π with values
in V π de�ned by

θj1xφ(V ) := ( dv
φ(x)φ)(Tj1xφπ1(V )), V ∈ Tj1xφJ

1π, (3.7)

where φ is any representative of j1
xφ ∈ J1π. The contraction of the covectors in V∗ π with

θ de�nes a �distribution� in T ∗J1π. This distribution is called the contact module or the
Cartan codistribution (of order 1) and it is denoted C1. Its elements are contact forms.
The annihilator of C1 is the Cartan distribution (of order 1).

This is the approach taken by Echevaría-Enríquez et al. in [71]. In Saunders' ter-
minology (see [139], pages 136�137), θ is one of the elements that conform the �contact
structure� of π1, which is given by a natural decomposition in π∗1,0(τE), what is out of our
scope.

Note that the expression (3.7) does not depend on the representative φ of j1
xφ, hence

it is well de�ned. In adapted local coordinates (xi, uα, uαi ) of J1π,

θ =
(

duα − uαi dxi
)
⊗ ∂

∂uα
. (3.8)

In fact, the contact forms duα − uαi dxi ∈ C1 are a base of the contact module.

Proposition 3.9. Let (xi, uα, uαi ) be adapted coordinates on J1π, a basis of the Cartan
codistribution is given by the coordinate or local contact forms

θα = duα − uαi dxi. (3.9)

Proposition 3.10. The canonical structure form θ ∈ Γ(T ∗J1π⊗J1π V π) and the contact
forms ω ∈ C1 are pulled back to zero by the �rst prolongation j1φ of any section φ of π.
Moreover, this characterizes the module of contact forms, i.e.

ω ∈ C1 ⇔ (j1φ)∗ω = 0, ∀φ ∈ Γπ. (3.10)

A complementary or dual result to the previous one is the following.

Proposition 3.11. Let σ ∈ Γπ1 be a (local) section. The following statements are equiv-
alent:

1. σ is holonomic.

2. σ pulls back to zero any contact form, that is

σ∗ω = 0, ∀ω ∈ C1. (3.11)

3. σ pulls back to zero the canonical structure form, that is

σ∗θ = 0. (3.12)
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Notice that the contact forms are π1,0-basic, which is clear from the coordinate ex-
pression (3.9). Though, therefore they may be thought as forms along π1,0 rather than
on J1π. In this sense are de�ned total derivatives.

De�nition 3.12. A total derivative is a vector �eld ξ along π1,0 which is annihilated
by the Cartan codistribution (considered now as forms along π1,0). Given a system of
adapted coordinates (xi, uα, uαi ) in J1π, the local vector �elds de�ned along π1,0 by

d

dxi
=

∂

∂xi
+ uαi

∂

∂uα
(3.13)

are called coordinate total derivatives.

It is immediate to check that coordinate total derivatives are total derivatives, in
fact they de�ne a basis of such vector �elds. Under a change of coordinates, (xi, uα, uαi )
to (yj, vβ, vβj ), a coordinate total derivative transforms linearly by the Jacobian of the
underlying change of coordinates:

d

dyj
=
∂xi

∂yj
d

dxi
.

If ξ ∈ X(π1,0) is a total derivative with the coordinate representations

ξ = ξi
d

dxi
= ξj

d

dyj
,

where the coe�cients ξi and ξj are functions on J1π, then

ξi = ξj
∂xi

∂yj
.

De�nition 3.13. The total lift of a vector �eld ξ = ξi∂i on M is the unique total
derivative that projects on ξ itself, that is, the vector �eld ξ̂ ∈ X(J1π) locally given by

ξ̂(j1
xφ) = ξi(x)

d

dxi

∣∣∣
j1xφ
. (3.14)

Note that the total lift of the coordinate partial derivatives in M are precisely the
coordinate total derivatives.

Now, consider the action of total derivatives on smooth functions over E. If f ∈
C∞(E), the action of d/ dxi on it yields a function df/ dxi ∈ C∞(J1π). In particular,
the action of d/ dxi on the coordinate function uα ∈ C∞(E), gives as expected

duα

dxi
= uαi ∈ C∞(J1π).

Another interesting fact is how total derivatives and jets are related. Let f ∈ C∞(E),
φ ∈ Γπ and ξ ∈ X(M), we have

ξ(f ◦ φ) = ξ̂(f) ◦ j1φ, (3.15)

and in coordinates
∂(f ◦ φ)

∂xi
=

df

dxi
◦ j1φ. (3.16)
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Finally, note that coordinate total derivatives and ordinary partial derivates do not nece-
sarilly conmute:

∂

∂xi
df

dxj
=

d

dxj
∂f

∂xi
,

∂

∂uα
df

dxj
=

d

dxj
∂f

∂uα
but

∂

∂uαi

df

dxj
=

d

dxj
∂f

∂uαi
+ δji

∂f

∂uα
,

where f ∈ C∞(E).

De�nition 3.14. Given a vector �eld ξ on E, its �rst lift (or �rst jet) is the unique vector
�eld ξ(1) on J1π that is projectable to ξ by π1,0 and preserves the Cartan codistribution
with respect to the Lie derivative, i.e. Lξ(1)ω ∈ C1 for any ω ∈ C1.

Proposition 3.15. Let ξ be a vector �eld on E. If ξ has the local expression

ξ = ξi
∂

∂xi
+ ξα

∂

∂uα
(3.17)

in adapted coordinates (xi, uα) on E, then its �rst lift ξ(1) has the form

ξ(1) = ξi
∂

∂xi
+ ξα

∂

∂uα
+

(
dξα

dxi
− uαj

dξj

dxi

)
∂

∂uαi
(3.18)

for the induced coordinates (xi, uα, uαi ) on J1π.

Originally, the �rst lift is de�ned for π-projectable vector �elds on E. The �rst lift of
such vector �eld ξ is the in�nitesimal generator of the �rst lift of the �ow of ξ. De�nition
3.14 is a characterization of this property and it is generalized for any kind of vector �elds
on E (see [71]).

Proposition 3.16. Let ψε be the �ow of a given π-projectable vector �eld ξ over E.
Then, the �ow of ξ(1) is the �rst prolongation of ψε, j1ψε.

3.1.2 The vertical endomorphisms

De�nition 3.17. Given a 1-jet j1
xφ ∈ J1π, let A ∈ T ∗xM ⊗Vφ(x) π. The vertical lift of A

at j1
xφ is the tangent vector Av

j1xφ
∈ Tj1xφ(J1π) given by

Av
j1xφ

(f) =
d

dt
f(j1

xφ+ tA)
∣∣
t=0
, ∀f ∈ C∞(J1

φ(x)π). (3.19)

By the very de�nition of vertical lift, given a smooth function f ∈ C∞(E),

(Tj1xφπ1,0)(Av
j1xφ

)(f) = Av
j1xφ

(f ◦ π1,0)

=
d

dt
(f ◦ π1,0)(j1

xφ+ tA)
∣∣
t=0

=
d

dt
f(φ(x))

∣∣
t=0

= 0.

Thus, the vertical lift takes values into the vertical �ber bundle V π1,0 ⊂ TJ1π. Indeed,
it is a morphism of vector bundles over the identity of J1π,

(·)v : T ∗M ⊗J1π V π −→ V π1,0.



3.1. JET BUNDLES 29

Note that, this time, the tensor product is taken over J1π and not over E. Note also that
for each j1

xφ ∈ J1π, the vertical lift at j1
xφ,

(·)v
j1xφ

: T ∗xM ⊗ Vφ(x) π −→ Vj1xφ π1,0 ⊂ Tj1xφJ
1π,

is a linear isomorphism. In adapted local coordinates (xi, uα, uαi ), if A = Aαi dxi|x ⊗
∂/∂uα|φ(x), then

Av
j1xφ

= Aαi
∂

∂uαi

∣∣∣
j1xφ

and (·)v = duα ⊗ ∂

∂xi
⊗ ∂

∂uαi
. (3.20)

De�nition 3.18. Let η ∈ ΛmM be an arbitrary m-form on M . The vertical endomor-
phism associated to η is the vector valued m-form Sη : (TJ1π)m −→ TJ1π that gives

Sη(V1, . . . , Vm) :=
m∑
i=1

{
ηi ⊗ [(Tj1xφπ1,0)(Vi)− (Tj1xφ(φ ◦ π1))(Vi)]

}v
, (3.21)

for any m tangent vectors V1, . . . , Vm ∈ Tj1xφJ
1π, and where ηi is the contraction

ηi := (−1)m−iηx(V1, . . . , V̂i, . . . , Vm)

with the hatted factor omitted.

De�nition 3.19. The (canonical) vertical endomorphism S arises from the natural con-
traction between the factors in V π of the structure canonical form θ and the factors in
V∗ π of the vertical lift (·)v; that is

S := 〈θ, (·)v〉 ∈ Γ(T ∗J1π ⊗J1π TM ⊗J1π V π1,0). (3.22)

In adapted coordinates (xi, uα, uαi ) of J1π, the vertical endomorphisms have the local
expressions

Sη = ( duα − uαj dxj) ∧ dm−1xi ⊗
∂

∂uαi
= θα ∧ dm−1xi ⊗

∂

∂uαi
(3.23)

and

S = ( duα − uαj dxj)⊗ ∂

∂xi
⊗ ∂

∂uαi
= θα ⊗ ∂

∂xi
⊗ ∂

∂uαi
, (3.24)

where θα = duα − uαj dxj are the local contact forms and dm−1xi = i∂/∂xi dmx.

3.1.3 Partial Di�erential Equations

Lemma 3.20. If N is an open submanifold of M , then J1(πN) ' π−1
1 (N), where πN :=

π|π−1
1 (N).

De�nition 3.21. A �rst-order di�erential equation on π is a closed embedded subman-
ifold P of the �rst jet manifold J1π. A solution of P is a local section φ ∈ ΓNπ, where
N is an open submanifold of M , which satis�es j1

xφ ∈ P for every x ∈ N . A �rst-order
di�erential equation P is said to be integrable at z ∈ P if there is a solution φ of P
(around some neighborhood N of π1(z)) such that z = j1

π1(z)φ. A �rst-order di�erential
equation P is said to be integrable in a subset P ′ ⊂ P if it is integrable at each z ∈ P ′. A
�rst-order di�erential equation P is said to be integrable if it is integrable at each z ∈ P .
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If l is the codimension of P (dim J1π − dimP), there locally exist submersions Ψ :
J1π → Rl for whom P is the zero level set. Written in local coordinates, P is given by
the set of points that satisfy

Ψµ(xi, uα, uαi ) = 0, µ = 1, . . . , l.

Thus, �rst-order di�erential equations are a geometric interpretation of the usual �rst-
order partial di�erential equations. Under certain conditions, one could solve the previous
equation for some of the velocities uαi making them to depend on the other variables
(then π1,0|P : P → E would be a submersion). For simplicity, if n = 1 and 1 < l < m,
rearranging conveniently the base variables, the previous equation could be equivalent to
the following expression

um−l+µ = φµ(xi, u, u1, . . . , um−l), µ = 1, . . . , l.

In the general case, if one projects P to E by π1,0, he would obtain a subset P(0,0)

of E, let us assume it is a smooth submanifold, which is not necessarily the whole of E.
In such a case, it means that we are dealing with some constraint on the total space E
itself. An integral holonomic section j1φ of P will be such that the image of φ belongs to
P(0,0) and the image of j1φ belongs to P(1,1) := J1P(0,0) ∩ P . The submanifold P(1,1) of
J1π introduces new constraints that a solution of P must satisfy, moreover it represents
the �rst step of the extension to jet bundles of the algorithm to extract the integral part
of a di�erential equation in a tangent bundle, which was presented by Mendella et al. in
[127] (see also [126, 128]). The general algorithm will be given in Section �4.1.3.

Example 3.22. Given the �ber bundle pr 1 : R2 → R2 × R3 with global coordinates
(x, y, u, v, w), consider the constraint submanifold of J1 pr 1

P = {(x, y, u, v, w, ux, uy, vx, vy, wx, wy) ∈ J1 pr 1 :

u = 0, v = w, ux = vy, uy = −wx}. (3.25)

Then,
P(0,0) =

{
(x, y, u, v, w) ∈ R2 × R3 : u = 0, v = w

}
,

and
P(1,1) = J1P(0,0) ∩ P =

{
(x, y, 0, v, v, 0, 0, 0, 0, 0, 0) ∈ J1 pr 1

}
is the integral part of P . Thus, holonomic integral sections of P are of the form

φ(x, y) = (x, y, 0, c, c),

where c is any real number.

3.1.4 The Dual Jet Bundle

De�nition 3.23. The dual jet bundle of π, denoted J1π†, is the reunion of the a�ne
maps from J1

uπ to Λm
π(u)M , where u is an arbitrary point of E. Namely,

J1π† :=
⋃
u∈E

Aff(J1
uπ,Λ

m
π(u)M). (3.26)
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The functions given by
π†1 : J1π† −→ M
ω ∈ J1

uπ
† 7−→ π(u)

(3.27)

and
π†1,0 : J1π† −→ E
ω ∈ J1

uπ
† 7−→ u

(3.28)

where J1
uπ
† = Aff(J1

uπ,Λ
m
π(u)M), are called the dual source projection and the dual target

projection respectively.

The duality nature of J1π† gives rise to a natural pairing between its elements and
those of J1π. The pairing will be denoted by the usual angular brackets, 〈 , 〉 : J1π† ⊗E
J1π → ΛmM .

Proposition 3.24. The dual jet bundle of π, J1π†, may be endowed with a structure
of smooth manifold. A system of adapted coordinates (xi, uα) in E induces a system of
coordinates (xi, uα, p, piα) in J1π† such that, for any j1

xφ ∈ J1π and any ω ∈ J1
φ(x)π

†,
xi(ω) = xi(x), uα(ω) = uα(φ(x)) and 〈ω, j1

xφ〉 = (p+ piαu
α
i ) dmx.

In the induced local coordinates (xi, uα, p, piα), the dual source and the dual target
projections are written

π†1(xi, uα, p, piα) = (xi) and π†1,0(xi, uα, p, piα) = (xi, uα). (3.29)

From here, it is clear that π†1 and π
†
1,0 are certainly projections overM and E respectively.

Therefore, (J1π†, π†1,M) and (J1π†, π†1,0, E) are �ber bundles. If we consider a change of
coordinates (xi, uα) 7→ (yj, vβ) in E, it induces a change of coordinates (xi, uα, p, piα) 7→
(yj, vβ, q, qjβ) in J1π†. In this case, the �momenta� transform by the following rule:

q = Jac(x(y))

(
p+

∂uα

∂yj
piα
∂yj

∂xi

)
and qjβ = Jac(x(y))

(
∂uα

∂vβ
piα
∂yj

∂xi

)
, (3.30)

where Jac(x(y)) is the Jacobian determinant of the transformation (yj) 7→ (xi). Note that
the local volume form and its contraction transforms under the change of coordinates by

dmy = Jac(y(x)) dmx and dm−1yj = Jac(y(x))
∂xi

∂yj
dm−1xi. (3.31)

Proposition 3.25. The dual jet bundle of π, J1π†, together with the dual target projec-
tion, π†1,0, is a vector bundle over E. Moreover, the induced coordinate systems (xi, uα, p, piα)
are adapted to the vector bundle structure.

De�nition 3.26. The reduced dual jet bundle of π, denoted J1π◦, is the quotient of J1π†

by constant a�ne transformations along the �bers of π1,0. The quotient map will be
µ : J1π† → J1π◦.

Proposition 3.27. We have that:

1. J1π◦ may be endowed with a structure of smooth manifold;

2. (J1π†, µ, J1π◦) is a smooth vector bundle of rank 1;
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3. Adapted coordinates (xi, uα) on E induce coordinates (xi, uα, piα) on J1π◦ such that
µ(xi, uα, p, piα) = (xi, uα, piα), where (xi, uα, p, piα) are the induced coordinates on
J1π†.

The extended and the reduced dual jet bundles of π may also be realized by means
of basic and semi-basic forms. Recall that π-basic (resp. π-semi-basic) forms are forms
over E annihilated by the contraction with at least one (resp. two) π-vertical vector.

Proposition 3.28. The extended dual jet bundle, J1π†, and the set of π-semi-basic m-
forms over E, Λm

2 E, with canonical projection ΛkπE|Λk2E : Λk
2E → E are isomorphic.

Proof. Given a semi-basic m-form ω ∈ Λm
2 E, let u = ΛkπE(ω) ∈ E and consider the

function that sends any 1-jet j1
xφ ∈ J1

uπ to the pullback of ω by φ at x. This does not
depend on the representative φ ∈ Γxπ of j1

xφ. Moreover, this function is a�ne with
respect to j1

xφ thus, this de�nes a morphism Υ from Λm
2 E to J1π† as follows

Υ : Λm
2 E −→ J1π†

ω 7−→ Υ(ω) : J1
uπ −→ ΛmM
j1
xφ 7−→ φ∗xω

where u = π†1,0(ω). It is easy to check that Φ is a smooth isomorphism of vector bundles.

Semi-basic m-forms ω ∈ Λm
2 E are locally written

ω = p̃ dmx+ p̃iα duα ∧ dm−1xi.

Thus, adapted coordinates (xi, uα) on E induce adapted coordinates on (xi, uα, p̃, p̃iα) on
Λm

2 E. The isomorphism de�ned in the previous proof takes then the local expression

Υ(xi, uα, p̃, p̃iα) = (xi, uα, p̃, p̃iα) : (xi, uα, uαi ) ∈ J1
uπ 7→ p̃+ p̃iαu

α
i ∈ R.

Consider now the set of π-basic forms, Λm
1 E. An arbitrary basic form ω is locally

written
ω = p̃ dmx.

Notice that Λm
1 E coincides with the pullback to E of ΛmM or with the set of constant

a�ne transformations on the �bers of π1,0.

Corollary 3.29. The reduced dual jet bundle J1π◦ is canonically isomorphic to the quo-
tient of semi-basic m-forms Λm

2 E by the basic m-forms Λm
1 E, that is J

1π◦ ∼= Λm
2 E/Λ

m
1 E.

Proof. Let Ψ : Λm
2 E → J1π† be the canonical isomorphism given in Proposition 3.28.

Since the set of constant a�ne transformations on the �bers of π1,0 coincides with the
set of basic m-forms over E, µ ◦ Ψ is constant along the �bers of µ̄ as well as Ψ ◦ µ̄
along the �bers of µ. Hence Ψ passes smoothly to the quotient to an isomorphism
υ : Λm

2 E/Λ
m
1 E → J1π◦.

While J1π† is naturally paired with J1π, remember that Λm
2 E has a canonical mul-

tisymplectic structure (see Example 1.43). Consider the Liouville m-form Θ on Λm
2 E,

which is locally given by the expression

Θ = p̃ dmx+ p̃iα duα ∧ dm−1xi, (3.32)
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for adapted coordinates (xi, uα, p̃, p̃iα) on Λm
2 E. Then, the canonical multi-symplectic

(m+ 1)-form on Λm
2 E is

Ω = − dΘ = − dp̃ ∧ dmx− dp̃iα ∧ duα ∧ dm−1xi. (3.33)

Thanks to the identi�cation between J1π† and Λm
2 E (and their respective quotients),

any structure carried by one of them can be translated to the other. In particular, the
multi-symplectic form. From now on, no distintion will be made between J1π† and Λm

2 E
(or between J1π◦ and Λm

2 E/Λ
m
1 E). Although the �dual� notation will be used for sets,

coordinates, structures, etc.

3.2 Classical Field Theory

3.2.1 The Lagrangian Formalism

This section is devoted to the �rst order Lagrangian formalism in jet manifolds. The
main ingredients are the following: the Lagrangian density, the Poincaré-Cartan form,
the premultisymplectic structure de�ned from the multimomentum Liouville form and
the Legendre transformation. We shall use the same notations as in the previous section.

The variational approach

De�nition 3.30. A Lagrangian density is a �bered mapping L : J1π → ΛmM .

Since we assume that M is an oriented manifold, with volume form η, we can write
L = Lη, where L : J1π → R is the Lagrangian function. The manifold J1π plays the role
of the �nite-dimensional con�guration space of �elds.

De�nition 3.31. Given a Lagrangian density L : J1π −→ ΛmM , the associated integral
action is the map AL : Γπ ×K −→ R given by

AL(φ,R) =

∫
R

(j1φ)∗L, (3.34)

where K is the collection of smooth compact regions of M .

De�nition 3.32. Let φ be a section of π. A (vertical) variation of φ is a curve ε ∈ I 7→
φε ∈ Γπ (for some interval I ⊂ R containing the 0) such that φε = ϕε ◦ φ ◦ (ϕ̌ε)

−1, where
ϕε is the �ow of a (vertical) π-projectable vector �eld ξ on E.

De�nition 3.33. We say that φ ∈ Γπ is a critical or stationary point of the Lagrangian
action AL if and only if

d

dε
[AL(φε, Rε)]

∣∣∣
ε=0

=
d

dε

[∫
Rε

(j1φε)
∗L
] ∣∣∣∣

ε=0

= 0, (3.35)

for any variation φε of φ whose associated vector �eld vanishes outside of π−1(R).

Lemma 3.34. Let φε = ϕε ◦ φ ◦ (ϕ̌ε)
−1 be a variation of a section φ ∈ Γπ. If ξ denotes

the in�nitesimal generator of ϕε, then

d

dε

[
((j1φε) ◦ ϕ̌ε)∗xω

] ∣∣∣
ε=0

= (j1φ)∗x(Lξ(1)ω), (3.36)

for any di�erential form ω ∈ Ω(J1π).
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Proof. From Proposition 3.16, we have that ξ(1) is the in�nitesimal generator of j1ϕε. We
then obtain by a direct computation,

(j1φ)∗x(Lξ(1)ω) = (j1φ)∗x

(
d

dε

[
(j1ϕε)

∗ω
] ∣∣∣
ε=0

)
=

d

dε

[
(j1ϕε ◦ j1φ)∗xω

] ∣∣∣
ε=0

=
d

dε

[
(j1φε ◦ j1ϕ̌ε)

∗
xω
] ∣∣∣
ε=0

.

Theorem 3.35 (The Euler-Lagrange equations). Given a �ber section φ ∈ Γπ, let us
consider an in�nitesimal variation φε of it such that the support R of the associated
vector �eld ξ ∈ X(E) is contained in a coordinate chart (xi) of M . We then have that the
variation of the Lagrangian action AL at φ is given by

d

dε
AL(φε, R)

∣∣∣
ε=0

=

∫
R

(j2φ)∗
[
(ξα − uαi ξi)

(
∂L

∂uα
− d

dxi
∂L

∂uαi

)]
dmx

−
∫
∂R

(j1φ)∗
[
ξiL+ (ξα − uαi ξi)

∂L

∂uαi

]
dm−1xi,

(3.37)

where (xi, uα, uαi , u
α
ij) are adapted coordinates on J2π. Moreover, φ is a critical point of

the Lagrangian action AL if and only if it satis�es the Euler-Lagrange equations

(j2φ)∗
(
∂L

∂uα
− d

dxi
∂L

∂uαi

)
= 0 (3.38)

on the interior of M , plus the boundary conditions

(j1φ)∗L = (j1φ)∗
∂L

∂uαi
= 0, (3.39)

on the boundary ∂M of M .

Proof. Let us denote by ξ the vector �eld associated to the variation φε. By Proposition
3.34 and Cartan's formula L = d ◦ i+ i ◦ d, we have that

d

dε
AL(φε, Rε)

∣∣∣
ε=0

=

∫
R

d

dε

[
(j1φε ◦ ϕ̌ε)∗L

] ∣∣∣
ε=0

=

∫
R

(j1φ)∗(Lξ(1)L)

=

∫
R

(j1φ)∗ d(iξ(1)L) +

∫
R

(j1φ)∗iξ(1) dL

=

∫
∂R

(j1φ)∗iξ(1)L+

∫
R

(j1φ)∗(ξ(1)(L) dmx− dL ∧ iξ(1) dmx).

So as to develop the last three terms, we shall use the coordinate expression of ξ(1) given
in Proposition 3.15. Therefore, the �rst boundary integral is∫

∂R

(j1φ)∗iξ(1)L =

∫
∂R

(j1φ)∗
(
Lξi dm−1xi

)
.
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For the second term, taking into account Equation (3.16) and using integration by parts,
we obtain∫

R

(j1φ)∗[ξ(1)(L) dmx] =

=

∫
R

(j1φ)∗
[
ξi
∂L

∂xi
+ ξα

∂L

∂uα
+

(
dξα

dxi
− uαj

dξj

dxi

)
∂L

∂uαi

]
dmx

=

∫
R

(j2φ)∗
[
ξi
∂L

∂xi
+ ξα

∂L

∂uα
+

d

dxi
(
ξα − uαj ξj

) ∂L
∂uαi

+ uαjiξ
j ∂L

∂uαi

]
dmx

=

∫
R

(j2φ)∗
[
ξi
∂L

∂xi
+ ξα

∂L

∂uα
−
(
ξα − uαj ξj

) d

dxi
∂L

∂uαi
+ uαjiξ

j ∂L

∂uαi

]
dmx

+

∫
∂R

(j1φ)∗
[(
ξα − uαj ξj

) ∂L
∂uαi

]
dm−1xi.

And the third term is∫
R

(j1φ)∗( dL ∧ iξ(1) dmx) =

=

∫
R

(j1φ)∗
[(

∂L

∂xi
dxi +

∂L

∂uα
duα +

∂L

∂uαi
duαi

)
∧ ξj dm−1xj

]
=

∫
R

(j2φ)∗
[
ξi
(
∂L

∂xi
+ uαi

∂L

∂uα
+ uαji

∂L

∂uαj

)]
dmx.

Adding the three developments that we have computed, some terms cancel out and,
rearranging properly the remaining ones, we obtain the �rst statement of the theorem.

If we now suppose that R is contained in the interior of M , as ξ is null outside of R,
so it is ξ(1) outside of R and, by smoothness, on its boundary ∂R. Thus, if φ is a critical
point of AL, we then must have that

d

dε
AL(φε, R)

∣∣∣
ε=0

=

∫
R

(j2φ)∗
[
(ξα − uαi ξi)

(
∂L

∂uα
− d

dxi
∂L

∂uαi

)]
dmx = 0,

for any vertical �eld ξ whose compact support is contained in π−1(R). We thus infer that
φ shall satisfy the higher-order Euler-Lagrange equations (3.38) on the interior of M .

Finally, if R has common boundary with M and φ is a critical point of AL, from the
above results, we have that

d

dε
AL(φε, R)

∣∣∣
ε=0

= −
∫
∂R∩∂M

(j1φ)∗
[
ξiL+ (ξα − uαi ξi)

∂L

∂uαi

]
dm−1xi = 0.

Since this is true for any vector �eld ξ whose compact support is contained in π−1(R),
then the boundary conditions (3.39) follows.

Remark 3.36. In the de�nition 3.33 of critical point of the Lagrangian action AL, we have
considered the widest range of variations, with the consequent decrement of the set of
possible solutions. There, two di�erent requirements on the variations could have been
made, deriving in a broader set of solutions. First, we could have imposed verticality to
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the variations, resulting in a substantial simpli�cation of the proof, and we would still
have obtained the Euler-Lagrange equations (3.38) but, this time, without the restriction
(j1φ)∗L = 0 on ∂M . The same set of solution would have been obtained with verticality
only along the boundary ∂M . Secondly, we could have imposed null variations along ∂M ,
which would have implied no restrictions of the solutions of the Euler-Lagrange equations
along ∂M , neither (j1φ)∗L = 0 nor (j1φ)∗∂L/∂uαi = 0.

If we have avoided these assumptions and followed this more general procedure is to
stress out the strong relation with the geometric structure of jet bundles, in particular
with the so-called Poincaré-Cartan form, which will appear clear in the next section.

The geometric approach

De�nition 3.37. The Poincaré-Cartan m-form associated with the Lagrangian density
L : J1π → ΛmM is de�ned by

ΘL := L+ 〈S, dL〉 , (3.40)

where S is the canonical vertical endomorphism of J1π and 〈S, dL〉 is the contraction
between the factors in V π1 of S and those in T ∗J1π of dL. The Poincaré-Cartan (m+1)-
form associated with L is de�ned by

ΩL := − dΘL. (3.41)

In local coordinates, if L = L dmx, we get:

ΘL =

(
L− uαi

∂L

∂uαi

)
dmx+

∂L

∂uαi
duα ∧ dm−1xi (3.42)

= L+
∂L

∂uαi
θα ∧ dm−1xi,

ΩL = − d

(
L− uαi

∂L

∂uαi

)
∧ dmx− d

(
∂L

∂uαi

)
∧ duα ∧ dm−1xi (3.43)

= −θα ∧
(
∂L

∂uα
dmx− d

(
∂L

∂uαi

)
∧ dm−1xi

)
.

If we conveniently denote p̂iα := ∂L
∂uαi

and p̂ := L− p̂iαuαi , then the local expression of the
Poincaré-Cartan forms are now

ΘL = p̂ dmx+ p̂iα duα ∧ dm−1xi

ΩL = − dp̂ ∧ dmx− dp̂iα ∧ duα ∧ dm−1xi

which are formally the expression of the Liouville forms of J1π† (compare with equations
(3.32) and (3.33)). This is not a mere coincidence but, as we will see, an evidence of the
strong relation between the Lagrangian and the Hamiltonian formalisms.

Remark 3.38. Instead of using the canonical vertical endomorphism S in the de�nition
3.37 of the Poincaré-Cartan m-form ΘL, we could have used the vertical endomorphism
Sη associated to a volume form η on M . If we de�ne

ΘL := L+ 〈Sη, dL〉 , (3.44)

where L = Lη and 〈Sη, dL〉 is the contraction between the factors in TJ1π of Sη and
those in T ∗J1π of dL, it turns out that this de�nition does not depend on the chosen
volume form η and coincides with the previous de�nition.
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Remark 3.39. The Poincaré-Cartan m-form ΘL is also called DeDonder form by Binz,
�niatycki and Fisher [21], since this was the name used by Cartan (who attributed its
construction to DeDonder) to distinguish it from the Poincaré-Cartan form in Mechanics.
In the quoted book by Binz et al. the reader can �nd interesting historical remarks
concerning Field theories.

Proposition 3.40. The Poincaré-Cartan forms satisfy the following properties:

1. The Poincaré-Cartan m-form ΘL is π1,0-semi-basic, i.e. it is annihilated by any
π1,0-vertical vector X ∈ V π1,0,

iXΘL = 0. (3.45)

2. The Poincaré-Cartan m-form ΘL is annihilated by any pair of π1-vertical vectors
X, Y ∈ V π1,

iXiY ΘL = 0. (3.46)

3. The Poincaré-Cartan (m + 1)-form ΩL is annihilated by any pair of π1,0-vertical
vectors X, Y ∈ V π1,0,

iXiY iZΩL = 0. (3.47)

4. The Poincaré-Cartan (m + 1)-form ΩL is annihilated by any triple of π1-vertical
vectors X, Y, Z ∈ V π1,

iXiY iZΩL = 0. (3.48)

5. Let ξ be a vector �eld on E, we then have that

(j1φ)∗Lξ(1)L = (j1φ)∗Lξ(1)ΘL. (3.49)

Theorem 3.41. A section φ ∈ Γπ is a critical point of the Lagrangian action AL if and
only if its �rst prolongation satis�es

(j1φ)∗(iξΩL) = 0, (3.50)

for any vector �eld ξ ∈ J1π.

Lemma 3.42. Given a section σ ∈ Γπ1,0 and a vector �eld ξ ∈ X(J1π) tangent to imσ,
we have that

σ∗(iξΩL) = 0.

Proof. Along the image of σ, ξ shall have the form ξ = Tσ(v) for some vector �eld
v ∈ X(M). Then,

σ∗(iξΩL) = σ∗(iTσ(v)ΩL) = ivσ
∗(ΩL) = 0,

since σ∗(ΩL) is an (m+ 1)-form on M which has dimension m.

Lemma 3.43. Given a section φ ∈ Γπ and a π1,0-vertical vector �eld ξ ∈ X(J1π), we
have that

(j1φ)∗(iξΩL) = 0.
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Proof. Let ξ = ξαi ∂/∂u
α
i be the local expression of the π1,0-vertical vector �eld ξ. Then,

thanks to the local expression (3.43) of ΩL, we get

iξΩL = −ξαi
∂2L

∂uαi ∂u
β
j

(θβ ∧ dm−1xj),

which is annihilated by j1φ since θβ is contact.

Proof of Theorem 3.41. Let φε be a vertical variation with compact support R ⊂M of a
section φ ∈ Γπ and let ξ be its in�nitesimal generator. By Proposition 3.40 and Cartan's
formula, we have

d

dε
AL(φε, R)

∣∣∣
ε=0

=

∫
R

(j1φ)∗(Lξ(1)L)

=

∫
R

(j1φ)∗(Lξ(1)ΘL)

=−
∫
R

(j1φ)∗(iξ(1)ΩL) +

∫
∂R

(j1φ)∗(iξ(1)ΘL).

Thus, using the Euler-Lagrange equations, Theorem 3.35, and the local expression
(3.42) of the Poincaré-Cartan form ΘL, we deduce that∫

R

(j1φ)∗(iξ(1)ΩL) = −
∫
R

(j2φ)∗
[
(ξα − uαi ξi)

(
∂L

∂uα
− d

dxi
∂L

∂uαi

)]
dmx.

Therefore, φ satis�es the Euler-Lagrange equations (3.38) if and only if

(j1φ)∗(iξ(1)ΩL) = 0,

for any compactly supported π-projectable vector �eld ξ ∈ X(E). Using partitions of the
unity, we may generalize this to any π-projectable vector �eld ξ ∈ X(E).

Finally, any vector �eld ξ ∈ X(J1π) may be split into the sum of a vector �eld on
J1π tangent to the image of j1φ, the �rst lift to J1π of a vector �eld on E and a π1,0-
projectable vector �eld on J1π. The assertion of the theorem follows from the previous
lemmas.

De�nition 3.44. The DeDonder equation is the following equation in terms of sections
σ of π1 : J1π →M :

σ∗(iξΩL) = 0, ∀ξ ∈ X(J1π). (3.51)

Using Lemma 3.42, we have that a section σ ∈ Γπ1 still satis�es the DeDonder equation
if we only consider π1-vertical vector �elds ξ ∈ X(J1π). Taking this into account, an easy
computation using the local expression (3.43) of ΩL shows that the DeDonder equation
is locally written

∂L

∂uα
− ∂2L

∂xi∂uαi
− ∂σβ

∂xi
∂2L

∂uβ∂uαi
−
∂σβj
∂xi

∂2L

∂uβj ∂u
α
i

+

(
∂σβ

∂xi
− uβi

)
∂2L

∂uβi ∂u
α

= 0,(3.52)(
∂σβ

∂xj
− uβj

)
∂2L

∂uβj ∂u
α
i

= 0.(3.53)
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De�nition 3.45. A Lagrangian density L : J1π → ΛmM is regular whenever its Hessian
with respect to the velocities (

∂2L

∂uβj ∂u
α
i

)
is non-degenerate.

Proposition 3.46. Let L : J1π → ΛmM be a regular Lagrangian density. A section
σ ∈ Γπ1 satis�es the DeDonder equation if and only if σ is holonomic, i.e. σ = j1φ for
some φ ∈ Γπ, and φ satis�es the Euler-Lagrange equations.

Proposition 3.47. The Poincaré-Cartan (m+ 1)-form ΩL is multisymplectic, whenever
m > 1, and cosymplectic (together with the volume form η), whenever m = 1, if and only
if the Lagrangian density L is regular.

Proof. Provided that m > 1, let (xi, uα, uαi ) be adapted coordinates on J1π. A straight-
forward computation shows that

i ∂

∂xj
ΩL = (. . . )− ∂2L

∂uγk∂u
α
i

duγk ∧ duα ∧ dm−2xij

i ∂

∂uβ
ΩL = (. . . ) +

∂2L

∂uβj ∂u
α
i

duαi ∧ dm−1xj

i ∂

∂u
β
j

ΩL = (. . . )− ∂2L

∂uβj ∂u
α
i

duα ∧ dm−1xi

where the indicated terms are the only ones with the correspondingm-form. Thus, assume
that v ∈ TJ1π is such that iξΩL = 0 and it is locally written in the given coordinates

ξ = ξj
∂

∂xj
+ ξβ

∂

∂uβ
+ ξβj

∂

∂uβj
.

If L is regular, then all coe�cients of ξ must be zero and ΩL is multisymplectic. Re-
ciprocally, if ΩL is multisymplectic, then the �Hessian� of L has trivial kernel, i.e. L is
regular.

For the case m = 1, consider coordinates (t, qα, vα) on J1π. In these coordinates, after
Equation (3.43), the Poincaré-Cartan (m+ 1)-form has the form

ΩL = − d

(
∂L

∂vα

)
∧ dqα + vα d

(
∂L

∂vα

)
∧ dt− ∂L

∂qα
dqα ∧ dt.

A straightforward computation shows

Ωn
L ∧ dt = det

(
∂2L

∂vα∂vβ

)
dq1 ∧ dv1 ∧ · · · ∧ dqn ∧ dvn ∧ dt,

which is a volume form if and only if L is regular.
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Connections and multivector �elds

Let Γ be a a connection in the �bration π1 : J1π →M with horizontal projector h. So h
is locally expressed as follows:

h = dxi ⊗
(
∂

∂xi
+ Aαi

∂

∂uα
+ Aαji

∂

∂uαj

)
. (3.54)

Univocally associated to this connection, there is a class of locally decomposable multi-
vector �elds D(X) ⊂ Xm

d (J1π) locally expressed as follows (see Section �1.2):

X = f

m∧
i=1

Xi = f

m∧
i=1

(
∂

∂xi
+ Aαi

∂

∂uα
+ Aαji

∂

∂uαj

)
. (3.55)

Proposition 3.48. Consider the dynamical equations

ihΩL = (m− 1)ΩL (3.56)

in terms of horizontal projectors h of connections Γ in the �bration π1 : J1π →M , and

iXΩL = 0 (3.57)

in terms of locally decomposable m-multivector �elds X ∈ Xm
d (J1π). We have that both

equation are locally written

∂L

∂uα
− ∂2L

∂xi∂uαi
− Aβi

∂2L

∂uβ∂uαi
− Aβji

∂2L

∂uβj ∂u
α
i

+
(
Aβi − u

β
i

) ∂2L

∂uβi ∂u
α

= 0, (3.58)

(
Aβj − u

β
j

) ∂2L

∂uβj ∂u
α
i

= 0, (3.59)

where (xi, uα, uαi ) are adapted coordinates on J1π and the A's are the coe�cients of h and
X given in (3.54) and (3.55), respectively. It turns out that, if h and X are associated,
then h satis�es (3.56) if and only if X satis�es (3.57).

Moreover, if Γ and/or X are integrable, then they satisfy the previous equations if and
only if its integral sections σ ∈ Γπ1 satisfy the DeDonder equation.

Proof. Using the local expression (3.43), we obtain on the one hand

ihΩL = (m− 1)ΩL +

[(
Aβj − u

β
j

) ∂2L

∂uβj ∂u
α
i

]
duαi ∧ dmx

+

[
∂L

∂uα
− ∂2L

∂xi∂uαi
− Aβi

∂2L

∂uβ∂uαi
− Aβji

∂2L

∂uβj ∂u
α
i

+
(
Aβj − u

β
j

) ∂2L

∂uβj ∂u
α

]
duα∧ dmx.

On the other hand, a cumbersome computation1 yields

(−1)miXΩL =

[(
∂p̂iα
∂xi
− ∂p̂

∂uα

)
+ Aβj

(
∂p̂jα
∂uβ
−
∂p̂jβ
∂uα

)
+ Aβji

∂p̂iα

∂uβj

]
︸ ︷︷ ︸

λα

duα

−

[
∂p̂

∂uαi
+ Aβj

∂p̂jβ
∂uαi

]
︸ ︷︷ ︸

λiα

duαi −
(
Aαkλα − Aαikλiα

]
dxk,
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where p̂iα = ∂L
∂uαi

and p̂ = L− uαi p̂iα, and where we have assumed that f = 1.

We deduce form here that, if h or X satisfy the corresponding equations (3.56) and
(3.57), then their coe�cients must satisfy equations (3.58) and (3.59). The �rst assertion
of the theorem is now clear.

For the second statement, suppose that h and/or X are integrable and let σ ∈ Γπ1

be an integral section of any of them. Then, we have that ∂σα

∂xi
= Aαi and

∂σαj
∂xi

= Aαji,
what yields to the local expressions (3.52) and (3.52) for σ of the DeDonder equation
(3.51).

Notice that σ being an integral section of h or X does not mean that σ is holonomic,
which is the case when L is regular as Proposition 3.46 assures.

Proposition 3.49. Let L : J1π → ΛmM be a regular Lagrangian density. Then there
exists a semi-holonomic connection Γ in π1 : J1π →M satisfying

ihΩL = (m− 1)ΩL, (3.60)

where h is the horizontal projector of Γ. Such a connection Γ will be called an Euler-
Lagrange connection for L.

Proof. Given a locally �nite open covering {U1
λ}λ∈Λ be of J1π with �bered coordinates,

let {αλ}λ∈Λ be a partition of the unity subordinate to {U1
λ}λ∈Λ. For each λ ∈ Λ, we de�ne

a horizontal projector hλ on U1
λ as follows: Assuming that hλ must be described as in the

local expression (3.54), we take Aαj = uαj and we determine Aαij by means of the equation
(3.58).

Denote by vλ = IdTJ1π−hλ the vertical projector and extend it by zero

ṽλ(u) =

{
αλ(u)vλ(u) if u ∈ supp(αλ)

0 if u /∈ supp(αλ)

for any u ∈ J1π. Now, we put

v(u) =
∑
λ∈Λ

ṽλ(u).

A direct computation shows that

im(ṽλ(u)) =

{
im(vλ(u)) if u ∈ supp(αλ)

0 if u /∈ supp(αλ)

1 Here, we have used the formulae

(−1)miX(α ∧ dmx) = α− α(Xj) dx
j ,

(−1)miX(β ∧ αi ∧ dm−1xi) = β(Xj)α
j(Xi) dx

i − β(Xj)α
i(Xi) dx

j − β(Xj)α
j + αj(Xj)β,

where α, αi and β are 1-forms and where X is the m-vector X =
∧m

i=1Xi.
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from which one deduces that im(v(u)) ⊆
∑

λ∈Λ im(vλ(u)) ⊆ Vu π1. Furthermore, we have

v(u)|Vu π1 =
∑
λ∈Λ

ṽλ(u)|Vu π1

=
∑
λ∈Λ

αλ(u)vλ(u)|Vu π1

=
∑
λ∈Λ

αλ(u) IdTJ1π |Vu π1

= IdTJ1π |Vu π1 .

So we deduce that v is a globally well de�ned vertical projector over J1π, thus it induces
a semi-holonomic connection Γ in π1 : J1π →M (by construction) satisfying (3.60).

Corollary 3.50. Let L : J1π → ΛmM be a regular Lagrangian density. Then there exists
a semi-holonomic multivector �eld X ∈ Xm

d (J1π) satisfying

iXΩL = 0. (3.61)

Such a connection multivector �eld X will be called an Euler-Lagrange multivector for
L.

Remark 3.51. In order to discuss the uniqueness, suppose that Γ1 and Γ2 are two solutions
of (3.60). If we denote by T the tensor �eld T = h1−h2, di�erence of the two horizontal
projectors then, using that Γ1 and Γ2 are semi-holonomic, we deduce that T is locally

given by T = Tαij
∂

∂uαi
⊗ dxj. Moreover, iT ΩL = 0 implies that

Tαij
∂2L

∂uαi ∂u
β
j

= 0 ,

for all β ∈ {1, . . . , n}. Since we have n equations and nm2 unknowns, the solutions at
each point form a vector space of dimension nm2 − n, taking into account the regularity
assumption on L. Therefore, the solutions of 3.60 are given by h + T , where h is the
horizontal projector of a particular solution, T is a tensor �eld of type (1,1) on J1π
such that it takes values in the vertical bundle V π1,0, it vanishes when it is applied to
π1-vertical vector �elds and iT ΩL = 0. In fact, the space T of all tensor �elds T is
a C∞(J1π)-module with local dimension n(m2 − 1). If dimM = 1, then there exists a
unique solution ΓL of (3.60).

3.2.2 The Hamiltonian Formalism

See [31, 68, 69, 73, 75, 77, 91, 92, 115, 133, 134, 136, 137].

De�nition 3.52. A Hamiltonian section is a section h : J1π◦ → J1π† of µ : J1π† → J1π◦.

De�nition 3.53. A Hamiltonian density is a smooth function H : J1π† → ΛmM such
that iξ dH = iξΩ for any µ-vertical vector �eld ξ ∈ V µ.
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In coordinates (xi, uα, p, piα), a Hamiltonian section h ∈ Γµ is locally described by

h(xi, uα, piα) = (xi, uα, p = −H(xi, uα, piα), piα), (3.62)

where the smooth function H, which is locally de�ned, is called the Hamiltonian function.
Given a Hamiltonian density H, let ξ ∈ V µ be a µ-vertical vector �eld. In local

coordinates (xi, uα, p, piα), ξ shall has the form ξ = ξ0∂/∂p, for some locally de�ned
function ξ0 on J1π†. In order to satisfy the de�nition, we must have

iξ dH = iξ( dH̄ ∧ dmx) = ξ0
∂H̄

∂p
dmx = −ξ0 dmx = iξΩ,

where H = H̄η. Since this shall be true for any ξ ∈ V µ, we have that Hamiltonian
density H is in turn locally described by

H̄(xi, uα, p, piα) = p+H(xi, uα, piα). (3.63)

The smooth function H coincides with the previous Hamilton function in the following
sense.

Proposition 3.54. The space of Hamiltonian sections and the family of Hamiltonian
densities are in bijective correspondence. In fact, a Hamiltonian section h and a Hamil-
tonian density H are univocally related by the condition imh = H−1(0). In this case, we
say that they are associated.

By means of this relation, we may relate also section of π◦1 and π†1.

Corollary 3.55. Let h : J1π◦ → J1π† be a Hamiltonian section associated with a Hamil-
tonian density H ∈ Ωm(π†1). A section σ ∈ Γπ◦1, de�nes a section σ̄ = h ◦ σ ∈ Γπ†1
such that σ̄∗H = 0. Reciprocally, a section σ̄ ∈ Γπ†1 with σ̄∗H = 0 de�nes a section
σ = µ ◦ σ̄ ∈ Γπ◦1 such that σ̄ = h ◦ σ. In both cases, we say that σ and σ̄ are associated.

De�nition 3.56. Let h ∈ Γµ be a Hamiltonian section. The Cartan m-form associated
to h is de�ned by

Θh := h∗Θ. (3.64)

The Cartan (m+ 1)-form associated to h is de�ned by

Ωh := − dΘh = h∗Ω. (3.65)

It is worth to recall that the Liouville form and the canonical one are locally given by

Θ = p dmx+ piα duα ∧ dm−1xi, (3.66)

Ω = − dp ∧ dmx− dpiα ∧ duα ∧ dm−1xi; (3.67)

in adapted local coordinates (xi, uα, p, piα) on J1π†. Thus, in the corresponding induced
coordinates (xi, uα, piα) on J1π◦, we have that the Cartan forms are given by

Θh = −H dmx+ piα duα ∧ dm−1xi, (3.68)

Ωh = dH ∧ dmx− dpiα ∧ duα ∧ dm−1xi. (3.69)
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Proposition 3.57. Let H : J1π† → ΛmM be a Hamiltonian density associated with a
Hamiltonian section h ∈ Γµ. We have that

Θ = µ∗Θh +H and Ω = µ∗Ωh − dH. (3.70)

Proof. The second equation follows from the �rst, which is immediate from the previous
local expressions.

De�nition 3.58. Let H : J1π† → ΛmM be a Hamiltonian density. The Cartan m-form
associated to H is de�ned by

ΘH := Θ−H. (3.71)

The Cartan (m+ 1)-form associated to H is de�ned by

ΩH := − dΘH = Ω + dH. (3.72)

The Hamilton equations

De�nition 3.59. Given a Hamiltonian section h ∈ Γ, the associated (reduced) Hamilto-
nian action is the map Ah : Γπ◦1 ×K → R given by

Ah(σ,R) =

∫
R

σ∗Θh, (3.73)

where K is the collection of smooth compact regions of M .

Let h : J1π◦ → J1π† be a Hamiltonian section associated with a Hamiltonian density
H ∈ Ωm(π†1). Given a section σ : M → J1π◦ of π†1 : J1π† → M , the composition
σ̄ = h◦σ : M → J1π† de�nes a section of π†1 : J1π† →M . Note that, in general, a section
σ̄ ∈ Γπ†1 does not de�ne a section σ ∈ Γπ◦1 such that σ̄ = h ◦ σ, which is only true when
σ̄∗H = 0 (from Proposition 3.54). Besides, for this particular section σ ∈ Γπ◦1, we have
that

σ∗Θh = σ̄∗(µ∗Θh) = σ̄∗ΘH.

Thus, the extremals of Ah coincide through h with the extremals restricted to σ̄∗H = 0
of the following integral action.

De�nition 3.60. Given a Hamiltonian density H : J1π† → ΛmM , the associated (ex-
tended) Hamiltonian action is the map AH : Γπ†1 ×K → R given by

AH(σ,R) =

∫
R

σ∗ΘH, (3.74)

where K is the collection of smooth compact regions of M .

Theorem 3.61 (Hamilton's equations). Let H : J1π† → ΛmM be a Hamiltonian density
associated with a Hamiltonian section h ∈ Γµ. Critical points of each integral action are
characterized by the Hamilton equations plus boundary conditions, which are

σ∗(iξΩh) = 0 and σ∗(iξΘh) =∂M 0, ∀ξ ∈ X(J1π◦), (3.75)

for a critical point σ ∈ Γπ◦1 of Ah and

σ̄∗(iξΩH) = 0 and σ̄∗(iξΘH) =∂M 0, ∀ξ ∈ X(J1π†), (3.76)
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for a critical point σ̄ ∈ Γπ†1 of AH. Moreover, in both cases, the Hamilton equations have
the �common� local expression

∂H

∂uα
= −∂σ

i
α

∂xi
and

∂H

∂piα
=
∂σα

∂xi
, (3.77)

and the boundary conditions are

σ∗H =∂M 0 and σiα =∂M 0, (3.78)

where (xi, uα, p, piα) and (xi, uα, piα) are adapted coordinates on J1π† and J1π◦ respectively,
σ = (xi, σα, σiα) and σ̄ = (xi, σα, σ0, σ

i
α).

Proof. We begin by determining the variation of the reduced Hamiltonian action Ah.
Given a section σ of π◦1 : J1π◦ → M , let R be a compact region of M and σε = ϕε ◦
σ ◦ (ϕ̌ε)

−1 a variation of σ where the in�nitesimal generator ξ ∈ X(J1π◦) of ϕε has its
support contained in (π◦1)−1(R). Applying a result similar to Lemma 3.34 and Cartan's
formula, we obtain

d

dε
[Ah(σε, Rε)]

∣∣∣
ε=0

=
d

dε

[∫
R

(ϕε ◦ σ)∗Θh

] ∣∣∣∣
ε=0

=

∫
R

σ∗(LξΘh)

= −
∫
R

σ∗(iξΩh) +

∫
∂R

σ∗(iξΘh).

Thus, σ is a critical point of Ah if an only if∫
R

σ∗(iξΩh)−
∫
∂R

σ∗(iξΘh) = 0

for any compact region R ⊆ M and any vector �eld ξ ∈ X(J1π◦) whose support is
contained in (π◦1)−1(R).

Now, assume that σ is a critical point of Ah. If R is a compact region contained in the
interior of M , then any vector �eld ξ ∈ X(J1π◦) whose support is contained in (π◦1)−1(R)
must be null along the �bers over the boundary of R. Indeed, for such R and σ, we have∫

R

σ∗(iξΩh) = 0.

Varying R and ξ, and using partitions of the unity, we deduce that

σ∗(iξΩh) = 0

for every vector �eld ξ ∈ X(J1π◦).
In a similar way, we deduce the boundary condition

σ∗(iξΘh) =∂M 0

for every vector �eld ξ ∈ X(J1π◦).
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Finally, let us compute the local expression of σ∗(iξΩh). Given adapted coordinates
(xi, uα, piα) on J1π◦, if we denote σ = (xi, σα, σiα), we then have

σ∗(iξΩh) = σ∗
[(

ξα
∂H

∂uα
+ ξiα

∂H

∂piα

)
dmx−

(
∂H

∂uα
duα +

∂H

∂piα
dpiα

)
∧ ξj dm−1xj

− ξiα duα ∧ dm−1xi + ξα dpiα ∧ dm−1xi − dpiα ∧ duα ∧ ξj dm−2xij

]
=

[
− ξj

(
∂σα

∂xj
∂H

∂uα
+
∂σiα
∂xj

∂H

∂piα
+
∂σiα
∂xi

∂σα

∂xj
− ∂σjα
∂xi

∂σiα
∂xj

)
+ ξα

(
∂H

∂uα
+
∂σiα
∂xi

)
+ ξiα

(
∂H

∂piα
− ∂σα

∂xi

)]
dmx,

where we have used the relation

dxk ∧ dm−2xij = δkj dm−1xi − δki dm−1xj.

Provided σ is a critical point of Ah, since σ∗(iξΩh) must be null for any ξ ∈ X(J1π◦), we
therefore shall have that

∂H

∂uα
= −∂σ

i
α

∂xi
and

∂H

∂piα
=
∂σα

∂xi
,

which are precisely the local expression of the Hamilton equations.
For the boundary condition σ∗(iξΘh) = 0 over ∂M , we proceed in the same way, and

we get that locally

σ∗(iξΘh) = σ∗(−Hξi − piαuαj ξj − pjαuαj ξi − piαξα) dm−1xi = 0,

which implies that
σ∗H = σiα = 0,

along ∂M .
The proof of the theorem for the case of the extended Hamiltonian action AH is

completely analogous.

Remark 3.62. Even though the proof seems to be valid only for the multidimensional
case (m > 1), because of the fact that the (m− 2)-form dm−2xij appears explicitly in the
development of σ∗(iξΩh), it remains valid when m = 1. In fact, in this case, the terms
with dm−2xij would disappear and dm−1xi = 1.

Remark 3.63. It follows from the derivation of the local expression of the Hamilton's
equations and the boundary conditions that the considerations made in Remark 3.36 are
still valid here. If we had restricted the variations to π◦1-vertical or π

†
1-vertical ones over

the whole of M or only over ∂M , then only the boundary condition σ∗H = 0 along ∂M
would have remained. Moreover, if we had considered null variations at the border ∂M ,
then any boundary condition would had remained and we would be free to �x them.

The main di�erence between the reduced and the extended formalism is that, in the
extended one, there are a wider number of critical sections since there are no restrictions
on the component σ0 = p ◦ σ̄ of a critical section σ̄. Nonetheless, critical sections of the
reduced Hamiltonian action Ah �are always� critical sections of the extended Hamiltonian
action AH.
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Corollary 3.64. A section σ ∈ Γπ◦1 is a critical point of the reduced Hamiltonian action
Ah if and only if the associated section σ̄ = h ◦ σ ∈ Γπ†1 is a critical point of the extended
Hamiltonian action AH (and vice versa).

Proof. The proof is trivial using the coordinate expression (3.77) of the Hamilton equa-
tions (3.75) and (3.76), or taking into account the relation (3.70) between the Cartan
forms and that ΘH and ΩH are both µ-basic.

Let Γ be a a connection in the �bration π†1 : J1π† → M with horizontal projector h.
So h is locally expressed as follows:

h = dxj ⊗
(

∂

∂xj
+ Aαj

∂

∂uα
+B i

αj

∂

∂piα
+ Cj

∂

∂p

)
. (3.79)

Univocally associated to this connection, there is a class of locally decomposable multi-
vector �elds D(X) ⊂ Xm

d (J1π†) locally expressed as follows (see Section �1.2):

X = f

m∧
j=1

Xj = f

m∧
j=1

(
∂

∂xj
+ Aαj

∂

∂uα
+B i

αj

∂

∂piα
+ Cj

∂

∂p

)
. (3.80)

Let H : J1π† → ΛmM be a Hamiltonian density and h : J1π◦ → J1π† the associated
Hamiltonian section. A connection Γ in π◦1 : J1π◦ → M (and any associated multi-
vector �eld X ∈ Xm

d (J1π◦)) induces a connection Γ̄ in π†1 : J1π† → M (and associated
multivector �elds X̄ ∈ Xm

d (J1π†)) along im(h) such that

Cj = −∂H
∂xj
− Aαj

∂H

∂uα
−B i

αj

∂H

∂piα
.

Proposition 3.65. Let H : J1π† → ΛmM be a Hamiltonian density and h : J1π◦ → J1π†

the associated Hamiltonian section.

1. The (extended) dynamical equations

ih̄ΩH = (m− 1)ΩH and iX̄ΩH = 0 (3.81)

in terms of the horizontal projectors h̄ of connections Γ̄ in π†1 : J1π† → M and
locally decomposable multivector �elds X̄ ∈ Xm

d (J1π†) are equivalent whenever h̄
and X̄ are associated. Moreover, the integral sections σ̄ of solutions h̄ or X̄ of the
extended dynamical equations (3.81) are solutions of the extended Hamilton equation
(3.76).

2. The (reduced) dynamical equations

ihΩh = (m− 1)Ωh and iXΩh = 0 (3.82)

in terms of the horizontal projectors h of connections Γ in π◦1 : J1π◦ → M and
locally decomposable multivector �elds X ∈ Xm

d (J1π◦) are equivalent whenever h
and X are associated. Moreover, the integral sections σ of solutions h or X of the
reduced dynamical equations (3.82) are solutions of the reduced Hamilton equation
(3.75).
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Proof. We prove only the extended case, since the reduced one is completely analogous.
Under the given assumptions, we have on the one hand that

ih̄ΩH = (m− 1)ΩH + ( dH +B i
αi du

α − Aαi dpiα) ∧ dmx.

On the other hand, we have that

(−1)miX̄ΩH =

(
∂H

∂uα
+B i

αi

)
duα +

(
∂H

∂piα
− Aαi

)
dpiα

+

(
Aαi B

i
αj − AαjB i

αi − Aαj
∂H

∂uα
+B i

αj

∂H

∂piα

)
dxj.

Therefore, the dynamical equations (3.81) are written in terms of the coe�cients of h̄
and X̄

∂H

∂uα
= −B i

αi and
∂H

∂piα
= Aαi .

We deduce from here that the dynamical equations (3.81) are equivalent whenever h̄ and
X̄ are associated.

If σ̄ is an integral section of h̄ or X̄, then B i
αj = ∂σiα/∂x

j and Aαi = ∂σα/∂xi, and we
recover the local Hamilton equations (3.77).

3.2.3 The Legendre transformation

De�nition 3.66. Given a Lagrangian density L : J1π → ΛmM , the extended Legendre
transformation is the map LegL : J1π → J1π† de�ned as follows: let j1

xφ ∈ J1π, for any
m tangent vectors ξ1, . . . , ξm ∈ Tφ(x)E, then LegL(j1

xφ) gives

LegL(j1
xφ)(ξ1, . . . , ξm) := (ΘL)j1xφ(ξ̄1, . . . , ξ̄m), (3.83)

where ξ̄i is any tangent vector to J1π at j1
xφ that projects to ξi.

The reduced Legendre transformation is the map legL : J1π → J1π◦ de�ned by legL :=
µ ◦ LegL.

Recall that the Poincaré-Cartan form ΘL is π1,0-basic and π1-semi-basic (see Proposi-
tion 3.40). We thus have that, in one hand, the Legendre transformation does not depend
on the chosen vectors ξ̄1, . . . , ξ̄m and, in the other hand, the image of LegL are π-semi-
basic m-forms over E. Henceforth, the Legendre transformation LegL is well de�ned and
gives values in J1π†. Furthermore, from the de�nition, both Legendre transformations
are clearly morphisms of �ber bundles over the identity of E, which is also clear from
their local expressions

LegL(xi, uα, uαi ) =

(
xi, uα, p = L− uαi

∂L

∂uαi
, piα =

∂L

∂uαi

)
, (3.84)

legL(xi, uα, uαi ) =

(
xi, uα, piα =

∂L

∂uαi

)
. (3.85)

Proposition 3.67. Let L : J1π → ΛmM be a Lagrangian density. The following state-
ment are equivalent:

1. L is regular;
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2. LegL : J1π → J1π† is an immersion;

3. legL : J1π → J1π◦ is a local di�eomorphism.

De�nition 3.68. A Lagrangian density L : J1π → ΛmM is hiper-regular whenever legL
is a global di�eomorphism.

In such a case, we have that J1π, im(LegL) and J1π◦ are di�eomorphic. Moreover, h :=
LegL ◦ leg−1

L is a Hamiltonian section and im(LegL) is the 0-level set of the Hamiltonian
density associated to h.

Proposition 3.69. Let L : J1π → ΛmM be any Lagrangian density. Then, we have

Leg∗LΘ = ΘL and Leg∗LΩ = ΩL. (3.86)

Furthermore, if L is hiper-regular, we may de�ne the Hamiltonian section h := LegL ◦ leg−1
L

and consider the Hamiltonian density H associated to h. We then have

Leg∗LΘH = ΘL and Leg∗LΩH = ΩL, (3.87)

leg∗LΘh = ΘL and leg∗LΩh = ΩL. (3.88)

Proof. The �rst equation derives easily from the local expressions (3.42) of ΘL, (3.66) of
Θ and (3.84) of LegL. The others follows directly.

Theorem 3.70 (The equivalence theorem). Given a hiper-regular Lagrangian density
L : J1π → ΛmM , let h := LegL ◦ leg−1

L be the induced Hamiltonian section and H the
Hamiltonian density associated to h. If a section σ1 ∈ Γπ1 satis�es the DeDonder equation
(3.51),

σ∗1(iξΩL) = 0, ∀ξ ∈ X(J1π),

then the sections σ2 = legL ◦σ1 ∈ Γπ◦1 and σ̄2 = LegL ◦σ1 ∈ Γπ†1 satis�es the correspond-
ing Hamilton equations (3.75) and (3.76),

σ∗2(iξΩh) = 0, ∀ξ ∈ X(J1π◦),

and

σ̄∗2(iξΩH) = 0, ∀ξ ∈ X(J1π†).

Reciprocally, if σ2 ∈ Γπ◦1 (resp. σ̄2 ∈ Γπ†1 with σ̄∗2H = 0) satisfy the corresponding
Hamilton equation, then σ1 = leg−1

L ◦σ2 ∈ Γπ1 (resp. σ1 = leg−1
L ◦µ ◦ σ̄2 ∈ Γπ1) satis�es

the DeDonder equation.

Remark 3.71. Observe that the Lagrangian boundary conditions (3.39) are transformed
by the Legendre map to the Hamiltonian boundary conditions (3.78). Therefore, the
variations considered within the theory must be correspond properly in the Lagrangian
and the Hamiltonian side as stated in Remark 3.36 and Remark 3.63.
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3.2.4 The Skinner and Rusk formalism

What follows may be found in here [70, 50].

De�nition 3.72. The �bered product

W := J1π ×E J1π† (resp. W ◦ := J1π ×E J1π◦) (3.89)

is called the mixed space of velocities and extended ( resp. reduced) momenta. The canon-
ical projections are denoted pr 1 : W → J1π and pr 2 : W → J1π† (resp. with abuse of
notation pr 1 : W ◦ → J1π and pr 2 : W ◦ → J1π◦). The projections as a �ber bundle
over E and M are πW,E = π1,0 ◦ pr 1 and πW,E = π1 ◦ pr 1 (resp. πW ◦,E = π1,0 ◦ pr 1 and
πW ◦,E = π1 ◦ pr 1). We still denote the canonical projection by µ : W → W ◦.

We deduce from Propositions 3.3 and 3.24 that adapted coordinates (xi, uα) in E
induce adapted coordinates (xi, uα, uαi , p, p

i
α) on W , where (uαi ) and (p, piα) are �bered

coordinates on J1π → E and J1π† → E, respectively. Accordingly, we have adapted
coordinates (xi, uα, uαi , p

i
α) on W ◦.

W
pr1

}}zzzzzzzz

πW,E

��

pr2

""EEEEEEEE
µ //W ◦

pr2

##HHHHHHHHH

J1π
π1,0

!!DDDDDDDD J1π†

||yyyyyyyy

µ // J1π◦

uukkkkkkkkkkkkkkkkk

E

π

��
M

The Liouville form Θ and the canonical multisymplectic form Ω of J1π† are pulled
back to W by pr 2, which we continue denoting by the same letters. It should be noticed
that (W,Ω) is no longer multisymplectic, but pre-multisymplectic. We also have to our
disposal the natural pairing natural pairing 〈 , 〉 : J1π† ×E J1π. Therefore, we have the
�bered map

W = J1π ×E J1π†
Φ //

πW,E

��

ΛmM

��
E

π //M

where Φ := 〈pr 2, pr 1〉. If we realize J1φ† as the space of semi-basic m-forms over E (see
3.28), then Φ takes the form

Φ(w) = φ∗x(ω), (3.90)

where w = (j1
xφ, ω) ∈ W and φ†1,0(ω) = φ(x). In the local coordinates (xi, uα, uαi , p, p

i
α) of

W , the �internal� pairing Φ is given by

Φ(xi, uα, uαi , p, p
i
α) = (p+ piαu

α
i ) dmx. (3.91)

Observe that we have used the map in the proof of the identi�cation between J1π† and
Λm

2 E.
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Together with the pairing Φ and the pre-multisymplectic (m + 1)-form Ω, we intro-
duce a Lagrangian density to de�ne a Hamiltonian density on W and, let us say, the
corresponding Cartan forms.

De�nition 3.73. Assume that L : J1π −→ ΛmM is a Lagrangian density.

1. The Hamiltonian density (or the generated energy density following [151]) associated
to L on W is the map H : W → ΛmM de�ned by

H = Φ− L ◦ pr 1 . (3.92)

2. The Hamiltonian section associated to L on W is the unique section h : W ◦ → W
of µ : W → W ◦ whose image coincides with the 0-level set of H, i.e. such that
imh = H−1(0).

3. The Hamiltonian submanifold of W , let say W0, is identi�ed with the 0-level set of
the associated Hamiltonian density H or the image of the associated Hamiltonian
section h, that is,

W0 := {w ∈ W : H(w) = 0} = im(h). (3.93)

In �bered coordinates (uαi , p, p
i
α) of W and (uαi , p

i
α) of W ◦, the Hamiltonian density,

section and submanifold are respectively given by

H(xi, uα, uαi , p, p
i
α) = (p+ piαu

α
i − L) dmx; (3.94)

h(xi, uα, uαi , p
i
α) = (xi, uα, uαi , p = L− piαuαi , piα); (3.95)

W0 =
{

(xi, uα, uαi , p, p
i
α) ∈ W : p = L− piαuαi

}
. (3.96)

From here, we may observe that H corresponds precisely to a Hamiltonian density in
the sense of De�nition 3.53: For any vertical µ-vector �eld ξ, we do have iξΩ = iξ dH.
Even if it is obvious, it is worth to note that W ◦ and W0 are di�eomorphic, being h the
di�eomorphism between them.

De�nition 3.74. Given a Lagrangian density L : J1π −→ ΛmM . LetH be the associated
Hamiltonian density and h ∈ Γµ the associated Hamiltonian section.

1. The Cartan m-form and (m+ 1)-form associated to H are

ΘH := Θ−H and ΩH := − dΘH = Ω− dH. (3.97)

2. The Cartan m-form and (m+ 1)-form associated to h are

Θh := h∗Θ and Ωh := − dΘh = h∗Ω. (3.98)

Following Proposition 3.57, one could check that

ΘH = µ∗Θh and ΩH = µ∗Ωh. (3.99)

In �bered coordinates (uαi , p, p
i
α) of W and (uαi , p

i
α) of W ◦, the Cartan forms are given by

ΘH =(L− piαuαi ) dmx+ piα duα ∧ dm−1xi (3.100)

ΩH =

(
∂L

∂uα
duα +

∂L

∂uαi
duαi − uαi dpiα + piα duαi

)
∧ dmx− dpiα ∧ duα ∧ dm−1xi, (3.101)
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where L = L dmx. Hence Θh and Ωh have formally the same developments.
As we have already stated, while (J1π†,Ω) was multisymplectic, (W,Ω) is only pre-

multisymplectic and so are (W,ΩH), (W0,ΩH|TW0) and (W ◦,Ωh).
We are now in position to introduce the equation that establishes the �eld dynamics

within the Skinner-Rusk formalism. As in the previous sections �3.2.1 and �3.2.2, we
could do it by means of horizontal projectors of a given connection or using the associated
multivector �eld. In this case, we will restrict to the method of horizontal projectors, but
the reader may check that the same equations will follow considering multivector �elds.

De�nition 3.75. The dynamical equation is the following equation in terms of horizontal
projectors h of the corresponding connections Γ in πW,M : W →M :

ihΩH = (m− 1)ΩH. (3.102)

As we are going to see, the previous equation is only solvable in a subset W ′
1 of

W . If we require that W ′
1 be a smooth submanifold of W and that the solutions be

horizontal projectors of connections along W ′
1, we will end up with further restrictions on

the projectors and, whenever L is not regular, with further constraints on the manifold
along which the connections are de�ned. This chain of consequences is known as the
Gotay-Nester-Hinds algorithm, although it was originally de�ned for classical mechanics.
The submanifold W ′

1 is called the �rst constraint manifold and it is obtained at the �rst
step of the algorithm. The �nal constraint manifold W ′

f along which the solutions lie is
obtained as a ��x point� and �nal step of the algorithm.

Theorem 3.76. The solutions of the dynamical equation (3.102) restricted to W0 are,
in the best case, horizontal projectors of connections along a submanifold Wf of W0. In
particular, if h is such a solution, which is assumed to be written in the form

h = dxj ⊗
(

∂

∂xj
+ Aαj

∂

∂uα
+ Aαij

∂

∂uαi
+B i

αj

∂

∂piα
+ Cj

∂

∂p

)
, (3.103)

then it must satisfy the equation of holonomy

Aαi = uαi , (3.104)

the equations of dynamics

B j
αj =

∂L

∂uα
, (3.105)

piα = =
∂L

∂uαi
, (3.106)

plus the equations of tangency

B i
αj =

∂2L

∂xj∂uαi
+ uβ

∂2L

∂uβ∂uαi
+ Aβkj

∂2L

∂uβk∂u
α
i

, (3.107)

Cj =
∂L

∂xj
+ uαj

∂L

∂uα
−B i

αju
α
i . (3.108)

The submanifold Wf is contained in the submanifold of W0 de�ned by

W1 :=

{
(xi, uα, uαi , p, p

i
α) ∈ W : p = L− piαuαi , piα =

∂L

∂uαi

}
, (3.109)

and coincides with it when L is regular.
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Proof. We begin by de�ning W1 as the subset of W where point-wise solutions of the
dynamical equation (3.102) exist, that is

W ′
1 := {w ∈ W / ∃hw : TwW −→ TwW linear such that h2

w = hw,

kerhw = Vw πW,M , ihwΩH(w) = (m− 1)ΩH(w)}.

For a given point w ∈ W , we �x a chart around it with coordinates (xi, uα, uαi , p, p
i
α) and

consider an arbitrary horizontal projector hw in TWW . Then, hw must certainly have the
form (3.103). We therefore compute

ihwΩH − (m− 1)ΩH =[(
B i
αi −

∂L

∂uα

)
duα +

(
piα −

∂L

∂uαi

)
duαi + (uαi − Aαi) dpiα

]
dmx,

equating to zero, we deduce that, in order to be a solution of the dynamical equation
(3.102), hw must be de�ned over a point w that satis�es Equation (3.106) and its coe�-
cients the equations (3.104) and (3.105).

By a reasoning in terms of partitions of the unity similar to the one given in the proof
of Proposition 3.49, we obtain a horizontal projector h : TW ′1W → TW ′1W de�ned over
W ′

1 which satis�es the dynamical equation (3.102). We now restrict h to be de�ned over
W1 := W0 ∩W ′

1, hence obtaining a horizontal projector h : TW1W → TW1W de�ned over
W1 which satis�es the dynamical equation (3.102). But we still have to ensure that h is
a horizontal projector along W1, that is h takes values in TW1: Therefore, we impose the
tangency condition hw(TwW ) ⊂ TwW1, ∀w ∈ W1. This latter condition is equivalent to
having

h

(
∂

∂xj

)(
piα −

∂L

∂uαi

)
= 0 and h

(
∂

∂xj

)(
piα −

∂L

∂uαi

)
= 0,

which in turn is equivalent (using the previous relations) to equations (3.107) and (3.108).
By combining the �rst equation of dynamics (3.105) with the �rst equation of tangency

(3.107), we get
∂L

∂uα
− ∂2L

∂xi∂uαi
− uβi

∂2L

∂uβ∂uαi
− Aβji

∂2L

∂uβj ∂u
α
i

= 0.

If L is regular, nothing else can be stated than that Wf coincides with W1 and that
h de�nes a connection along it. Otherwise, depending on the non-regularity of L, the
last equation could derive restrictions in W0 to obtain the �rst constraint manifold (see
remark 3.77 below). Nevertheless, it is contained in the submanifold W1 given above.

Remark 3.77. It shall be said that Theorem 3.76 remains true when the dynamical equa-
tion (3.102) is considered on the whole of W (instead of restricted to W0), but then W1

should be changed by W ′
1, so the tangency condition (3.108) is no longer available.

We may note in the Theorem's proof that, while the coe�cients Aαi and Cj of h are
completely determined (equations (3.104) and (3.108)), the coe�cients B i

αj are overdeter-
mined (equations (3.105) and (3.107)), what gives an extra restriction on the coe�cients
Aαij for each α:

∂L

∂uα
− ∂2L

∂xi∂uαi
− uβi

∂2L

∂uβ∂uαi
− Aβji

∂2L

∂uβj ∂u
α
i

= 0. (3.110)
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Although, the latter coe�cients cannot be completely determined in general.
When the base manifold M has dimension m = 1, further restrictions could be ob-

tained on the manifold along which h is de�ned, depending on if the Lagrangian density
is regular or not. In this case, W1 would include these restrictions and they will give
further tangency conditions to determine the coe�cients of h. Assume that M = 1 and
let (t, qα, vα, p, pα) denote adapted coordinates on W . By Theorem 3.76, a solution h of
the dynamical equation (3.102) would satisfy in particular the equations

Bα =
∂L

∂qα
and Bα =

∂2L

∂t∂vα
+ vβ

∂2L

∂qβ∂vα
+ Aβ

∂2L

∂vβ∂vα
,

where

h = dt⊗
(
∂

∂t
+ vα

∂

∂qα
+ Aα

∂

∂vα
+Bα

∂

∂piα
+ C

∂

∂p

)
.

Therefore, if L is not regular and we consider an element (V α) in the kernel of ∂2L
∂vβ∂vα

,
then (

∂L

∂qα
− ∂2L

∂t∂vα
− vβ ∂2L

∂qβ∂vα

)
V α = 0,

which is a new restriction that determines the submanifold where h is de�ned.
Analogously, if the base manifold is multidimensional (m > 1) then, a possible way

to obtain constraints derived from Equation (3.110) is to �nd an non-trivial element V α

such that
∂2L

∂uβj ∂u
α
i

V α = 0, ∀i, j, β,

but this is no an easy task. The new constraint would then be(
∂L

∂uα
− ∂2L

∂xi∂uαi
− uβi

∂2L

∂uβ∂uαi

)
V α = 0.

Unfortunately, this method cannot be used in the general case (m > 1 and n > 1).
However, in both cases (m = 1 or m > 1), a remarkable fact is that the �semi-

holonomy� of h yields immediately (Equation (3.104)) whether the Lagrangian density
is regular or not, which di�ers from the Lagrangian formalism (see Proposition 3.49 or
Corollary 3.50). Taking this into account, there is a clear analogy between Equation
(3.110) and the equations derived in the proof of Proposition 3.48.

Example 3.78. Consider the �ber bundle pr 1 : R4 → R2 with global adapted coordinates
(x, y, u, v) and base volume form dx ∧ dy. We consider the Lagrangian function L :
J1 pr 1 → R

L = uv + (ux + vx)(uy + vy).

In this case, Equation (3.110) reads

v − Auyx − Avyx − Auxy − Avxy = 0,

u− Auyx − Avyx − Auxy − Avxy = 0.

From where we deduce that u = v, hence the �rst constraint submanifold is

W1 = {w ∈ W : p0 = uv − pxqy, px = uy + vy = qx, py = ux + vx = qy, u = v} .
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Requiring that h be de�ned along, we obtain the second and �nal constraint submanifold

Wf = W2 = {w ∈ W1 : ux = uy}

with the corresponding tangency conditions on h.

Proposition 3.79. Let Ω1 denote the pullback of ΩH to W1 by the natural inclusion
i : W1 ↪→ W , that is Ω1 = i∗(ΩH). Suppose that dimM > 1 (resp. dimM = 1). The
(m + 1)-form Ω1 is multisymplectic (resp. cosymplectic together with η) if and only if L
is regular.

Proof. First of all, assume thatm > 1 and let us make some considerations. By de�nition,
Ω1 is multisymplectic whenever Ω1 has trivial kernel, that is,

if v ∈ TW1, ivΩ1 = 0 ⇐⇒ v = 0 .

This is equivalent to say that

if v ∈ i∗(TW1), ivΩH|i∗(TW1) = 0 ⇐⇒ v = 0 .

Let v ∈ TW be a tangent vector whose coe�cients in an adapted basis are given by

v = γi
∂

∂xi
+ Aα

∂

∂uα
+ Aαi

∂

∂uαi
+Bi

α

∂

∂piα
+ C

∂

∂p
.

Using the local expression (3.101), we may compute the contraction of ΩH by v,

ivΩH =−Bi
α duα ∧ dm−1xi + Aα dpiα ∧ dm−1xi − γj dpiα ∧ duα ∧ dm−2xij

+

(
Aαi p

i
α +Bi

αu
α
i − Aα

∂L

∂uα
− Aαi

∂L

∂uαi

)
dmx

− γj
(
piα duαi + uαi dpiα −

∂L

∂uα
duα − ∂L

∂uαi
duαi

)
∧ dm−1xj.

(3.111)

In addition to this, let us consider a vector v ∈ TW tangent toW1, that is v ∈ i∗(TW1),
we then have that

d

(
piα −

∂L

∂uαi

)
(v) = 0 and d

(
p+ piαu

α
i − L

)
(v) = 0,

which leads us to the following relations for the coe�cients of v:

Bi
α = γj

∂2L

∂xj∂uαi
+ Aβ

∂2L

∂uβ∂uαi
+ Aβj

∂2L

∂uβj ∂u
α
i

(3.112)

C = γj
∂L

∂xj
+ Aα

∂L

∂uα
−Bi

αu
α
i . (3.113)

It is important to note that, even though the coe�cient Aαi explicitly appears in the pre-
vious equations (3.111) and (3.112), for such a vector v ∈ i∗(TW1), the terms associated
to these Aαi cancel out in the development of ivΩH, Equation (3.111). Thus, a tangent
vector v ∈ i∗(TW1) is in the kernel of ΩH if and only if its coe�cients satisfy the following
relations

γj = 0, Aαi = 0, Aβj
∂2L

∂uβj ∂u
α
i

= 0, Bi
α = 0, C = 0.
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These considerations being made, the assertion is now clear for the multidimensional
case.

Now, let suppose m = 1 and consider coordinates (t, qα, vα, p, pα) on W , which induce
coordinates (t, qα, vα) on W1. In these coordinates, the Cartan (m+ 1)-form is written

ΩH = − dpα ∧ dqα + vα dvα ∧ dt+ pα dvα ∧ dt− dL ∧ dt

and its pull back to W1

Ω1 = − d

(
∂L

∂vα

)
∧ dqα + vα d

(
∂L

∂vα

)
∧ dt− ∂L

∂qα
dqα ∧ dt.

A straightforward computation shows that

Ωn
1 ∧ dt = det

(
∂2L

∂vα∂vβ

)
dq1 ∧ dv1 ∧ · · · ∧ dqn ∧ dvn ∧ dt,

which is a volume form if and only if L is regular.

Corollary 3.80. Under the same assumptions, we have: (J1π,ΩL), (J1π0,Ωh) and
(W1,Ω1) are (globally) locally multisymplecticomorphic (resp. cosymplecticomorphic to-
gether with η when m = 1) if and only if L is (hyper)regular. Indeed, W1 = graph(LegL)
and the corresponding multisymplecticomorphisms (resp. cosymplecticomorphisms) are

W1
pr1 |W1

||zzzzzzzz µ◦pr2 |W1
=legL ◦ pr1 |W1

""FFFFFFFF

J1π legL

// J1π0

(3.114)

In the following proposition, Wf denotes the �nal constraint submanifold, which co-
incides with W1 whenever L is regular.

Proposition 3.81. Let σ be a section of πWf ,M : Wf −→ M and denote σ̄ = i ◦ σ and
φ = πWf ,E ◦ σ, where i : Wf ↪→ W is the canonical inclusion. If σ̄ is an integral section
of h, then the Lagrangian part σ1 = pr 1 ◦σ of σ is holonomic, i.e. σ1 = j1φ, and satis�es
the Euler-Lagrange equations:

j2φ∗
(
∂L

∂uα
− d

dxj
∂L

∂uαj

)
= 0. (3.115)

Proof. If σ = (xi, σα, σαi , σ0, σ
i
α) is an integral section of h, then

∂σα

∂xj
= Aαj,

∂σαi
∂xj

= Aαij,
∂σiα
∂xj

= B i
αj and

∂σ0

∂xj
= Cj,

where the A's, B's and C's are the coe�cients given in (3.103). From Equation (3.104),
we have that σ1 is holonomic, since σαi = ∂σα/∂xi. On the other hand, using the equations
(3.105) and (3.106), we obtain:

0 =
∂L

∂uα
◦ j1φ− ∂σjα

∂xj
;

σiα =
∂L

∂uαi
◦ j1φ.
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We then have

0 = (j1φ)∗
∂L

∂uα
− (j2φ)∗

(
d

dxj
∂L

∂uαj

)
,

which is precisely the Euler-Lagrange equations.

W = J1π ×E J1π†
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De�nition 3.82. Let H be the Hamiltonian density associated to a given Lagrangian
density L : J1π −→ ΛmM . The associated (extended) Hamiltonian action is the map
AH : ΓπW,M ×K → R given by

AH(σ,R) :=

∫
R

σ∗(ΘH), (3.116)

where K is the collection of smooth compact regions of M .

It is called Hamilton-Pontryagin principle for �eld theories in [151].

Theorem 3.83. A section σ : M → W of πW,M : W → M is a critical point of the
Hamiltonian action AH if and only if it satis�es the local equations

σαi =
∂σα

∂xi
,

∂σiα
∂xi

=
∂L

∂uα
, and σiα =

∂L

∂uαi
(3.117)

on M , and

L(xi, σα, σαi ) = 0 and σiα =
∂L

∂uαi

∣∣∣
σ(x)

= 0 (3.118)

on the boundary ∂M of M , where (xi, uα, uαi , p, p
i
α) denotes adapted coordinates on W

and σ = (xi, σα, σαi , σ0, σ
i
α).

Proof. As usual, given a section σ ∈ Γπ†1 and a compact region R ⊆ M , let σε =
ϕε ◦ σ ◦ (ϕ̌ε)

−1 be a variation of σ such that the in�nitesimal generator ξ of ϕε vanishes
outside of (π†1)−1(R). The variation of the Hamiltonian action AH is then given by

d

dε
[AH(σε, Rε)]

∣∣∣
ε=0

=

∫
R

d

dε
[(ϕε ◦ σ)∗ΘH]

∣∣∣
ε=0

=

∫
R

σ∗(LξΘH)

= −
∫
R

σ∗(iξΩH) +

∫
∂R∩∂M

σ∗(iξΘH).
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We deduce from here that σ is a critical point of AH if and only if

σ∗(iξΩH) = 0 and σ∗(iξΘH) =
∂M

0, ∀ξ ∈ X(W ).

Using local coordinates (xi, uα, uαi , p, p
i
α) on W and denoting σ = (xi, σα, σαi , σ0, σ

i
α), we

compute on the one hand

σ∗(iξΩH) =

[
ξα
(
∂σiα
∂xi
− ∂L

∂uα

)
+ ξαi

(
σiα −

∂L

∂uαi

)
+ ξiα

(
σαi −

∂σα

∂xi

)
+

+ ξj
(
∂σiα
∂xj

∂σα

∂xi
− ∂σiα
∂xi

∂σα

∂xj
− σiα

∂σαi
∂xj
− σαi

∂σiα
∂xj

+
∂L

∂uα
∂σα

∂xj
+

∂L

∂uαi

∂σαi
∂xj

)]
dmx,

and on the other hand

σ∗(iξΘH) =

[
ξj(L− σiασαi ) + ξασjα + ξjσiα

∂σα

∂xj
− ξiσjα

∂σα

∂xj

]
dm−1xj.

From here, we conclude that, in order to be a critical point of AH, σ must satisfy the
equations (3.117) and (3.118).

Note that equations in (3.117) are equivalent to equations (3.104�3.106) when we
consider an integral section of a solution h of the dynamical equation (3.102). They also
correspond to the Euler-Lagrange equations (3.38) (combine the second and the third
one), to the Hamilton's equations (3.77) (de�ne H = uαi p

i
α−L and consider the �rst two

equations) and the Legendre transform (3.84) (take the third equation). In the same way,
the boundary conditions (3.118) are equivalent to those the Lagrangian side, Equation
(3.39), and those of the Hamiltonian side, Equation (3.78) (see remarks 3.36 and 3.63).

De�nition 3.84. Let L : J1π −→ ΛmM be a Lagrangian density. The associated
(extended) Hamiltonian-Pontryagin action is the map AL : ΓπW,M ×K → R given by

AL(σ,R) :=

∫
R

(
L ◦ σ1 +

〈
σ†1, j

1σ0

〉
−
〈
σ†1, σ1

〉)
(3.119)

where K is the collection of smooth compact regions of M .

In fact, the Hamiltonian-Pontryagin action 3.84 coincides with the Hamiltonian action
3.82 as stated by the next result.

Theorem 3.85. A section σ : M → W of πW,M : W → M is a critical point of the
Hamiltonian-Pontryagin action AL if and only if it satis�es the local equations

σαi =
∂σα

∂xi
,

∂σiα
∂xi

=
∂L

∂uα
, and σiα =

∂L

∂uαi
(3.120)

on M , and

σiα =
∂L

∂uαi

∣∣∣
σ(x)

= 0 (3.121)

on the boundary ∂M of M , where (xi, uα, uαi , p, p
i
α) denotes adapted coordinates on W

and σ = (xi, σα, σαi , σ0, σ
i
α).
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Proof. Given a section σ ∈ Γπ†1 and a compact region R ⊆M , we have that the variation
of the Hamiltonian-Pontryagin action AL with respect to a variation δσ of σ is given by

δAL
δσ

∣∣∣∣
(σ,R)

· δσ =

∫
R

δ

δσ

[
L(xi, σα, σαi ) + σiα

(
∂σα

∂xi
− σαi

)] ∣∣∣∣
σ

· δσ dmx

=

∫
R

[
∂L

∂uα
δσα +

∂L

∂uαi
δσαi + δσiα

(
∂σα

∂xi
− σαi

)
+ σiα

(
∂

∂xi
δσα − δσαi

)]
dmx

=

∫
R

[(
∂L

∂uα
− ∂σiα
∂xi

)
δσα +

(
∂L

∂uαi
− σiα

)
δσαi +

(
∂σα

∂xi
− σαi

)
δσiα

]
dmx

+

∫
∂R

σiαδσ
α dm−1xi.

where (xi, uα, uαi , p, p
i
α) denotes adapted coordinates on W and σ = (xi, σα, σαi , σ0, σ

i
α).

We thus deduce that σ is a critical point of AL, i.e. δAL/δσ = 0, if and only if the
relations (3.120) and (3.121) are satis�ed.

Here, the boundary conditions (3.121) di�er from the boundary conditions (3.118),
since in the proof we have considered vertical variations.
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Chapter 4

Higher Order Classical Field Theory

In this chapter, we will �nd the main original contributions of this memory. For it, we will
�rst extend the notions of jets to an arbitrary order, that is, higher-order jets. We will
�nd, as an important result, an unambiguous and intrinsic formalism for the higher-order
calculus of variations. The case of constrained calculus will be also analyzed. The main
results appear in [24, 25, 26, 27] and in a forthcoming paper. As a basic reference in what
follows, the reader is refereed to the book by Saunders [139].

Through this section, (E, π,M) denotes a �ber bundle whose base space M is a
smooth manifold of dimension m, and whose �bers have dimension n, thus E is (m+ n)-
dimensional. Adapted coordinate systems in E will be of the form (xi, uα), where (xi) is
a local coordinate system in M and (uα) denotes �ber coordinates.

Lower case Latin (resp. Greek) letters will usually denote indexes that range between
1 and m (resp. 1 and n). Capital Latin letters will usually denote multi-indexes whose
length ranges between 0 and k (see Appendix �A). In particular and if nothing else it is
stated, I and J will usually denote multi-indexes whose length goes from 0 to k − 1 and
0 to k, respectively; and K (and sometimes R) will denote multi-indexes whose length is
equal to k. The Einstein notation for repeated indexes and multi-indexes is understood
but, for clarity, in some cases the summation for multi-indexes will be indicated.

4.1 Higher Order Jet bundles

De�nition 4.1. Given a point x ∈ M , two local sections φ, ψ ∈ Γxπ are k-equivalent at
x if their value coincide at x, as well as their partial derivatives up to order k

φ(x) = ψ(x) and
∂kφα

∂xi1 · · · ∂xik
∣∣∣
x

=
∂kψα

∂xi1 · · · ∂xik
∣∣∣
x
,

for all 1 ≤ α ≤ n, 1 ≤ ij ≤ m, 1 ≤ j ≤ k. This de�nes an equivalence relation in Γxπ.
The equivalence class containing φ is called the kth jet of φ at x and is denoted jkxφ.

The notion of k-equivalency is independent of the chosen coordinate system (adapted
or not), thus so is the equivalence relation that it de�nes (see [61, 64, 139], for more
details).

De�nition 4.2. The kth jet manifold of π, denoted Jkπ, is the whole collection of kth
jets of arbitrary local sections of π, that is,

Jkπ :=
{
jkxφ : x ∈M, φ ∈ Γxπ

}
.
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The functions given by
πk : Jkπ −→ M

jkxφ 7−→ x
(4.1)

and
πk,0 : Jkπ −→ E

jkxφ 7−→ φ(x)
(4.2)

are called the kth source projection and the kth target projection respectively.

From the de�nitions, it is trivial to see that j0
xφ = φ(x), J0π = E, π0 = π and

π0,0 = IdE.

Proposition 4.3. The kth jet manifold of π, Jkπ, may be endowed with a structure of
smooth manifold. A system of adapted coordinates (xi, uα) on E induces a system of
coordinates (xi, uαI ) (with 0 ≤ |I| ≤ k) on J1π such that

xi(jkxφ) = xi(x) and uαI (jkxφ) =
∂|I|φα

∂xI

∣∣∣
x
.

In the induced local coordinates (xi, uαI ), the source and the target projections are
written

πk(x
i, uαI ) = (xi) and πk,0(xi, uαI ) = (xi, uα). (4.3)

From here, it is clear that πk and πk,0 are certainly projections (surjective submersions)
over M and E, respectively. Therefore, (Jkπ, πk,M) and (Jkπ, πk,0, E) are �ber bundles.

If we consider a change of coordinates (xi, uα) 7→ (yj, vβ) in E, it induces a change
of coordinates (xi, uαI ) 7→ (yj, vβJ ) in J1π. In this case, the �velocities� transform by the
following rule:

vβJ+1j
=

(
∂vβJ
∂xi

+ uαI+1i

∂vβJ
∂uαI

)
∂xi

∂yj
(4.4)

=
∂vβJ
∂xi

∂xi

∂yj
+ uαI′

∑
I+1i=I′

∂vβJ
∂uαI

∂xi

∂yj
,

from where we deduce that coordinates of a particular order depend only on coordinates
of equal or lower order, that is

vβJ = vβJ (xi, uαI ) : |I| ≤ |J |.

Even more, the changes have a polynomial expansion and it is a�ne from order to order
(cf. [139]).

Proposition 4.4. For each 0 ≤ l ≤ k, de�ne the map

πk,l : Jkπ −→ J lπ
jkxφ 7−→ jlxφ.

(4.5)

We have that (Jkπ, πk,l, J
lπ) are smooth �ber bundles to which the induced coordinates

(xi, uαI ) are adapted. Moreover, for the particular case l = k − 1, (Jkπ, πk,k−1, J
k−1π) is

an a�ne bundle, being its associated vector bundle

π∗k−1(SkT ∗M)⊗Jk−1π π
∗
k−1,0(V π),

where SkT ∗M is the space of symmetric covariant tensors of order k over M and V π the
vertical bundle of π.
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Jkπ
πk,k−1 //

πk

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS · · · π3,2 // J2π
π2,1 //

π2

##HHHHHHHHHHHHHHHHHHH J1π
π1,0 //

π1

��4444444444444 E

π

��
M

φ

YY

jkφ

``

Figure 4.1: Chain of jets

In the induced local coordinates (xi, uαI ) of Jkπ, with 0 ≤ |I| ≤ k, and (xi, uαJ) of J lπ,
with 0 ≤ |J | ≤ l ≤ k, we have the obvious local expression

πk,l(x
i, uαI ) = (xi, uαJ).

4.1.1 Prolongations, lifts and contact

De�nition 4.5. Let φ ∈ Γπ be a (local) section, its kth prolongation is the (local) section
of πk,0 given by

(jkφ)(x) := jkxφ,

for every x ∈ M . An arbitrary (local) section σ of πk is said to be holonomic if it is the
kth prolongation of a (local) section φ ∈ Γπ, that is, if σ = jkφ.

De�nition 4.6. Let f : E → F be a bundle morphism between two �ber bundles
(E, π,M) and (F, ρ,N), such that the induced function on the base, f̌ : M → N , is a
di�eomorphism. The kth prolongation of f is the map jkf : Jkπ → Jkρ given by

(jkf)(jkxφ) := jk
f̌(x)

φf , ∀jkxφ ∈ Jkπ,

where φf := f ◦ φ ◦ f̌−1 ∈ Γρ.

Jkπ
jkf //

πk,0

��

Jkρ

ρk,0

��
E

f //

π

��

F

ρ

��
M

f̌ //

φ

HHjkφ

FF

N

φf

VV
jkφf

XX

Figure 4.2: The kth prolongation of a morphism

Note that the kth prolongation jkf of a morphism f is not only a morphism between
(Jkπ, πk,0, E) and (Jkρ, ρk,0, F ), and a morphism between (Jkπ, πk,M) and (Jkρ, ρk, N),
but also a morphism between the intermediate lth jet bundles (Jkπ, πk,l, J

lπ) and (Jkρ,



64 CHAPTER 4. HIGHER ORDER CLASSICAL FIELD THEORY

ρk,l, J
lρ), for 0 < l < k. In each case, the induced functions between the corresponding

base spaces are f , f̌ and jlf , respectively.
If (xi, uαI ) and (yj, vβ, vβJ ) denote adapted coordinates in Jkπ and Jkρ, respectively,

then we have

fβJ+1j
= vβJ+1j

◦ jkf =

(
∂fβJ
∂xi

+ uαI+1i

∂fβJ
∂uαI

)
· ∂f̌

−i

∂yj
.

The expression between brackets is called the total derivative of fβJ with respect to xi.
We will come back to it later.

De�nition 4.7. Let φ : M → E be a section of π, x ∈ M and u = jk−1
x φ. The vertical

di�erential of the section φ at the point u ∈ Jk−1π is the map

dv
uφ : TuJ

k−1π −→ Vu πk−1

v 7−→ v − Tu(jk−1φ ◦ πk−1)(v)

Namely, dv
uφ := Idu−Tu(jk−1φ ◦ πk−1).

Notice that the image of dv
uφ is certainly in Vu πk−1 since Tuπk−1 ◦ dv

uφ = 0 and that,
in fact, dv

uφ depends only on jkxφ. In adapted local coordinates (xi, uαI ) of Jk−1π,

dv
uφ =

(
duαI −

∂|I|+1φα

∂xI+1i
dxi
)
⊗ ∂

∂uαI
. (4.6)

De�nition 4.8. The canonical structure form of Jkπ is the 1-form θ on Jkπ with values
in V πk−1 de�ned by

θjkxφ(V ) := ( dv
jk−1
x φ

φ)(Tjkxφπk,k−1(V )), V ∈ TjkxφJ
kπ, (4.7)

where φ is any representative of jkxφ ∈ Jkπ. The contraction of the covectors in V∗ πk−1

with θ de�nes a �distribution� in T ∗Jkπ. This distribution is called the contact module
or the Cartan codistribution (of order k) and it is denoted Ck. Its elements are contact
forms. The annihilator of Ck is the Cartan distribution (of order k).

Note that the expression (4.7) does not depend on the representative φ of jkxφ, hence
it is well de�ned. In adapted local coordinates (xi, uαI , u

α
K) of Jkπ, where 0 ≤ |I| ≤ k− 1

and |K| = k,

θ =
(

duαI − uαI+1i
dxi
)
⊗ ∂

∂uαI
. (4.8)

In fact, the contact forms duαI − uαI+1i
dxi ∈ Ck are a base of the contact module.

Proposition 4.9. Let (xi, uαI , u
α
K) be adapted coordinates on Jkπ, where 0 ≤ |I| ≤ k − 1

and |K| = k, a basis of the Cartan codistribution is given by the coordinate contact forms

θαI = duαI − uαI+1i
dxi. (4.9)

Proposition 4.10. The canonical structure form θ ∈ Γ(T ∗Jkπ⊗Jkπ V π) and the contact
forms ω ∈ Ck are pulled back to zero by the kth prolongation jkφ of any section φ of π.
Moreover, this characterizes the module of contact forms, i.e.

ω ∈ Ck ⇔ (jkφ)∗ω = 0, ∀φ ∈ Γπ. (4.10)
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Proof. Let ω ∈ Ω(Jkπ) be an arbitrary form. We can write ω as the linear combination

ω = ωi dx
i + ωJα duαJ , 0 ≤ |J | ≤ k,

where the ω's are unknown functions on Jkπ. Given any section φ of π, we have that

(jkφ)∗ω =

(
ωi ◦ jkφ+ (ωIα ◦ jkφ) · ∂

|I|+1φα

∂xI+1i
+ (ωKα ◦ jkφ) · ∂

k+1φα

∂xK+1i

)
dxi = 0.

Since two k-equivalent sections at a point x ∈ M coincide on their partial derivatives at
x up to order k, we deduce that

ωKα = 0 and ωi + ωIαu
α
I+1i

= 0.

Substituting ωi and ωKα in the initial expression of ω, we obtain

ω = −ωIαuαI+1i
dxi + ωJα duαJ = ωIα( duαI − uαI+1i

dxi) = ωJαθ
α
I ,

which proofs the su�ciency by Proposition 4.9.
The necessity is immediate.

A complementary or dual result to the previous one is the following.

Proposition 4.11. Let σ ∈ Γπk be a (local) section. The following statements are
equivalent:

1. σ is holonomic.

2. σ pulls back to zero any contact form, that is

σ∗ω = 0, ∀ω ∈ Ck. (4.11)

Notice that the contact forms are πk,k−1-basic, which is clear from the coordinate
expression (4.9). Though, therefore they may be thought as forms along πk,k−1 rather
than on Jkπ. In this sense are de�ned total derivatives.

De�nition 4.12. A total derivative is a vector �eld ξ along πk,k−1 which is annihilated by
the Cartan codistribution (as forms along πk,k−1). Given a system of adapted coordinates
(xi, uα, uαI , u

α
K) in Jkπ, where 0 ≤ |I| ≤ k − 1 and |K| = k, the local vector �elds de�ned

along π1,0 by
d

dxi
=

∂

∂xi
+ uαI+1i

∂

∂uα
(4.12)

are called coordinate total derivatives.

It is immediate to check that coordinate total derivatives are total derivatives, in fact
they de�ne a basis of such vector �elds. Under a change of coordinates, (xi, uα) to (yj, vβ),
a coordinate total derivative transforms linearly by the Jacobian of the underlying change
of coordinates:

d

dyj
=
∂xi

∂yj
d

dxi
.
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If ξ ∈ X(πk,k−1) has the di�erent coordinate representations

ξ = ξi
d

dxi
= ξj

d

dyj
,

where the coe�cients ξi and ξj are functions on Jkπ. Then,

ξi = ξj
∂xi

∂yj
.

De�nition 4.13. The total lift of a vector �eld ξ = ξi∂i on M is the unique total
derivative that projects on ξ itself, that is, the vector �eld ξ̂k along πk,k−1 locally given
by

ξ̂k(jkxφ) = ξi(x)
d

dxi

∣∣∣
jkxφ
.

Note that the total lift of the coordinate partial derivatives in M are precisely the
coordinate total derivatives.

Now, consider the action of total derivatives on smooth functions over Jk−1π. If
f ∈ C∞(Jk−1π), the action of d/ dxi on it yields a function df/ dxi ∈ C∞(Jkπ). In
particular, the action of d/ dxi on the coordinate function uα ∈ C∞(E), gives as expected

duαI
dxi

= uαI+1i
∈ C∞(Jkπ), ∀ 0 ≤ |I| ≤ k − 1.

Another interesting fact is how total derivatives and jets are related. Let f ∈ C∞(J lπ),
l < k, φ ∈ Γπ and ξ ∈ X(M), we have

ξ(f ◦ jlφ) = ξ̂k(f) ◦ jl+1φ,

in coordinates
∂(f ◦ φ)

∂xi
=

df

dxi
◦ jkφ. (4.13)

Finally, note that coordinate total derivatives and ordinary partial derivates do not nece-
sarilly conmute:

∂

∂xi
df

dxj
=

d

dxj
∂f

∂xi
,

∂

∂uα
df

dxj
=

d

dxj
∂f

∂uα
but

∂

∂uαJ

df

dxi
=

d

dxi
∂f

∂uαJ
+ δJI+1i

∂f

∂uαI
,

where f ∈ C∞(E). Nevertheless, coordinate total derivatives do commute, what allow us
to use the multi-index notation with iterated coordinate total derivatives.

Proposition 4.14. Let f ∈ C∞(J lπ), then df
dxi
∈ C∞(J l+1π) and d

dxj
df
dxi
∈ C∞(J l+2π).

Moreover, we have that
d

dxj
df

dxi
=

d

dxi
df

dxj
.

De�nition 4.15. Given a vector �eld ξ on E, its kth lift (or kth jet) is the unique vector
�eld ξ(k) on Jkπ that is projectable to ξ by πk,0 and preserves the Cartan codistribution
with respect to the Lie derivative.
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Proposition 4.16. Let ξ be a vector �eld on E. If ξ has the local expression

ξ = ξi
∂

∂xi
+ ξα

∂

∂uα
(4.14)

in adapted coordinates (xi, uα) on E, then its kth-lift ξ(k) has the form

ξ(k) = ξi
∂

∂xi
+ ξαJ

∂

∂uαJ
(4.15)

for the induced coordinates (xi, uαJ) on Jkπ, where

ξα0 = ξα and ξαI+1i
=

dξαI
dxi
− uαI+1j

dξj

dxi
. (4.16)

In particular, if ξ is vertical with respect to π, then ξαJ = d|J |ξα/ dxJ .

Proof. Since ξ(k) is πk,0-projectable to ξ, it must have the form

ξ(k) = ξi
∂

∂xi
+ ξαJ

∂

∂uαJ

where ξα0 = ξα and where the remaining components ξαJ , with |J | = 1, . . . , k, still have to
be determined.

Note that the preserving condition is equivalent to require that the Lie derivatives
by ξ(k) of the elements of any �xed base of the Cartan codistribution Ck are still contact
forms. Thus, consider the base {θαI } given in Proposition (4.9) and let us compute the
Lie derivative of its elements by ξ(k). Using the Cartan's formula L = d ◦ i + i ◦ d, we
obtain

Lξ(k)θαI = Lξ(k)( duαI − uαI+1i
dxi)

=
∂ξαI
∂xi

dxi +
∂ξαI

∂uβJ
duβJ − u

α
I+1i

∂ξi

∂xj
dxj − uαI+1i

∂ξi

∂uβ
duβ − ξαI+1i

dxi

Adding and subtracting properly some terms, we have

Lξ(k)θαI =
∂ξαI
∂xi

dxi +
∂ξαI

∂uβ
Ĩ

θβ
Ĩ

+
∂ξαI

∂uβ
Ĩ

uβ
Ĩ+1i

dxi +
∂ξαI

∂uβK
duβK

−uαI+1i

∂ξi

∂xj
dxj − uαI+1i

∂ξi

∂uβ
θβ − uαI+1i

∂ξi

∂uβ
uβj dxj − ξαI+1i

dxi.

As Lξ(k)θαI is required to be contact,

ξαI+1i
=
∂ξαI
∂xi

+ uβ
Ĩ+1i

∂ξαI

∂uβ
Ĩ

− uαI+1j

(
∂ξj

∂xi
+ uβi

∂ξj

∂uβ

)
and

∂ξαI

∂uβK
= 0.

From the �rst equation we deduce that ξαJ depends only on uαI 's with |I| ≤ |J |, which
agrees with the second one. Rewriting the former in terms of the coordinate total deriva-
tives (4.12), we �nally obtain

ξαI+1i
=

dξαI
dxi
− uαI+1j

dξj

dxi
.

The �nal statement is clear from here.
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Corollary 4.17. Under the same assumptions, we have that the components of the kth
lift ξ(k) ∈ X(Jkπ) of a vector �eld ξ ∈ X(E) are explicitly given by

ξαJ =
d|J |ξα

dxJ
−

∑
Iu+Iξ=J
|Iu|,|Iξ|6=0

J !

Iu!Iξ!
uαIu+1l

d|Iξ|ξl

dxIξ
− uαl

d|J |ξl

dxJ
. (4.17)

Proof. We proceed by induction on the length |J | of a multi-index J ∈ Nm. For J = 1j,
with 1 ≤ j ≤ m, we obtain

ξαj =
dξα

dxj
− uαl

dξl

dxj
,

which agrees with the recursive formula (4.15) (and also with (3.18)). Let us assume that
the theorem is true for multi-indexes up to length k − 1 ≥ 1 and consider a multi-index
K ∈ Nm of length k. For any decomposition K = J + 1j, where J ∈ Nm and 1 ≤ j ≤ m,
we have

ξαJ+1j
=

dξαJ
dxj
− uαJ+1l

dξl

dxj

=
d|J |+1ξα

dxJ+1j
−

∑
Iu+Iξ=J
|Iu|,|Iξ|6=0

J !

Iu!Iξ!

(
uαIu+1j+1l

d|Iξ|ξl

dxIξ
+ uαIu+1l

d|Iξ|+1ξl

dxIξ+1j

)

−uα1j+1l

d|J |ξl

dxJ
− uαl

d|J |+1ξl

dxJ+1j
− uαJ+1l

dξl

dxj
,

where we have used the formula (4.15) and the induction hypothesis. We multiply each
member of the equality by K(j)/|K| and sum over all the decompositions of the type
K = J + 1j, what gives us thanks to Lemma A.4

ξαK =
d|K|ξα

dxK
−

∑
J+1j=K

K(j)

|K|
∑

Iu+Iξ=J
|Iu|,|Iξ|6=0

J !

Iu!Iξ!

(
uαIu+1j+1l

d|Iξ|ξl

dxIξ
+ uαIu+1l

d|Iξ|+1ξl

dxIξ+1j

)

−
∑

J+1j=K

K(j)

|K|

(
uα1j+1l

d|J |ξl

dxJ
+ uαJ+1l

dξl

dxj

)
− uαl

d|K|ξl

dxK

=
d|K|ξα

dxK
−

∑
Iu+Iξ+1j=K
|Iu|,|Iξ|6=0

K(j)

|K|
(Iu + Iξ)!

Iu!Iξ!

(
uαIu+1j+1l

d|Iξ|ξl

dxIξ
+ uαIu+1l

d|Iξ|+1ξl

dxIξ+1j

)

−
∑

J+1j=K

K(j)

|K|

(
uα1j+1l

d|J |ξl

dxJ
+ uαJ+1l

dξl

dxj

)
− uαl

d|K|ξl

dxK
.

We now need to rearrange properly the middle terms. For the �rst one, we substitute
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Iu + 1j by Ju and Iξ by Jξ, obtaining

∑
Iu+Iξ+1j=K
|Iu|,|Iξ|6=0

K(j)

|K|
(Iu + Iξ)!

Iu!Iξ!
uαIu+1j+1l

d|Iξ|ξl

dxIξ
=

=
∑

Ju+Jξ=K
|Iu|≥2,|Jξ|6=0

∑
Iu+1j=Ju

Ju(j)

|K|
K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ

=
∑

Ju+Jξ=K
|Iu|≥2,|Jξ|6=0

|Ju|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ
,

where we have use the fact that K(j)(Iu + Iξ)! = K! and Ju(j)Iu! = Ju! (Lemma A.1)
and again the identity (A.7). For the third middle term, we substitute Iu + 1j by Ju and
Iξ by Jξ, obtaining

∑
J+1j=K

K(j)

|K|
uα1j+1l

d|J |ξl

dxJ
=

∑
Ju+Jξ=K
|Iu|=1,|Jξ|6=0

|Ju|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ

where we have use the fact that K(j)Jξ! = K! and |Ju| = Ju! = 1. The second and forth
middle terms are rearranged accordingly. We thus arrive to

ξαK =
d|K|ξα

dxK
− uαl

d|K|ξl

dxK

−
∑

Ju+Jξ=K
|Iu|≥2,|Jξ|6=0

|Ju|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ
−

∑
Ju+Jξ=K
|Iu|=1,|Jξ|6=0

|Ju|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ

−
∑

Ju+Jξ=K
|Iu|6=0,|Jξ|≥2

|Jξ|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ
−

∑
Ju+Jξ=K
|Iu|6=0,|Jξ|=1

|Jξ|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ

=
d|K|ξα

dxK
−

∑
Ju+Jξ=K
|Ju|,|Jξ|6=0

|Ju|+ |Jξ|
|K|

K!

Ju!Jξ!
uαJu+1l

d|Jξ|ξl

dxJξ
− uαl

d|K|ξl

dxK
,

which is the desired formula since |Ju|+ |Jξ| = |K|.

Originally, the kth lift is de�ned for π-projectable vector �elds on E. The kth lift of
such vector �eld ξ is the in�nitesimal generator of the kth lift of the �ow of ξ. De�nition
4.15 is a characterization of this property and it is generalized for any kind of vector �elds
on E (see [71]).

Proposition 4.18. Let ψε be the �ow of a given π-projectable vector �eld ξ over E.
Then, the �ow of ξ(k) is the kth prolongation of ψε, jkψε.
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4.1.2 On the de�nition of vertical endomorphisms

We are going to face one of the �rst problems in order to de�ne a canonical geometric
Lagrangian formalism. There is no natural extension of the notions of vertical endomor-
phism for �rst order theories (see Section �3.1.2). However, an alternative approach was
developed by Saunders in [138].

De�nition 4.19. Given a k-jet jkxφ ∈ Jkπ, let A ∈ SkT ∗xM ⊗jkxφ Vφ(x) π. The vertical lift
of A at jkxφ is the tangent vector Av

jkxφ
∈ Tjkxφ(Jkπ) given by

Av
jkxφ

(f) =
d

dt
f(jkxφ+ tA)

∣∣
t=0
, ∀f ∈ C∞(Jkjkxφπ). (4.18)

By the very de�nition of vertical lift, given a smooth function f ∈ C∞(Jk−1π),

(Tjkxφπk,k−1)(Av
jkxφ

)(f) = Av
jkxφ

(f ◦ πk,k−1)

=
d

dt
(f ◦ πk,k−1)(jkxφ+ tA)

∣∣
t=0

=
d

dt
f(φ(x))

∣∣
t=0

= 0.

Thus, the vertical lift takes values into the vertical �ber bundle V πk,k−1 ⊂ TJkπ. Indeed,
it is a morphism of vector bundles over the identity of Jkπ,

(·)v : SkT ∗M ⊗Jkπ V π −→ V πk,k−1.

Note that, this time, the tensor product is taken over Jkπ and not over E. Note also that
for each jkxφ ∈ Jkπ, the vertical lift at jkxφ,

(·)v
jkxφ

: SkT ∗xM ⊗ Vφ(x) π −→ Vjkxφ πk,k−1 ⊂ TjkxφJ
kπ,

is a linear isomorphism. In adapted local coordinates (xi, uαJ), if A = AαK dxK |x ⊗
∂/∂uα|φ(x), where dxK is the symmetric tensor product of the local 1-forms dxi1 , . . . ,
dxik with K = 1i1 + · · ·+ 1ik , then

Av
jkxφ

= AαK
∂

∂uαK

∣∣∣
jkxφ

and (·)v = duα ⊗ δ

δxK
⊗ ∂

∂uαK
, (4.19)

where δ/δxK is the dual counterpart of dxK .
Now, we would like to use this vertical lift in order to generalize the de�nitions of

the vertical endomorphisms of �rst order, de�nitions 3.18 and 3.19. Nevertheless, the
ideas that are behind these de�nitions seem to not work for this one. In the case of the
volume dependent vertical endomorphism 3.18, one would like to de�ne a skewsymmetric
map Sη : (TJkπ)m → TJkπ using the volume form η and the vertical lift (·)v, but
there is no chance to obtain an element in the domain of (·)v from a tangent vector
in TJkπ. In the case of the canonical vertical endomorphism 3.19, we look for a map
S : T ∗M ⊗ TJkπ → V πk,0, but the contraction of the canonical form η with the vertical
lift (·)v simply does not give what one would expect.
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Therefore, we are forced to try to generalize these objects my means of their local
descriptions, equations (3.23) and (3.24). For instance, the obvious formula for a canonical
vertical endomorphism for higher-order jet bundles would be

Sk :=
k−1∑
|I|=0

θαI ⊗
∂

∂xi
⊗ ∂

∂uαI+1i

. (4.20)

Unfortunately, this local de�nition does not behave as expected under a change of coor-
dinates. Let (xi, uαI ) and (yj, vβJ ) denote two systems of adapted coordinates in Jkπ then,
following the transformation rules (4.4), we have

θαI ⊗
∂

∂xi
⊗ ∂

∂uαI+1i

=
∑

|I|+1≤|J̃ |≤k

∂uαI

∂vβJ
· ∂y

j

∂xi
·
∂vβ̃

J̃

∂uαI+1i

· θβJ ⊗
∂

∂yj
⊗ ∂

∂vβ̃
J̃

,

where we have omitted some of the summation symbols for clarity. For the second order
case, after further computations, this is translated to

θα ⊗ ∂

∂xi
⊗ ∂

∂uα
+ θαi′ ⊗

∂

∂xi
⊗ ∂

∂uαi′i
=

= θβ ⊗ ∂

∂yj
⊗ ∂

∂vβj
+ θβj′ ⊗

∂

∂yj
⊗ ∂

∂vβj′j

+

(
∂2uα

∂yj′∂vβ
+ vβ

′

j′
∂2uα

∂vβ′∂vβ

)
· ∂v

β̃

∂uα
θβj′ ⊗

∂

∂yj
⊗ ∂

∂vβ̃j′j

.

Obviously, this is not invariant under a change of coordinates.

4.1.3 Partial di�erential equations

Lemma 4.20. If N is an open submanifold of M , then Jk(πN) ' π−1
k (N).

De�nition 4.21. A di�erential equation on π is a closed embedded submanifold P
of the jet manifold Jkπ. The order of P is the largest natural number r satisfying
π−1
r,r−1(πk,r−1) 6= πk,rP . A solution of P is a local section φ ∈ ΓNπ, where N is an open

submanifold of M , which satis�es jkxφ ∈ P for every x ∈ N . A di�erential equation P is
said to be integrable at z ∈ P if there is a solution φ of P (around some neighborhood
N of πk(z)) such that z = jkπk(z)φ. A �rst-order di�erential equation P is said to be
integrable in a subset P ′ ⊂ P if it is integrable at each z ∈ S. A �rst-order di�erential
equation P is said to be integrable if it is integrable at each z ∈ P .

If l is the codimension of P (dim Jkπ − dimP), there locally exist submersions Ψ :
Jkπ → Rl for whom P is the zero level set. Written in local coordinates, P is given by
the set of points that satisfy

Ψµ(xi, uαJ) = 0, µ = 1, . . . , l.

Thus, di�erential equations are a geometric interpretation of the usual kth-order partial
di�erential equations. Under certain conditions (for instance, if πk,k−1|P : P → Jk−1π is
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a surjective submersion), one could solve the previous equation for some of the highest-
order velocities uαK making them to depend on the other variables. For simplicity, if n = 1
and we �x l multi-indexes K of length k, which we denote with a hat K̂, the previous
equation could be equivalent to the following expression

uK̂ = φK̂(xi, uI , uǨ),

where the multi-index with check accent, Ǩ, is a multi-index of length k complementary
to those of K̂. For instance, in the equation

uxy = uy · uxx + ux · uyy

de�ned on J2π where π = pr 1 : R2 × R→ R2 with global coordinates (x, y, u), the �hat�
multi-index would be xy = 1x + 1y and the �check� ones xx = 1x + 1x and yy = 1y + 1y.

In what follows, constrained coordinates will be denoted generically with a hat accent
� ˆ �, while free coordinates will be denoted with a check accent � ˇ �, i.e. uα̂

K̂
and uα̌

Ǩ
. Note

that in general, α̂ and α̌ or K̂ and Ǩ may coincide, what do not are the pairs (α̂, K̂) and
(α̌, Ǩ).

Remark 4.22. As our ultimate goal is to characterize holonomic jet sections that belong
to P , one could look for a submanifold P ′ of P consisting of the image of such sections.
The submanifold P ′ is given by the constraint functions of P plus their consequences up
to order k, that is, Ψµ, dΨµ

dxi
, d2Ψµ

dxij
, etc. Geometrically, P ′ is obtained as the output of the

following recursive process:

P(s,r) :=


P , s = 0, r = k;

πk,0(P(s−1,k)), s > 0, r = 0;
J1P(s,r−1) ∩ πk,r(P(s−1,k)), s > 0, 0 < r ≤ k;

(4.21)

which stops when, for some step s ≥ 0, P(s+1,k) = P(s,k). This algorithm is a generalization
to jet bundles of the method given in [127] by Mendella et al. to extract the integral part
of a di�erential equation in a tangent bundle. The reader is also refereed to the alternative
approach by Gasqui [90].

For instance, if one considers the null divergence restriction ux + vy = 0 in the 2nd-
order jet manifold of pr 1 : R3 × R2 −→ R3, then the resulting manifold P(2,2) = P(1,2) is
given by the restrictions ux + vy = 0, uxt + vyt = 0, uxx + vxy = 0 and uxy + vyy = 0 (see
Example 4.61). Note that in this particular example, the original equation is in essence
a 1st-order di�erential equation while, after the recurrence algorithm, it 2nd-order one
since it has been considered in J2 pr 1.

4.1.4 Iterated jet bundles

In Section �3.1, we already saw that J1π is a �ber bundle over M . We thus may consider
the �rst jet bundle J1π1 of the �rst source projection π1 : J1π →M . Bearing this idea in
mind, we could even consider arbitrary iteration of jet bundles of any order. Of greater
importance are the jet bundles which are the �rst jet of a (k − 1)th source projections:
J1πk−1.

De�nition 4.23. Let k, l ≥ 0, the (l, k)-iterated jet bundle of π is the lth jet bundle J lπk
of the kth source projection πk : Jkπ →M .
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If (xi, uα) are adapted coordinates on E and (xi, uαI ), 0 ≤ |I| ≤ k, are the correspond-
ing induced local coordinates on Jkπ, adapted coordinates on the iterated jet bundle J lπk
will have the form

(xi, uαI;J), where 0 ≤ |I| ≤ k, 0 ≤ |J | ≤ l,

such that, for any local section ψ : M → Jkπ of πk,

uαI;J(jlxψ) =
∂|J |ψαI
∂xJ

∣∣∣∣
x

,

being ψαI = uαI ◦ ψ.
Let φ : M → E be a local section of π around x ∈ M , then its kth prolongation jkφ

is a local section of πk and, hence, its lth jet at x, jlx(j
kφ), is and element of the iterated

jet bundle J lπk. Besides, jk+l
x φ is an element of the higher order jet bundle Jk+lπ. In

fact, Jk+lπ is naturally embedded in J lπk.

De�nition 4.24. The map il,k : Jk+lπ → J lπk is de�ned by

il,k(j
k+l
x φ) = jlx(j

kφ).

The elements in the image of il,k are called holonomic.

Do not confuse this concept with the one given in De�nition 4.5, even though they are
related. A holonomic iterated jet jlxσ ∈ J lπk (in the sense of 4.24), is the jet of a holonomic
jet σ = jkφ (in the sense of 4.5) or, the iterated jet of a �xed section jlxσ = jlx(j

kφ).
In adapted coordinates (xi, uαI;J) on J lπk and (xi, uαK) on Jk+lπ, where 0 ≤ |I| ≤ k,

0 ≤ |J | ≤ l and 0 ≤ |K| ≤ k + l,

uαI;J(il,k(j
k+l
x φ)) = uαI+J .

It follows that Jk+lπ may be seen as the submanifold of holonomic jets of J lπk given by
the coordinate expression

Jk+lπ =
{
jlxψ ∈ J lπk : uαI1;J1

(jlxψ) = uαI2;J2
(jlxψ) whenever I1 + J1 = I2 + J2

}
.

J lπk

πk+l,l

yyttttttttttttttttttttt

il,k

��

πk+l,k

%%JJJJJJJJJJJJJJJJJJJJJ

J lπ

πl

%%KKKKKKKKKKKKKKKKKKKKK J lπk
jlπk,0oo

(πk)l

��

(πk)l,0 // Jkπ

πk

yyssssssssssssssssssssss

M

Figure 4.3: Iterated jets
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Do not confuse this notion of holonomy with the one given in De�nition 4.1.1. The
former refers to holonomy as an iterated jet, the latter as a jet section by itself.

In contrast to the elements of il,k(Jk+lπ), that are called holonomic, the elements of
J lπk are sometimes refereed as non-holonomic jets, even though the holonomic jets belong
to it. But there are still a set of particular interest between them when l = 1 (see [139]).

Two di�erent maps may be de�ned from J1πk to J1πk−1. First, the composition of the
target projection (πk)1,0 : J1πk → Jkπ with the natural embedding i1,k−1 : Jkπ ↪→ J1πk−1.
And secondly, the �rst prolongation j1πk,k−1 of πk,k−1 : Jkπ → Jk−1π as a morphism over
the identity on M . Finally, we recall that the vector bundle associated to the a�ne
bundle (πk−1)1,0 : J1πk−1 → Jk−1π is

(τJk−1π|V πk−1
) ◦ pr 2 : T ∗M ⊗Jk−1π V πk−1 −→ Jk−1π.

De�nition 4.25. The k-jet Spencer operator is the map

Dk : J1πk −→ T ∗M ⊗Jk−1π V πk−1

such that Dk(j
1
xψ) is the unique element of T ∗M ⊗Jk−1π V πk−1 whose a�ne action on

J1πk−1 maps (i1,k−1 ◦ (πk)1,0)(j1
xψ) to (j1πk,k−1)(j1

xψ)

In local coordinates, the k-jet Spencer operator has the expression

Dk(x
i, uαJ , u

α
I;i) =

k−1∑
|I|=0

(uαI;i − uαI+1i
) dxi ⊗ ∂

∂uαI
. (4.22)

De�nition 4.26. The semi-holonomic (k + 1)-jet manifold Ĵk+1π is the submanifold
D−1
k (0) of J1πk.

From the local expression of the k-jet Spencer operator, it follows that

Ĵk+1π =
{
j1
xψ ∈ J1πk : uαI;i(j

1
xψ) = uαI+1i

(j1
xψ) when 0 ≤ |I| ≤ k

}
.

We now have the inclusions ii,k(Jk+1) ⊂ Ĵk+1π ⊂ J1πk. In terms of coordinates, we may
say that the semi-holonomic manifold Ĵk+1π is the collection of elements of J1πk whose
coordinates are symmetric with respect to the multi-indexes up to order k, whereas the
holonomic manifold Jk+1π is the collection of elements of Ĵk+1π whose coordinates are
in addition symmetric with respect to the multi-indexes of order k + 1. We may take
(xi, uαJ , u

α
K;i) as coordinates of Ĵ

k+1π, where 0 ≤ |J | ≤ k and |K| = k.

4.1.5 The kth Dual Jet Bundle

There are mainly two possible choices to de�ne the dual space of Jkπ. For our purposes,
one of them is not valid, while the other will introduce some problems in the formulation
of dynamics. In spite of it all, we shall show the reason of this election.

Recall that πk,k−1 : Jkπ → Jk−1π is an a�ne bundle (Proposition 4.4). Thus, we may
consider its a�ne dual

A :=
⋃

u∈Jk−1π

Aff(Jkuπ,Λ
m
πk−1(u)M).
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Note that, in this case, the a�ne nature of this space takes only in consideration the
highest order component of Jkπ, what is clearer when one considers local coordinates.
Let (xi, uαJ) denote adapted coordinates on Jkπ, where 0 ≤ |J | ≤ k, then they induce
coordinates (xi, uαI , p

k, pKα ) in A, where 0 ≤ |I| ≤ k − 1 and |K| = k. Note that there is
only one coordinate pk, with little k. The pairing will then be

pk + pKα u
α
K .

Roughly speaking, this space has the nice property of having as many momenta (plus
one) as highest order velocities has Jkπ. Nonetheless, the lack of taking care of the lower
order velocities is too important to neglect it.

A workaround could be to consider �ber products of this space for each �level� J lπ
from l = 1 to l = k. Then we would have a space whose coordinates will take the form
(xi, uαI , p

1, . . . , pk, pJα), where 0 ≤ |I| ≤ k − 1 and 1 ≤ |J | ≤ k. The problem now is
that there are many a�ne components pl, which would give a lack of unicity when the
Hamiltonian formalism would be introduced. Moreover, there is not a canonically de�ne
pairing since there are pairings de�ned at each level but not globally.

The alternative to all of this is to consider the iterated jet J1πk−1 and its dual space
as a�ne bundle over Jk−1π. As already seen, Jkπ is a�nely embedded into J1πk−1, thus
it makes sense to restrict the elements of J1(πk−1)† to Jkπ.

De�nition 4.27. The kth dual jet bundle of π, denoted Jkπ†, is the reunion of the a�ne
maps from J1

uπk−1 to Λm
πk−1(u)M , where u is an arbitrary point of Jk−1π. Namely,

Jkπ† := J1(πk−1)† =
⋃

u∈Jk−1π

Aff(J1
uπk−1,Λ

m
πk−1(u)M). (4.23)

The functions given by
π†k : Jkπ† −→ M
ω ∈ Jkuπ† 7−→ πk−1(u)

(4.24)

and
π†k,0 : Jkπ† −→ E

ω ∈ Jkuπ† 7−→ πk−1,0(u)
(4.25)

where Jkuπ
† = Aff(Jkuπ,Λ

m
π(u)M) , are called the kth dual source projection and the kth

dual target projection respectively. Finally, we denote π†k,k−1 the map

π†k,k−1 : Jkπ† −→ Jk−1π

ω ∈ Jkuπ† 7−→ u
(4.26)

and π†k,l := π†k,k−1 ◦ πk−1,l, for 0 ≤ l ≤ k − 1.

The duality nature of Jkπ† gives rise to a natural pairing between its elements and
those of Jkπ. The pairing will be denoted by the usual angular brackets, 〈 , 〉 : Jkπ†⊗Jk−1π

Jkπ → ΛmM .

Proposition 4.28. The kth dual jet bundle of π, Jkπ†, may be endowed with a structure
of smooth manifold. A system of adapted coordinates (xi, uα) in E induces a system of
coordinates (xi, uαI , p, p

Ii
α ) in Jkπ†, where 0 ≤ |I| ≤ k−1, such that, for any jkxφ ∈ Jkπ and

any ω ∈ Jk
jk−1
x φ

π†, xi(ω) = xi(x), uαI (ω) = uαI (jk−1
x φ) and

〈
ω, jkxφ

〉
= (p+ pIiα u

α
I+ii

) dmx.
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In the induced local coordinates (xi, uαI , p, p
Ii
α ), the kth dual source and target projec-

tions are respectively written

π†k(x
i, uαI , p, p

Ii
α ) = (xi) and π†k,0(xi, uαI , p, p

Ii
α ) = (xi, uα), (4.27)

and for the intermediate projections

π†k,l(x
i, uαI , p, p

Ii
α ) = (xi, uαJ), (4.28)

where 1 ≤ |J | ≤ l ≤ k−1. From here, it is clear that π†k and π
†
1,0 are certainly projections

overM and E respectively. Therefore, (Jkπ†, π†k,M) and (Jkπ†, π†k,0, E) are �ber bundles.
If we consider a change of coordinates (xi, uα) 7→ (yj, vβ) in E, it induces a change of
coordinates (xi, uαI , p, p

Ii
α ) 7→ (yj, vβI , q, q

Jj
β ) in Jkπ†. In this case, the �momenta� transform

by the following rule.

Proposition 4.29. Let (xi, uα) and (yj, vβ) be adapted coordinates on E and let (xi, uαI ,
p, pIiα ) and (yj, vβJ , q, q

Jj
β ) be the corresponding induced coordinates on the space of semi-

basic forms Λm
2 J

k−1π, where 0 ≤ |I|, |J | ≤ k. We have that the �ber coordinates (with
respect to Jk−1π) transform according to the following rule:

p = Jac(y(x))

(
∂vβJ
∂xi

qJjβ
∂xi

∂yj
+ q

)
, (4.29)

pIiα = Jac(y(x))

(
∂vβJ
∂uαI

qJjβ
∂xi

∂yj

)
. (4.30)

Proof. First of all, recall that Jkπ† = J1(πk−1)† is canonically isomorphic to the space
of semi-basic form ω ∈ Λm

2 J
kπ (Proposition 3.28). We only have to write an arbitrary

semi-basic form ω ∈ Λm
2 J

kπ in the two di�erent systems of coordinates and use the
transformation rules (3.31) to get:

ω = p dmx+ pIiα duαI ∧ dm−1xi

= q dmy + qJjβ dvβJ ∧ dm−1yj

= Jac(y(x))

[
q dmx+ qJjβ

∂xi

∂yj

(
∂vβJ
∂xk

dxk +
∂vβJ
∂uαI

duαI

)
∧ dm−1xi

]

= Jac(y(x))

[(
q +

∂vβJ
∂xi

qJjβ
∂xi

∂yj

)
dmx+

(
∂vβJ
∂uαI

qJjβ
∂xi

∂yj

)
duαI ∧ dm−1xi

]
.

If we now compare the coe�cients of the �rst and last expressions, we obtain the desired
result.

While the kth jet bundle Jkπ projects over the lower order jet bundles (Diagram 4.1),
the kth dual jet bundle is �embedded� into the (k+ 1)th dual jet bundle by means of the
pullback of the a�ne projection πk+1,k (Diagram 4.4).

Proposition 4.30. The kth dual jet bundle of π, Jkπ†, together with the kth dual pro-
jection, π†k,k−1, is a vector bundle over Jk−1π. Moreover, the induced coordinate systems
(xi, uαI , p, p

Ii
α ) are adapted to the vector bundle structure.
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Jk+1π†

$$JJJJJJJJJ Jkπ†

""EEEEEEEEE
? _

π∗k+1,koo · · ·

""EEEEEEEEE
? _

π∗k,k−1oo J2π†

##GGGGGGGGG
? _

π∗3,2oo J1π†

!!DDDDDDDD
? _

π∗2,1oo

Jk+1π
πk+1,k // Jkπ

πk,k−1 // · · · π3,2 // J2π
π2,1 // J1π

π1,0 // E
π //M

Figure 4.4: Chain of dual jets

De�nition 4.31. The reduced kth dual jet bundle of π is Jkπ◦ := J1(πk−1)◦ (see De�nition
3.26), which is isomorphic to Λm

2 J
k−1π/Λm

1 J
k−1π (Corollary 3.29).

Proposition 4.32. We have that:

1. Jkπ◦ may be endowed with a structure of smooth manifold;

2. (Jkπ†, µ, Jkπ◦) is a smooth vector bundle of rank 1;

3. adapted coordinates (xi, uα) on E induce coordinates (xi, uαI , p
Ii
α ) on Jkπ◦ such that

µ(xi, uαI , p, p
Ii
α ) = (xi, uαI , p

Ii
α ), where (xi, uαI , p, p

Ii
α ) are the induced coordinates on

Jkπ†.

Before we end this section, we summarize the important geometrical ingredients that
he dual jet bundle Jkπ† posses. In �rst place, it has a canonical multisymplectic structure
which is carried form the realization of Jkπ† as a semi-basic forms Λm

2 J
k−1π over Jk−1π

(see equations (3.32) and (3.33) and De�nition 4.27). Moreover, its elements are naturally
paired with those of Jkπ (see Proposition 4.28). We recall that a form Ω is multi-
symplectic if it is closed and if its contraction with a single tangent vector is injective,
that is, iV Ω = 0 if and only if V = 0.

De�nition 4.33. The Liouville or tautological m-form on Jkπ† is the form given by

Θω(V1, . . . , Vm) = ((π†k,k−1)∗ω)(V1, . . . , Vm), ω ∈ Jkπ†, V1, . . . , Vm ∈ TωJkπ†, (4.31)

where π†k,k−1 is the natural projection from Jkπ† to Jk−1π. The Liouville or canonical
multi-symplectic (m+ 1)-form on Jkπ† is

Ω = − dΘ. (4.32)

De�nition 4.34. The natural pairing between Jkπ and its dual Jkπ† is the �bered map
Φ : Jkπ ×Jk−1π J

kπ† → ΛmM given by

Φ(jkxφ, ω) = (jk−1φ)∗
jk−1
x φ

ω. (4.33)

Let (xi, uαI , u
α
K) and (xi, uαI , p, p

Ii
α ) denote adapted coordinates on Jkπ and Jkπ† re-

spectively, where |I| = 0, . . . , k − 1 and |K| = k. Then, the tautological form and the
canonical one are locally written

Θ = p dmx+ pIiα duαI ∧ dm−1xi and Ω = − dp ∧ dmx− dpIiα ∧ duαI ∧ dm−1xi, (4.34)

and the �bered pairing between the elements of Jkπ and Jkπ† is locally written

Φ(xi, uαI , u
α
K , p, p

Ii
α ) = (p+ pIiα u

α
I+1i

) dmx. (4.35)
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4.2 Higher Order Classical Field Theory

4.2.1 Variational Calculus

The dynamics in classical �eld theory is speci�ed giving a Lagrangian density: A La-
grangian density is a mapping L : Jkπ → ΛmM . Fixed a volume form η on M , there is
a smooth function L : Jkπ → R such that L = Lη.

De�nition 4.35. Given a Lagrangian density L : Jkπ −→ ΛmM , the associated integral
action is the map AL : Γπ ×K −→ R given by

AL(φ,R) =

∫
R

(jkφ)∗L, (4.36)

where K is the collection of smooth compact regions of M .

De�nition 4.36. Let φ be a section of π. A (vertical) variation of φ is a curve ε ∈ I 7→
φε ∈ Γπ (for some interval I ⊂ R) such that φε = ϕε ◦ φ ◦ ϕ̌−1

ε , where ϕε is the �ow of a
(vertical) π-projectable vector �eld ξ on E.

When ξ is vertical, then its �ow ϕε is an automorphism of �ber bundles over the
identity for each ε ∈ I.

De�nition 4.37. We say that φ ∈ Γπ is a critical or stationary point of the Lagrangian
action AL if and only if

d

dε
[AL(φε, R)]

∣∣∣
ε=0

=
d

dε

[∫
R

(jkφε)
∗L
] ∣∣∣∣

ε=0

= 0, (4.37)

for any vertical variation φε of φ whose associated vertical �eld vanishes outside of π−1(R).

Lemma 4.38. Let φε = ϕε ◦ φ ◦ ϕ̌−1
ε be a variation of a section φ ∈ Γπ. If ξ denotes the

in�nitesimal generator of ϕε, then

d

dε

[
(jk(ϕε ◦ φ)∗xω

] ∣∣∣
ε=0

= (jkφ)∗x(Lξ(k)ω), (4.38)

for any di�erential form ω ∈ Ω(Jkπ).

Proof. From Proposition 4.18, we have that ξ(k) is the in�nitesimal generator of jkϕε. We
then obtain by a direct computation,

(jkφ)∗x(Lξ(k)ω) = (jkφ)∗x

(
d

dε

[
(jkϕε)

∗ω
] ∣∣∣
ε=0

)
=

d

dε

[
(jkϕε ◦ jkφ)∗xω

] ∣∣∣
ε=0

.

The following lemma will show to be useful in the variational derivation of the higher-
order Euler-Lagrange equations.
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Lemma 4.39 (Higher-order integration by parts). Let R ⊂ M be a smooth compact
region and let f, g : R −→ R be two smooth functions. Given any multi-index J ∈ Nm,
we have that∫

R

∂|J |f

∂xJ
g dmx = (−1)|J |

∫
R

f
∂|J |g

∂xJ
dmx+

∑
If+Ig+1i=J

λ(If , Ig, J)

∫
∂R

∂|If |f

∂xIf
∂|Ig |g

∂xIg
dm−1xi,

(4.39)
where λ is given by the expression

λ(If , Ig, J) := (−1)|Ig | · |If |! · |Ig|!
|J |!

· J !

If ! · Ig!
. (4.40)

Proof. In this proof, we will use the shorthand notation fJ = ∂|J|f
∂xJ

.
We proceed by induction on the length l of the multi-index J . The case l = |J | = 0

is a trivial identity and the case l = |J | = 1 is the well known formula of integration by
parts ∫

R

fig dmx =

∫
∂R

fg dm−1xi −
∫
R

fgi d
mx.

Thus, let us suppose that the result is true for any multi-index J ∈ Nm up to length
l > 1, in order to show that it is also true for any multi-index K ∈ Nm of length l + 1.
Let J and 1 ≤ j ≤ m such that J + 1j = K. We then have,∫

R

fJ+1jg dmx = −
∫
R

fJgj dmx+

∫
∂R

fJg dm−1xj

= (−1)l+1

∫
R

fgJ+1j dmx+

∫
∂R

fJg dm−1xj

−
∑

If+Igj+1i=J

λ(If , Igj , i)

∫
∂R

fIfgIgj+1j dm−1xi,

where we have used the �rst-order integration formula in �rst place, to then apply the
induction hypothesis. We now multiply each member by (J(j) + 1)/(l+ 1) and sum over
J + 1j = K. Using the multi-index identity (A.7), we have∫

R

fKg dmx = (−1)l+1

∫
R

fgK dmx+
∑

J+1j=K

J(j) + 1

l + 1

∫
∂R

fJg dm−1xj

−
∑

J+1j=K

J(j) + 1

l + 1

∑
If+Igj+1i=J

λ(If , Igj , i)

∫
∂R

fIfgIgj+1j dm−1xi.

It only remain to rearrange properly the last two terms to express them in the stated
form. Clearly,

∑
J+1j=K

J(j) + 1

l + 1

∫
∂R

fJg dm−1xj =

=
∑

If+Ig+1i=K
|Ig |=0

(−1)|Ig | · |If |! · |Ig|!
|K|!

· K!

If ! · Ig!

∫
∂R

∂|If |f

∂xIf
∂|Ig |g

∂xIg
dm−1xi.
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The last term is a little bit more tricky,

∑
J+1j=K

J(j) + 1

l + 1

∑
If+Igj+1i=J

(−1)|Igj |+1 ·
|If |! · |Igj |!
|J |!

· J !

If ! · Igj !

∫
∂R

fIfgIgj+1j dm−1xi =

=
∑

If+Igj+1i+1j=K

(−1)|Igj |+1 ·
|If |! · |Igj |!
|K|!

· K!

If ! · Igj !

∫
∂R

fIfgIgj+1j dm−1xi

=
∑

If+Ig+1i=K
|Ig |≥1

(−1)|Ig |
∑

Igj+1j=Ig

Ig(j)

|Ig|
· |If |! · |Ig|!
|K|!

· K!

If ! · Ig!

∫
∂R

fIfgIg dm−1xi

=
∑

If+Ig+1i=K
|Ig |≥1

(−1)|Ig | · |If |! · |Ig|!
|K|!

· K!

If ! · Ig!

∫
∂R

fIfgIg dm−1xi

where we have used the identity (A.7) again. The result is now clear.

In the following version of the higher-order Euler-Lagrange equations, we restrict
ourselves to vertical variations for simplicity, although it is possible to use also non-
vertical variation like in Theorem 3.35.

Theorem 4.40 (The higher-order Euler-Lagrange equations). Given a �ber section φ ∈
Γπ, let us consider an in�nitesimal variation φε = ϕε ◦ φ of it such that the support R
of the associated vertical vector �eld ξ is contained in a coordinate chart (xi). We then
have that the variation of the Lagrangian action AL at φ is given by

d

dε
AL(φε, R)

∣∣∣
ε=0

=
k∑
|J |=0

(−1)|J |
∫
R

(j2kφ)∗
(
ξα

d|J |

dxJ
∂L

∂uαJ

)
dmx

+
∑

Iξ+IL+1i=J

λ(Iξ, IL, J)

∫
∂R

(j2kφ)∗
(
ξαIξ

d|IL|

dxIL
∂L

∂uαJ

)
dm−1xi

 ,
(4.41)

where Rε = ϕ̌ε(R). Moreover, φ is a critical point of the Lagrangian action AL if and
only if it satis�es the higher-order Euler-Lagrange equations

(j2kφ)∗

 k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uαJ

 = 0 (4.42)

on the interior of M , plus the boundary conditions

d|I|

dxI
∂L

∂uαJ
= 0, 0 ≤ |I| < |J | ≤ k, (4.43)

on the boundary ∂M of M .
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Proof. Let us denote by ξ the vertical �eld associated to the variation φε. By Proposition
4.38, Cartan's formula L = d ◦ i+ i ◦ d and Proposition 4.18, we have that

d

dε
AL(φε, R)

∣∣∣
ε=0

=

∫
R

(jkφ)∗(Lξ(k)L)

=

∫
R

(jkφ)∗ d(iξ(k)L) +

∫
R

(jkφ)∗iξ(k) dL

=

∫
∂R

(jkφ)∗iξ(k)L+

∫
R

(jkφ)∗(ξ(k)(L) dmx− dL ∧ iξ(k) dmx)

=

∫
R

(jkφ)∗

 k∑
|J |=0

d|J |ξα

dxJ
∂L

∂uαJ

 dmx

If we now apply the higher-order integration by parts (4.39) and we take into account
that Equation (4.13), we obtain that

d

dε
AL(φε, R)

∣∣∣
ε=0

=
k∑
|J |=0

(−1)|J |
∫
R

(j2kφ)∗
(
ξα

d|J |

dxJ
∂L

∂uαJ

)
dmx

+
∑

Iξ+IL+1i=J

λ(Iξ, IL, J)

∫
∂R

(j2kφ)∗
(

d|Iξ|ξα

dxIξ
d|IL|

dxIL
∂L

∂uαJ

)
dm−1xi

 ,
which is the �rst statement of our theorem.

If we now suppose that R is contained in the interior of M , as ξ is null outside of R,
so it is ξ(k) outside of R and, by smoothness, on its boundary ∂R. Thus, if φ is a critical
point of AL, we then must have that

d

dε
AL(φε, R)

∣∣∣
ε=0

=

∫
R

(j2kφ)∗

ξα k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uαJ

 dmx = 0,

for any vertical �eld ξ whose compact support is contained in π−1(R). We thus infer that
φ shall satisfy the higher-order Euler-Lagrange equations (4.42) on the interior of M .

Finally, if R has common boundary with M , we then have that

d

dε
AL(φε, R)

∣∣∣
ε=0

=
k∑
|J |=0

∑
Iξ+IL+1i=J

λ(Iξ, IL, J)

∫
∂R∩∂M

(j2kφ)∗
(
ξαIξ

d|IL|

dxIL
∂L

∂uαJ

)
dm−1xi = 0.

(4.44)
As this is true for any vertical �eld ξ whose compact support is contained in π−1(R), we
deduce the boundary conditions (4.43).

4.2.2 Variational Calculus with Constraints

We consider a constraint submanifold i : C ↪→ Jkπ of codimension l, which is locally
annihilated by l functionally independent constraint functions Ψµ, where 1 ≤ µ ≤ l. The
constraint submanifold C is supposed to �ber over the whole ofM . Here one could use the
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algorithm given in 4.22 so as to use the consequence up to order k given by the constraint
submanifold C.

We now look for extremals of the Lagrangian action (4.36) restricted to those sections
φ ∈ Γπ whose k-jet takes values in C (see [83, 121]). We will use the Lagrange multiplier
theorem that follows.

Theorem 4.41 (Abraham, Marsden & Ratiu [2]). Let M be a smooth manifold, f :
M −→ R be Cr, r ≥ 1, F a Banach space, g : M −→ F a smooth submersion and
N = g−1(0). A point φ ∈ N is a critical point of f |N if and only if there exists λ ∈ F∗,
called a Lagrange multiplier, such that φ is a critical point of f − 〈λ, g〉.

In order to apply the Lagrange multiplier theorem, we need to de�ne constraints as
the 0-level set of some function g. We con�gure therefore the following setting: choose
the smooth manifold M to be the space of local sections ΓRπ = {φ : R ⊂ M → E :
π ◦φ = IdM}, for some compact region R ⊂M . The Banach space F is the set of smooth
functions C∞(R,Rl), provided with the L2-norm. The constraint function Ψ induces a
constraint function on the space of local sections ΓRπ by mapping each section φ to the
evaluation of its k-lift by the constraint, that is,

g : φ ∈ ΓRπ 7→ Ψ ◦ jkφ ∈ C∞(R,Rl).

Note that the 0-level set N = g−1(0) is the set of sections whose k-lift takes values in the
constraint manifold C (over R).

We therefore obtain that a section φ : M −→ E is a regular critical point of the integral
action AL restricted to C if and only if there exists a Lagrange multiplier λ ∈ (C∞(R,Rl))∗

such that φ is a critical point of AL − 〈λ, g〉. A priori, we cannot assure that the pairing
〈λ, g(φ)〉 has an integral expression of the type

∫
R
λµΨµ ◦ jkφ dmx for some functions

λµ : R −→ R. Henceforth, we shall suppose that it is the case.

Remark 4.42. In Theorem 4.41 appears some regularity conditions that exclude the so-
called abnormal solutions. In general, given a critical point φ ∈ N = g−1(0) of f|N
, the classical Lagrange multiplier theorem claims that there exists a nonzero element
(λ0, λ) ∈ R×F∗ such that φ is a critical point of

λ0f − 〈λ, g〉 . (4.45)

Under the submersivity condition on g, that is φ is a regular critical point, it is possible
to guarantee that λ0 6= 0 and dividing by λ0 in (4.45) we obtain the characterization
of critical points given in Theorem 4.41. The critical points φ with vanishing Lagrange
multiplier, that is, λ0 = 0 are called abnormal critical points.

In the sequel we will only study the regular critical points, but our developments
are easily adapted for the case of abnormality (adding the Lagrange multiplier λ0 and
studying separately both cases, λ0 = 0 and λ0 = 1).

Proposition 4.43 (Constrained higher-order Euler-Lagrange equations). Let φ ∈ Γπ be
a critical point of the Lagrangian action AL given in (4.36) restricted to those sections
of π whose kth lift take values in the constraint submanifold C ⊂ Jkπ. If the associated
Lagrange multiplier λ is regular enough, then there must exist l smooth functions λµ :
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R ⊂ M → R that satisfy together with φ the constrained higher-order Euler-Lagrange
equations

(j2kφ)∗

 k∑
|J |=0

(−1)|J |
d|J |

dxJ

(
∂L

∂uαJ
− λµ

∂Ψµ

∂uαJ

) = 0. (4.46)

Proof. The proof is a direct application of Theorem 4.40 and Theorem 4.41.

4.2.3 The Skinner-Rusk formalism

The generalization of the Skinner-Rusk formalism to higher order classical �eld theories
will take place in the �bered product

W0 = Jkπ ×Jk−1π Λm
2 (Jk−1π). (4.47)

The results of this section constitute the main developments of our paper [27]. The �rst
order case is covered in [50, 70]; see also [143, 144] for the original treatment by Skinner
and Rusk. The projection on the i-th factor will be denoted pr i (with i = 1, 2) and the
projection as �ber bundle over Jk−1π will be πW0,Jk−1π = πk,k−1◦pr 1 (see Diagram 4.5). On
W0, adapted coordinate systems are of the form (xi, uαI , u

α
K , p

I,i
α , p), where |I| = 0, . . . , k−1

and |K| = k.

W0

pr1

wwoooooooooooooo

π
W0,J

k−1π

��

pr2

))RRRRRRRRRRRRRRR

Jkπ
πk,k−1

''OOOOOOOOOOOOO Λm
2 (Jk−1π)

uullllllllllllll

Jk−1π

πk−1

��
M

Figure 4.5: The Skinner-Rusk framework

Assume that L : Jkπ −→ R is a Lagrangian function. Together with the pairing Φ
(Proposition 4.28), we use this Lagrangian L to de�ne a dynamical function H (corre-
sponding to the Hamiltonian) on W0:

H = Φ− L ◦ pr 1 . (4.48)

Consider the canonical multisymplectic (m + 1)-form Ω on Λm
2 (Jk−1π) (Equation

(4.32)), whose pullback to W0 shall be denoted also by Ω. We de�ne on W0 the (m+ 1)-
form

ΩH = Ω + dH ∧ η. (4.49)

In adapted coordinates

H = pI,iα u
α
I+1i

+ p− L(xi, uαI , u
α
K) (4.50)

ΩH = − dpI,iα ∧ duαI ∧ dm−1xi +

(
pI,iα duαI+1i

+ uαI+1i
dpI,iα −

∂L

∂uαJ
duαJ

)
∧ dmx,(4.51)

where |I| = 0, . . . , k − 1 and |J | = 0, . . . , k.
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The dynamical equation

We search for an Ehresmann connection Γ in the �ber bundle πW0,M : W0 −→ M whose
horizontal projector be a solution of the dynamical equation (see Section �1.1):

ihΩH = (m− 1)ΩH . (4.52)

We will show that such a solution does not exist on the whole W0. Thus, we need to
restrict to the space on where such a solution exists, that is on

W1 = {w ∈ W0 / ∃hw : TwW0 −→ TwW0 linear such that h2
w = hw,

kerhw = (V πW0,M)w, ihwΩH(w) = (m− 1)ΩH(w)}. (4.53)

Remark 4.44. Equation (4.52) is a generalization of equations that usually appear in �rst
order �eld theories. In this particular case, from a given Lagrangian function L : J1π → R
we may construct a unique (m+ 1)-form ΩL (the Poincaré-Cartan (m+ 1)-form). Hence,
we have a geometrical characterization of the Euler-Lagrange equations for L as follows.
Let Γ be an Ehresmann connection in π1,0 : J1π → M , with horizontal projector h.
Consider the equation

ihΩL = (n− 1)ΩL. (4.54)

If h has locally the from

h

(
∂

∂xi

)
=

∂

∂xi
+ Aαi

∂

∂uα
+ Aαji

∂

∂uαj
,

then a direct computation shows that equation (4.54) holds if and only if

(Aαi − uαi )

(
∂2L

∂uαi ∂u
β
j

)
= 0, (4.55)

∂L

∂uα
− ∂2L

∂xi∂uαi
− Aβi

∂2L

∂uβ∂uαi
− Aβji

∂2L

∂uβj ∂u
α
i

+ (Aβj − u
β
j )

∂2L

∂uα∂uβj
= 0. (4.56)

(see [54]). If the lagrangian L is regular, then Eq. (4.55) implies that Aαi = uαi and
therefore Eq. (4.56) becomes

∂L

∂uα
− ∂2L

∂xi∂uαi
− Aβi

∂2L

∂uβ∂uαi
− Aβji

∂2L

∂uβj ∂u
α
i

= 0. (4.57)

Now, if σ(xi) = (xi, σα(x), σαi (x)) is an integral section of h we would have

uαi =
∂σα

∂xi
and Aαij =

∂σαi
∂xj

,

which proves that Eq. (4.57) is nothing but the Euler-Lagrange equations for L.
We may think Equation (4.52) as a generalization of equation 4.54 giving the Euler-

Lagrange equations for higher-order �eld theories in a univocal way, as we will see.

In a local chart (xi, uαJ , p
I,i
α , p) ofW0, a horizontal projector hmust have the expression:

h =

(
∂

∂xj
+ AαJj

∂

∂uαJ
+BIi

αj

∂

∂pI,iα
+ Cj

∂

∂p

)
⊗ dxj, (4.58)
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where |I| = 0, . . . , k − 1 and |J | = 0, . . . , k. We then obtain that

ihΩH − (m−1)ΩH =

(
BIi
αi du

α
I − AαIi dpI,iα + pI,iα duαI+1i

+ uαI+1i
dpI,iα −

∂L

∂uαJ
duαJ

)
∧ dmx

=

(B i
αi −

∂L

∂uα

)
duα +

k−1∑
|I′|=1

(
BI′i
αi −

∂L

∂uαI′

)
duαI′ +

k−2∑
|I|=0

pI,iα duαI+1i

−
∑
|K|=k

∂L

∂uαK
duαK +

∑
|I|=k−1

pI,iα duαI+1i

+
k−1∑
|I|=0

(uαI+1i
− AαIi) dpI,iα

 ∧ dmx.

Equating this to zero and using Lemma A.5, we have that

AαIi = uαI+1i
, |I| = 0, . . . , k − 1, i = 1, . . . ,m; (4.59)

B j
αj =

∂L

∂uα
; (4.60)

pI,iα =
I(i) + 1

|I|+ 1

(
∂L

∂uαI+1i

−BI+1ij
αj +QIi

α

)
, |I| = 0, . . . , k − 2, i = 1, . . . ,m; (4.61)

pI,iα =
I(i) + 1

|I|+ 1

(
∂L

∂uαI+1i

+QIi
α

)
, |I| = k − 1, i = 1, . . . ,m; (4.62)

where the Q's are arbitrary functions such that∑
I+1i=J

I(i) + 1

|I|+ 1
QIi
α = 0, with |J | = 1, . . . , k. (4.63)

Remark 4.45. The ambiguity in the de�nition of the Legendre transform, and therefore
of the Cartan form, becomes apparent in the equations (4.61) and (4.62), as noted by
Crampin and Saunders (see [140]). There are too many momentum variables to be related
univocally with the velocity counterpart. To �x this, a choice of arbitrary functions Q
satisfying (4.63) must be done. The choice may be encoded as an additional geometric
structure, like a connection.

Applying (4.63) to (4.61) and (4.62), and using the identity (A.7), we �nally obtain
the equations

AαIi = uαI+1i
, with |I| = 0, . . . , k − 1, i = 1, . . . ,m; (4.64)

0 =
∂L

∂uα
−B j

αj; (4.65)∑
I+1i=J

pI,iα =
∂L

∂uαJ
−BJj

αj , with |J | = 1, . . . , k − 1; (4.66)

∑
I+1i=K

pI,iα =
∂L

∂uαK
, with |K| = k. (4.67)

Notice that equation (4.67) is the constraint that de�nes the space W1; and that
(4.64), (4.65) an d(4.66) are conditions on coe�cients of the horizontal projectors h.
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Note also that, for the time being, the A's with greatest order index and the C's remain
undetermined, as well as the most part of theB's. From the de�nition ofW1, we know that
for each point w ∈ W1 there exists a horizontal projector hw : TwW0 −→ TwW0 satisfying
equation (4.52). However, we cannot ensure that such hw, for each w ∈ W1, will take
values in TwW1. Therefore, we impose the natural regularizing condition hw(TwW0) ⊂
TwW1, ∀w ∈ W1. This latter condition is equivalent to having

h

(
∂

∂xj

)( ∑
I+1i=K

pI,iα −
∂L

∂uαK

)
= 0,

which in turn is equivalent (using (4.58) and (4.64)) to

∑
I+1i=K

BIi
αj =

∂2L

∂xj∂uαK
+

k−1∑
|I|=0

uβI+1j

∂2L

∂uβI ∂u
α
K

+
∑
|J |=k

AβJj
∂2L

∂uβJ∂u
α
K

, (4.68)

with |K| = k. Thus, if the matrix of second order partial derivatives of L with respect to
the �velocities� of highest order (

∂2L

∂uβJ∂u
α
K

)
(4.69)

is non-degenerate, then the highest order A's are completely determined in terms of the
highest order B's. In the sequel, we will say that the Lagrangian L : J1π −→ R is regular
if, for any system of adapted coordinates the matrix, (4.69) is non-degenerate.

Up to now, no meaning has been assigned to the coordinate p. Consider the submani-
foldW2 ofW1 de�ned by the restrictionH = 0. In other words,W2 is locally characterized
by the equation

p = L− pI,iα uαI+1i
.

As before, we cannot ensure that a solution h of the dynamical equation (4.52) takes
values in TW2. We thus impose to h the regularizing condition hw(TwW0) ⊂ TwW2,
∀w ∈ W2, or equivalently h(∂/∂xj)(H) = 0. Therefore, the coe�cients of the linear
mapping h are governed by the equations (4.64), (4.65), (4.66), (4.68) and in addition

Cj =
∂L

∂xj
+ AαJj

∂L

∂uαJ
− AαI+1ij

pI,iα −BIi
αju

α
I+1i

. (4.70)

Note that, thanks to the Lemma A.5 and Equation (4.67), the terms with A's with multi-
index of length k cancel out, and the A's with lower multi-index are already determined.
So, in some sense, the C's depend only on the B's.

Description of the solutions

The relations (4.66) (with |J | = k − 1) and (4.68) can be seen as a system of linear
equations with respect to the B's. When k = 1, equation (4.65) should be considered
instead of equation (4.66). In the following, we are going to suppose that n = 1, since the
dimension of the �bres is irrelevant for our purposes and we may ignore it. The number
of B's with order k − 1 (with multi-index length k − 1) is given by(

m− 1 + k − 1

m− 1

)
·m2
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and the number of equations with such B's is(
m− 1 + k

m− 1

)
·m+

(
m− 1 + k − 1

m− 1

)
.

An easy computation shows that the system is overdetermined if and only if k = 1 or
m = 1 (examples 4.51 and 4.52), and completely determined when k = m = 2. In all
other cases the system is underdetermined, but it still has maximal rank.

Proposition 4.46. Suppose that k ≥ 2 and m ≥ 2. Then, the system of linear equations
with respect to the B's

m∑
j=1

BJj
j =

∂L

∂uJ
−
∑

I+1i=J

pI,i; (4.71)

∑
I+1i=K

BIi
j =

∂2L

∂xj∂uK
+

k−1∑
|I|=0

uI+1j

∂2L

∂uI∂uK
+
∑
|J |=k

AJj
∂2L

∂uJ∂uK
; (4.72)

where |J | = k − 1, j = 1, . . . ,m and |K| = k, has maximal rank.

Proof. In a �rst step, we are going to describe how to write the matrix of coe�cients.
Then, we will select the proper columns of this matrix to obtain a new square matrix of
maximal size. We �nally shall prove that this matrix has maximal rank.

The matrix of coe�cients will be a rectangular matrix formed by 1's and 0's. The
columns will be indexed by the indexes of the B's, and the rows by the indexes of the
�rst partial derivatives that appear in the equations (4.71) and (4.72). As BIi

j has three
indexes, the columns of the matrix of coe�cients will organized in a superior level by the
index i, in a middle level by the index j and in an inferior level by the multi-index I. The
rows will be organized at the top by the index J for the �rst equation, (4.71), and at the
bottom by the index j and then by the multi-index K for the second equation, (4.72).

As the matrix of coe�cients has more columns than rows, we shall build a second
matrix that has as many columns and rows as the matrix of coe�cients has rows. To
do that, we select a column of the matrix of coe�cients for each row index using the
following algorithm (for the sake of simplicity):

01 ForEach (j,K)

02 Define G={(I,i):I+1_i=K}

03 If Cardinal(G)=1

04 Select the column (i,j,I)

05 ElseIf

06 Select a column (i,j,I) such that (I,i) is in G and i\neq j

07 EndIf

08 EndFor

09 ForEach J

10 If J(1)=k-1

11 Select the column (m,m,J)

12 ElseIf

13 Select the column (1,1,J)

14 EndIf

15 EndFor
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Now, this matrix being de�ned and since it is full of 0's and has only few 1's, we are
going to develop its determinant by rows and columns. Notice that the columns selected
at line 6 have only one 1 each, thus we can cross out the rows an columns related to these
1's. Now the rows at the bottom part of the remaining matrix (related to the second
equations) have only one 1 each, thus we can also cross out the rows an columns related
to these 1's. Now, the remaining matrix has the property of having only one 1 per column
and row (there must be at least one 1 per row and column, and no two 1's may be at the
same row or column), thus its determinant is not zero and the matrix of coe�cients has
maximal rank.

Example 4.47. If we consider the �simple� case of third order (k = 3) with two independent
variables (m = 2), then we will obtain a system of 11 equations with 12 unknowns. The
matrix of coe�cients will take the form

1 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


where the columns are labeled in order by: (1, 1, 11 + 11), (1, 1, 11 + 12), (1, 1, 12 + 12),
(1, 2, 11 + 11), (1, 2, 11 + 12), (1, 2, 12 + 12), (2, 1, 11 + 11), (2, 1, 11 + 12), (2, 1, 12 + 12),
(2, 2, 11+11), (2, 2, 11+12), (2, 2, 12+12); and where the rows are ordered by: 11+11, 11+12,
12 +12, (1, 11 +11 +11), (1, 11 +11 +12), (1, 11 +12 +12), (1, 12 +12 +12), (2, 11 +11 +11),
(2, 11 + 11 + 12), (2, 11 + 12 + 12), (2, 12 + 12 + 12). The previous algorithm would select
all the columns but the eleventh (which corresponds to the label (2, 2, 11 + 12)) in the
following order: (1, 1, 11 + 11), (2, 1, 11 + 11), (2, 1, 11 + 12), (2, 1, 12 + 12), (1, 2, 11 + 11),
(1, 2, 11 + 12), (1, 2, 12 + 12), (2, 2, 12 + 12), (2, 2, 11 + 11), (1, 1, 11 + 12), (1, 1, 12 + 12).
Note that the resulting matrix is regular.

The problem get worst with a little increment of the order or the number of indepen-
dent variables. For instance the case k = 5 and m = 6 gives a system of 1.638 equations
and 4.536 unknowns.

Another way to interpret the tangency condition (4.68) is the following one: Let us
suppose we are dealing with a �rst order Lagrangian (example 4.51, equation (4.89)). One
could apply the theory of connections to the Lagrangian setting and the Hamiltonian one
as separate frameworks. We know that they must be related by means of the Legendre
transform and so are the horizontal projectors induced by these connections. Thus,
equation (4.89) is nothing else than the relation between the coe�cients of these horizontal
projectors.
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The reduced mixed space W2

In section �4.2.3 we reduced the space W1 to W2 by considering the constraint H = 0,
which is a way of interpreting the coordinate p as the Hamiltonian function. But W2

is not a mere instrument to get rid o� the coordinate p or the coe�cients Cj. As the
premultisymplectic form ΩH , it encodes the dynamics of the system and, when L is
regular, it is a multisymplectic space. Indeed, when k = 1, W2 is di�eomorphic to J1π
(cf. de León et al. [50]), which is not true for higher order cases.

Proposition 4.48. Let W2 = {w ∈ W1 : H(w) = 0} and de�ne the (m + 1)-form Ω2

as the pullback of ΩH to W2 by the natural inclusion i : W2 ↪→ W0, that is Ω2 = i∗(ΩH).
Suppose that dimM > 1, then, the (m+ 1)-form Ω2 is multisymplectic if and only if L is
regular.

Proof. First of all, let us make some considerations. By de�nition, Ω2 is multisymplectic
whenever Ω2 has trivial kernel, that is,

if v ∈ TW2, ivΩ2 = 0 ⇐⇒ v = 0 .

This is equivalent to say that

if v ∈ i∗(TW2), ivΩH |i∗(TW2) = 0 ⇐⇒ v = 0 .

Let v ∈ TW0 be a tangent vector whose coe�cients in an adapted basis are given by

v = λi
∂

∂xi
+ AαJ

∂

∂uαJ
+BIi

α

∂

∂pIiα
+ C

∂

∂p
.

Using the expression (4.51), we may compute the contraction of ΩH by v,

ivΩH = −BIi
α duαI ∧ dm−1xi + AαI dpIiα ∧ dm−1xi − λj dpIiα ∧ duαI ∧ dm−2xij

+
(
AαI+1i

pIiα +BIi
α u

α
I+1i
− AαJ ∂L

∂uαJ

)
dmx

−λj
(
pIiα duαI+1i

+ uαI+1i
dpIiα − ∂L

∂uαJ
duαJ

)
∧ dm−1xj.

(4.73)

On the other hand, if we now suppose that v is tangent toW2 inW0, that is v ∈ i∗(TW2),
we then have that

d

( ∑
I+1i=K

pIiα −
∂L

∂uαK

)
(v) = 0 and dH(v) = 0, (4.74)

which leads us to the following relations for the coe�cients of v,∑
I+1i=K

BIi
α = λi

∂2L

∂xi∂uαK
+ AβJ

∂2L

∂uβJ∂u
α
K

and (4.75)

AαI+1i
pIiα +BIi

α u
α
I+1i

+ C − λi ∂L
∂xi
− AαJ ∂L

∂uαJ
= 0. (4.76)

It is important to note that thanks to Lemma A.2 and the equation (4.67) which de�nes
W1 (and hence W2), the terms in (4.73) and (4.76) involving A's with multi-index of
length k cancel each other out.
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These considerations being made, suppose that Ω2 is multisymplectic and, by reductio
ad absurdum, suppose in addition that L is not regular, which means that the matrix(

∂2L

∂uβK′∂u
α
K

)
has non-trivial kernel. Let v ∈ TW0 be a tangent vector such that all its coe�cients are
null except the A's of highest order which are in such a way they are mapped to zero by
the �hessian� of L. Such a vector v ful�lls the restrictions (4.75) and (4.76), thus it must
be tangent to W2 in W0, v ∈ i∗(TW2). But, as ivΩH has no A's of highest order, it must
be zero, ivΩH = 0, which is a contradiction.

Conversely, let us suppose that L is regular, then equation (4.67) de�nes implicitly
the coordinates uαK as functions of the other coordinates. That is, locally there exist
functions fαK(xi, uαI , p

I,i
α ) such that uαK = fαK on i(W2). Furthermore, given a system of

adapted coordinates (xi, uαI , u
α
K , p

I,i
α , p) onW0, (xi, uαI , p

I,i
α ) de�nes a coordinate system on

W0 and the inclusion is given by:

(xi, uαI , p
I,i
α ) ∈ W2 ↪→ (xi, uαI , f

α
K , p

I,i
α , L−

k−2∑
|I|=0

pI,iα u
α
I+1i
−
∑
|I|=k−1

pI,iα f
α
I+1i

) ∈ W0.

From equation (4.51), we can compute an explicit expression of the (m + 1)-form Ω2 in
this coordinate system,

Ω2 = −
k−1∑
|I|=0

dpI,iα ∧ duαI ∧ dm−1xi

+

 k−2∑
|I|=0

(
pI,iα duαI+1i

+ uαI+1i
dpI,iα

)
−

k−1∑
|I|=0

∂L

∂uαI
duαI

 ∧ dmx

+

 ∑
|I|=k−1

(
pI,iα dfαI+1i

+ fαI+1i
dpI,iα

)
−
∑
|K|=k

∑
I+1i=K

pI,iα dfαK

 ∧ dmx,

where we have used equation (4.67) in the last term. Note that, by Lemma A.2, the �rst
and last terms of the last bracket cancel each other out. Now,

i∂/∂xjΩ2 = dpI,iα ∧ duαI ∧ dm−2xij − [. . . ] ∧ dm−1xj

i∂/∂uαI Ω2 = dpI,iα ∧ dm−1xi +

 ∑
J+1j=I

pJjα −
∂L

∂uαI

 dmx

i∂/∂pI,iα Ω2 = duαI ∧ dm−1xi + uαI+1i
dmx,

where 0 ≤ |I| ≤ k−1. We deduce from here that the kernel of Ω2 is trivial, ker Ω2 = {0},
and Ω2 is multisymplectic.

Note 4.49. In the particular case when dimM = 1, the Lagrangian function L : Jkπ −→ R
is regular if and only if the pair (Ω2, τ

∗
W2,M

dt) is a cosymplectic structure onW2. We recall
that a cosymplectic structure on a manifold N of odd dimension 2n̄ + 1 is a pair which
consists of a closed 2-form Ω and a closed 1-form η such that η ∧ Ωn̄ is a volume form.
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We remark that, if the Lagrangian L is regular or (from Proposition 4.46) if k,m > 1,
then there locally exist solutions h of the dynamical equations (4.52) on W2 that give
rise to connections Γ in the �bration πW0M : W0 −→ M along the submanifold W2 (see
Section �1.1). In such a case, a global solution is obtained using partitions of the unity,
and we obtain by restriction a connection Γ̄, with horizontal projector h̄, in the �bre
bundle πW2M : W2 −→ M , which is a solution of equation (4.52) when it is restricted to
W2 (in fact, we have a family of such solutions).

In some cases, but only when dimM = 1 or k = 1, it would be necessary to consider
a subset W3 de�ned in order to satisfy the tangency conditions (4.68) and (4.70):

W3 = {w ∈ W2 / ∃hw : TwW0 −→ TwW2 linear such that h2
w = hw,

kerhw = (V πW0,M)w, ihwΩH(w) = (m− 1)ΩH(w)}.

We will assume that W3 is a submanifold of W2. If hw(TwW0) is not contained in TwW3,
we go to the third step, and so on. At the end, and if the system has solutions, we
will �nd a �nal constraint submanifold Wf , �bered over M (or over some open subset
of M) and a connection Γf in this �bration such that Γf is a solution of equation (4.52)
restricted to Wf .

In any case, one obtains the Euler-Lagrange equations. In the following result, Wf

denotes the �nal constraint manifold, which is W2 when k,m > 1, and h the horizontal
projector of a connection in πW2,M : Wf −→ M along Wf , which is solution of the
dynamical equation.

Proposition 4.50. Let σ̄ be a section of πWf ,M : Wf −→ M and denote σ = i ◦ σ̄,
where i : Wf ↪→ W0 is the canonical inclusion. If σ̄ is an integral section of h, then σ̄ is
holonomic, in the sense that

pr 1 ◦σ = jk(πWf ,E ◦ σ̄), (4.77)

and satis�es the higher-order Euler-Lagrange equations:

j2k(πWf ,E ◦ σ̄)∗

 k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uαJ

 = 0. (4.78)

Proof. If σ = (xi, σαJ , σ
I,i
α , σ̃) is an integral section of h, then

∂σαJ
∂xj

= AαJj,
∂σIiβ
∂xj

= BIi
βj and

∂σ̃

∂xj
= Cj,

where the A's, B's and C's are the coe�cients given in (4.58). From equation (4.64), we
have that σ is holonomic, in the sense that σαI+1i

= ∂σαI /∂x
i. On the other hand, using

the equations (4.65), (4.66) and (4.67), we obtain the relations (where φ = pr1 ◦ σ):

0 =
∂L

∂uα
◦ φ− ∂σ j

α

∂xj
; (4.79)∑

I+1i=J

σI,iα =
∂L

∂uαJ
◦ φ− ∂σJjα

∂xj
, with |J | = 1, . . . , k − 1; (4.80)

∑
I+1i=K

σI,iα =
∂L

∂uαK
◦ φ, with |K| = k. (4.81)
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From the equations (4.79) and (4.80) for |J | = 1 we get

0 =
∂L

∂uα
◦ φ− ∂σ j

α

∂xj

= (j0φ)∗
∂L

∂uα
−
∑
|I|=1

(j1φ)∗
(

d|I|

dxI
∂L

∂uαI

)
+
∑
|I|=1

∑
i

∂|I|

∂xI
∂σIiα
∂xi

.

Applying now Lemma A.2 on the last term and repeating this process until |I| = k − 1
we reach

0 = (j0φ)∗
∂L

∂uα
−
∑
|I|=1

(j1φ)∗
(

d|I|

dxI
∂L

∂uαI

)
+
∑
|J |=2

∂|J |

∂xJ

∑
I+1i=J

σIiα

= (j0φ)∗
∂L

∂uα
−
∑
|I|=1

(j1φ)∗
(

d|I|

dxI
∂L

∂uαI

)
+
∑
|I|=2

(j2φ)∗
(

d|I|

dxI
∂L

∂uαI

)
−
∑
|I|=2

∑
i

∂|I|

∂xI
∂σIiα
∂xi

=
k−1∑
|I|=0

(−1)|I|(j|I|φ)∗
(

d|I|

dxI
∂L

∂uαI

)
− (−1)k−1

∑
|I|=k−1

∑
i

∂|I|

∂xI
∂σIiα
∂xi

=
k−1∑
|I|=0

(−1)|I|(j|I|φ)∗
(

d|I|

dxI
∂L

∂uαI

)
− (−1)k−1

∑
|K|=k

∂|K|

∂xK

∑
I+1i=K

σIiα ,

where by abuse of notation jlφ = jk+l(πWf ,E ◦ σ̄). Finally, it only rest to use equation
(4.81) to prove the desired result.

Examples

First, we are going to study the particular cases when k = 1 andm = 1, which correspond
to the First Order Classical Field Theory and to the Higher Order Mechanical Systems,
respectively. Theoretic results for these cases are very well known [15, 50, 70, 103] and
we are only going to recover these results from our general setting. In addition, these
particular cases will clarify the general procedure.

Example 4.51 (First order Lagrangians (k = 1)). Let us suppose that k = 1, which corre-
sponds to the case of �rst order Lagrangians. In that case the velocity-momentum space is
W0 = J1π ⊗E Λm

2 E, with adapted coordinates (xi, uα, uαi , p, p
i
α). The premultisymplectic

(m+ 1)-form would be

ΩH = − dpiα ∧ duα ∧ dm−1xi +

(
piα duαi + uαi dpiα −

∂L

∂uα
duα − ∂L

∂uαi
duαi

)
∧ dmx, (4.82)

and horizontal projectors on TW0 would have locally the form:

h =

(
∂

∂xj
+ Aαj

∂

∂uα
+ Aαij

∂

∂uαi
+B i

αj

∂

∂piα
+ Cj

∂

∂p

)
⊗ dxj. (4.83)

Solutions of the dynamical equation would satisfy the relations
m∑
j=1

B j
αj =

∂L

∂uα
; (4.84)

piα =
∂L

∂uαi
, for i = 1, . . . ,m; (4.85)

Aαi = uαi , for i = 1, . . . ,m; (4.86)
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from which we deduce the Euler-Lagrange equations

j2(πW2,M ◦ σ)∗

(
∂L

∂uα
−

m∑
i=1

d

dxi
∂L

∂uαi

)
= 0, (4.87)

where W2 is de�ned by

W2 =

{
(xi, uα, uαi , p, p

i
α) ∈ W1 : piα =

∂L

∂uαi
, p = L−

m∑
i=1

piui

}
. (4.88)

We then obtain the tangency conditions:

B i
αj =

∂2L

∂xj∂uαi
+ uβj

∂2L

∂uβ∂uαi
+

m∑
l=1

Aβlj
∂2L

∂uβl ∂u
α
i

, (4.89)

Cj =
∂L

∂xj
+ uαj

∂L

∂uα
−B i

αju
α
i . (4.90)

Note that (4.89) is the relation that would appear between the coe�cients of a Lagrangian
and a Hamiltonian setting through the Legendre transform. For simplicity, suppose that
n = 1 and ignore the α's and β's that appear above. Consider the linear system of
equations with respect to the B's formed by equations (4.84) and (4.89). This system is
overdetermined since it has m2 + 1 equations and only m2 variables (Bi

j).

Example 4.52 (Higher order mechanical systems (m = 1)). Let us suppose that m = 1,
which corresponds to the case of mechanical systems. In that case the velocity-momentum
space is W0 = Jkπ ×Jk−1π Λm

2 (Jk−1π). Since here a multi-index J is of the form (l) with
1 ≤ l ≤ k, we change the usual notation for coordinates to

uαJ −→ uα|J | and pI,1α −→ p|I|+1
α ,

and we adapt the remaining objects to this notation. So adapted coordinates on W0 are
of the form (x, uα, uαl , p, p

l
α), where l = 1, . . . , k. The premultisymplectic (m + 1)-form

would be

ΩH = −
k−1∑
l=0

dpl+1
α ∧ duαl +

k∑
l=1

(
plα duαl + uαl dplα

)
∧ dx−

k∑
l=0

∂L

∂uαl
duαl ∧ dx, (4.91)

and horizontal projectors on TW0 would have locally the form:

h =

(
∂

∂x
+

k∑
l=0

Aαl
∂

∂uαl
+

k∑
l=1

Bl
α

∂

∂plα
+ C

∂

∂p

)
⊗ dx. (4.92)

Solutions of the dynamical equation would satisfy the relations

B1
α =

∂L

∂uα
; (4.93)

plα =
∂L

∂uαl
−Bl+1

α , for l = 1, . . . , k − 1; (4.94)

pkα =
∂L

∂uαk
; (4.95)

Aαl = uαl+1, for l = 0, . . . , k − 1. (4.96)
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which we use to get the Euler-Lagrange equations

j2k(πW2,M ◦ σ)∗

(
k∑
l=0

(−1)l
dl

dxl
∂L

∂uαl

)
= 0, (4.97)

where W2 is de�ned by

W2 =

{
(xi, uα, uαl , p, p

l
α) ∈ W1 : pkα =

∂L

∂uαk
, p = L−

k∑
l=1

plαu
α
l

}
. (4.98)

We then obtain the tangency conditions:

Bk
α =

∂2L

∂x∂uαk
+

k−1∑
l=0

uβl+1

∂2L

∂uβl ∂u
α
k

+ Aβk′
∂2L

∂uβk′∂u
α
k

= 0; (4.99)

C =
∂L

∂x
+

k−1∑
l=0

uαl+1

∂L

∂uαl
+ Aαk

∂L

∂uαk
−

k∑
l=1

(
Aαl p

l
α +Bl

αju
α
l

)
. (4.100)

Note that, thanks to equation (4.95), the terms in (4.100) with coe�cient Ak cancel out.
Now, for simplicity, suppose that n = 1 and ignore the α's and β's that appear above.
Consider the linear system of equations with respect to the B's formed by equations
(4.94) (with l = k−1) and (4.99). This system is overdetermined since it has 2 equations
and only one variable (Bk).

Example 4.53 (The loaded and clamped plate). Let us setM = R2 and E = R2×R = R3,
and consider the Lagrangian

L(x, y, u, ux, uy, uxx, uxy, uyy) =
1

2
(u2

xx + 2u2
xy + u2

yy − 2qu),

where q = q(x, y) is the normal load on the plate. Given a regular region R of the plane,
we look for the extremizers of the functional I(u) =

∫
R
L such that u = ∂u/∂n = 0

on the border ∂R, where n is the normal exterior vector. The Euler-Lagange equation
associated to the problem is

uxxxx + 2uxxyy + uyyyy = q. (4.101)

Written in the multi-index notation, the Lagrangian has the form

L(j2φ) =
1

2
(u2

(2,0) + 2u2
(1,1) + u2

(0,2) − 2qu)

and the Euler-Lagrange equation reads

u(4,0) + 2u(2,2) + u(0,4) = q.

The velocity-momentum space is W0 = J2π ×J1π Λ2
2(J1π), with adapted coordinates

(x, y, ux, uy, uxx, uxy, uyy, p, p
x, py, pyy, pxy, pyx, pyy). It is straightforward to write down

the premultisymplectic 3-form and a general horizontal projector on TW0, so we are not
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going to do it here. Even so, the coe�cients of solutions of the dynamical equation would
satisfy the relations

B ,x
x +B ,y

y = −2q
−px = Bx,x

x +Bx,y
y

−py = By,x
x +By,y

y

pxx = uxx
pxy + pyx = 2uxy

pyy = uyy

(4.102)

where the latter ones are the equations that de�ne W1. The tangency condition on W1

gives us the relations

Bx,x
x = Axx,x

Bx,y
x +By,x

x = 2Axy,x
By,y
x = Ayy,x

Bx,x
y = Axx,y

Bx,y
y +By,x

y = 2Axy,y
By,y
y = Ayy,y

(4.103)

from where we can see that the Lagrangian is �regular�, since

(
∂2L

∂uK∂uK′

)
|K|=|K′|=2

=

 1 0 0
0 2 0
0 0 1

 . (4.104)

Finally, we remark that the middle equations of (4.102) and (4.103) form a 8 × 8 linear
system of equations on the B's, which is completely determined.

Example 4.54 (The Camassa-Holm equation). In 1993, Camassa and Holm introduced
the following completely integrable bi-Hamiltonian equation (see [23]):

vt − vyyt = −3vvy + 2vyvyy + vvyyy, (4.105)

which is used to model the breaking waves in shallow waters as the Korteweg�de Vries
equation. But, as the former is of higher order, we are going to use it as example.

The CH equation (4.105) is expressed in terms of the Eulerian or spatial velocity �eld
u(y, t), and it is the Euler-Poincaré equation of the reduced Lagrangian

l(v) =
1

2

∫ (
v2 + v2

y

)
dy. (4.106)

To give a multisymplectic approach to the problem, as Kouranbaeva and Shkoller did (see
[112]), we must express the CH equation (4.105) in Lagrangian terms. Thus, we shall use
the Lagrangian variable u(x, t) that arises as the solution of

∂u(x, t)

∂t
= v(u(x, t), t). (4.107)

The independent variables (x, t) are coordinates for the base space M = S1×R, and the
dependent variable u(x, t) is a �ber coordinate for the total space E = S1 × R × R =
S1 × R2. The Lagrangian action is now written as

L(x, t, u, ux, ut, uxx, uxt, utt) =
1

2
(uxu

2
t + u−1

x u2
xt) (4.108)
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The coe�cients of a horizontal projector which is solution of the dynamical equation must
satisfy

B ,x
x +B ,t

t = 0
px = 1/2(u2

t − (uxt/ux)
2)− (Bx,x

x +Bx,t
t )

pt = uxut − (Bt,x
x +Bt,t

t )
pxx = 0

pxt + ptx = uxt/ux
ptt = 0

(4.109)

where the last three are the equations that de�ne W1. The tangency condition on W1

gives us the relations

Bx,x
x = 0

Bx,t
x +Bt,x

x = −u−1
x uxxuxt + Axt,xu

−1
x

Bt,t
x = 0

Bx,x
t = 0

Bx,t
t +Bt,x

t = −(uxt/ux)
2 + Axt,tu

−1
x

Bt,t
t = 0

(4.110)

from where we can see that the Lagrangian is clearly �singular�, since

(
∂2L

∂uK∂uK′

)
|K|=|K′|=2

=

 0 0 0
0 u−1

x 0
0 0 0

 (4.111)

Again, we may form a completely determined system of linear equations on the B's with
the corresponding relations of (4.102) and the equations (4.110).

Example 4.55 (First order Lagrangian as second order). For the sake of simplicity, let
suppose that n = 1. Given a �rst order Lagrangian L : J1π −→ R, extend it to a
second order Lagrangian, L̄ = L ◦ π2,1. Consider the �rst and second order velocity-
momenta mixed spaces W 1

0 = J1π ×E Λm
2 E and W 2

0 = J2π ×J1π Λm
2 J

1π, with adapted
coordinates (xi, u, ui, p, p

i) and (xi, u, ui, uK , p, p
i, pij) (with |K| = 2), respectively. Let

π2,1
0 : W 2

0 −→ W 1
0 be the natural projection (Diagram 4.6).

W 2
0

π2,1
0 //

''OOOOOOOOOOOOO

��

W 1
0

&&NNNNNNNNNNNNN

��
J2π

π2,1 //

L̄

''OOOOOOOOOOOOOO J1π //

π1

''OOOOOOOOOOOOO

L
��

E

π

��
R M

Figure 4.6: The 1st and 2nd order Lagrangian settings

We are going to apply the theory we have developed here to the systems given by
each Lagrangian. Consider the premultisymplectic forms ΩH and ΩH̄ , where H and H̄
are the corresponding dynamical functions (equations (4.48) and (4.49)). Let h and h̄
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denote solutions of the respective dynamical equations on (W 1
0 ,ΩH) and (W 2

0 ,ΩH̄). They
would locally have the form

h =

(
∂

∂xj
+ Aj

∂

∂u
+ Aij

∂

∂ui
+Bi

j

∂

∂pi
+ Cj

∂

∂p

)
⊗ dxj,

h̄ =

(
∂

∂xj
+ Āj

∂

∂u
+ Āij

∂

∂ui
+ ĀKj

∂

∂uK
+ B̄i

j

∂

∂pi
+ B̄ki

j

∂

∂pki
+ C̄j

∂

∂p

)
⊗ dxj,

where |K| = 2. We then obtain the relations

Bj
j =

∂L

∂u
, (4.112)

pi =
∂L

∂ui
, (4.113)

Ai = ui, (4.114)

for (W 1
0 ,ΩH ,h); and

B̄j
j =

∂L

∂u
, (4.115)

pi =
∂L

∂ui
− B̄ij

j , (4.116)

pij + pji = (1i + 1j)! ·
∂L̄

∂u1i+1j

= 0, (4.117)

Āi = ui, (4.118)

Āij = u1i+1j , (4.119)

for (W 2
0 ,ΩH̄ , h̄). Equations (4.113) and (4.117), together with H = 0 and H̄ = 0, de�ne

the corresponding submanifolds W 1
2 and W 2

2 of W 1
0 and W 2

0 .
We notice that, even though L̄ is in some sense the same Lagrangian than L, a solution

of the dynamical equation on W 1
0 may be easily determined, while in W 2

0 the space of
solutions has grown (there are more coe�cients to be determined). We thus infer from
here, that a solution h̄ of the dynamical equation in W 2

0 must satisfy an extra condition.
Since p = L− piui + 0 in W 2

2 , the projection π
2,1
0 maps W 2

2 to W 1
2 . We therefore impose

to a solution h̄ of the dynamical equation along W 2
2 to be in addition projectable to a

solution h of the dynamical equation along W 1
2 . In such a case, we would have that

B̄ij
j = 0 (4.120)

which implies that the following equation

pi =
∂L

∂ui
(4.121)

is now a restriction in W 2
2 . So, by tangency condition, we get

B̄i
j =

∂2L

∂xj∂ui
+ uj

∂2L

∂u∂ui
+ u1k+1j

∂2L

∂uk∂ui
+ 0 =

d

dxj
∂L

∂ui
. (4.122)
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Combining this with equation (4.112), we �nally obtain

∂L

∂u
− d

dxj
∂L

∂uj
= 0, (4.123)

which is the Euler-Lagrange equation.
It is worth to remark here that, at this time, the Euler-Lagrange equation has not

been deduced by the process shown in the proof of Proposition 4.50, but directly from the
projectability condition, although the previous Euler-Lagrange equation may be recovered
from any of the two settings.

4.2.4 Constraints within the Skinner-Rusk Formalism

As in the previous section, we begin by considering a constraint submanifold i : C ↪→ Jkπ
of codimension l, which is locally annihilated by l functionally independent constraint
functions Ψµ, where 1 ≤ µ ≤ l. The constraint submanifold C is supposed to �ber over the
whole ofM and it is not necessarily generated from a previous constraint submanifold by
the process shown in Remark 4.22. We de�ne in the restricted velocity-momentum space
W0 = {w ∈ W : H(w) = 0} the constrained velocity-momentum space W C

0 = pr−1
1 (C),

which is a submanifold of W0, whose induced embedding and whose constraint functions
will still be denoted i : W C

0 ↪→ W and Ψµ, where 1 ≤ µ ≤ l. The �rst order case k = 1 is
treated in [33].

The following proposition allows us to work in local coordinates on the unconstrained
velocity-momentum space W , as it is done in [11].

Proposition 4.56. Given a point w ∈ W C
0 , let X ∈ Λm

d (TwW
C
0 ) be a decomposable

multivector and denote its image, i∗(X) ∈ Λm(TwW ), by X̄. The following statements
are equivalent:

1. iXΩC0(Y ) = 0 for every Y ∈ TwW C
0 ;

2. iX̄Ω ∈ T 0
wW

C
0 ;

where T 0
wW

C
0 is the annihilator of i∗(TwW C

0 ) in TwW .

We therefore look for solutions of the constrained dynamical equation

(−1)miX̄Ω = −λµ dΨµ − λ dH, (4.124)

where X̄ is a tangent multivector �eld along W C
0 , the λ

µ's and λ are Lagrange multipliers
to be determined. Here, the coe�cient (−1)m is used for technical purposes.

Remark 4.57. It should be said that the Lagrange multipliers that appear in the dynamical
equation (4.124) have a di�erent nature that the ones that appear in Proposition 4.43.
The former are locally de�ned on W , while the latter are locally de�ned onM . Although
they coincide on the integral sections σ ∈ ΓπW,M of a solutionX of the dynamical equation
(4.124), since its �Lagrangian part� σ1 = pr 1 ◦σ satis�es the constrained Euler-Lagrange
equation (4.46) with λ̃µ = λµ ◦ σ (cf. Proposition 4.59).
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Let X̄ ∈ Λm(TwW ) be a decomposable m-vector at a given point w ∈ W , that is,
X̄ = X̄1 ∧ · · · ∧ X̄m for m tangent vectors X̄i ∈ TwW , which have the form

X̄j =
∂

∂xj
+ AαJj

∂

∂uαJ
+BIi

αj

∂

∂pIiα
+ Cj

∂

∂p
(4.125)

in a given adapted chart (xi, uαJ , p
Ii
α , p). A straightforward computation gives us

(−1)miX̄( dpIiα ∧ duαI ∧ dm−1xi) = (AαIiB
Ij
αj − AαIjB

Ij
αi) dxi + AαIi dp

Ii
α −BIi

αi du
α
I (4.126)

and
(−1)miX̄( dp ∧ dmx) = dp− Ci dxi. (4.127)

Applying the above equations to the dynamical one (4.124), we obtain the relations

coe�cients in dp : 1 = λ;
coe�cients in dpIiα : AαIi = λuαI+1i

;
coe�cients in duαJ B i

αi = λ ∂L
∂uα
− λµ ∂Ψµ

∂uα
;

BIi
αi = λ

(
∂L
∂uαI
−
∑

J+1j=I
pJjα

)
− λµ ∂Ψµ

∂uαI
;

0 = λ
(

∂L
∂uαK
−
∑

J+1j=K
pJjα

)
− λµ ∂Ψµ

∂uαK
;

coe�cients in dxj : AαIiB
Ii
αj − AαIjBIi

αi + Cj = λ ∂L
∂xj
− λµ ∂Ψµ

∂xj
.

Thus, a decomposable m-vector X̄ ∈ Λm(TwW ) at a point w ∈ W is a solution of the
dynamical equation

(−1)miX̄Ω = −λµ dΨµ − dH, (4.128)

if for any adapted chart (xi, uαJ , p
Ii
α , p), the coe�cients of X̄ and the point w satisfy the

equations

AαIi =uαI+1i
, with |I| = 0, . . . , k − 1, i = 1, . . . ; (4.129)

0 =
∂L

∂uα
− λµ

∂Ψµ

∂uα
−B j

αj; (4.130)∑
I+1i=J

pIiα =
∂L

∂uαJ
− λµ

∂Ψµ

∂uαJ
−BJj

αj , with |J | = 1, . . . , k − 1; (4.131)

∑
I+1i=K

pIiα =
∂L

∂uαK
− λµ

∂Ψµ

∂uαK
, with |K| = k; (4.132)

Cj =
∂L

∂xj
− λµ

∂Ψµ

∂xj
+

k−1∑
|J |=0

uαJ+1j

(
∂L

∂uαI
− λµ

∂Ψµ

∂uαJ
−
∑

I+1i=J

pIiα

)
− uαI+1i

BIi
αj.

(4.133)

Because of the Lagrange multipliers λµ, we cannot describe the submanifold of W C
0

where solutions X of the constrained dynamical equation (4.128) exist, like it has been
done in (4.67) for the unconstrained dynamical equation (4.52) . Therefore, we need to
get rid o� of them. Consider the more concise expression for the equations of dynamics
(4.130), (4.131) and (4.132)∑

I+1i=J

pIiα =
∂L

∂uαJ
− λµ

∂Ψµ

∂uαJ
−BJj

αj , with |J | = 0, . . . , k, (4.134)
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where the �rst summation term is understood to be void when |J | = 0, as well as it
is the last one when |J | = k. We now suppose that the constraints Ψµ are of the
type uα̂

Ĵ
= Φα̂

Ĵ
(xi, uα̌

J̌
), where uα̂

Ĵ
are some constrained coordinates which depend on the

free coordinates (xi, uα̌
J̌
) through the functions Φα̂

Ĵ
. Thus, the constraint have the form

Ψα̂
Ĵ
(xi, uαJ) = uα̂

Ĵ
−Φα̂

Ĵ
(xi, uα̌

J̌
) = 0. So, writing again the previous equation (4.134) for the

di�erent sets of coordinates, the ones that are free and the ones that are not, we obtain∑
I+1i=Ĵ

pIiα̂ =
∂L

∂uα̂
Ĵ

− λĴα̂ −BĴj
α̂j , with |Ĵ | = 0, . . . , k; (4.135)

∑
I+1i=J̌

pIiα̌ =
∂L

∂uα̌
J̌

+ λĴα̂
∂Φα̂

Ĵ

∂uα̌
J̌

−BJ̌j
α̌j , with |J̌ | = 0, . . . , k. (4.136)

Substituting −λĴα̂ from (4.135) into (4.136), we have that

∑
I+1i=J̌

pIiα̌ +

 ∑
I+1i=Ĵ

pIiα̂

 ∂Φα̂
Ĵ

∂uα̌
J̌

=
∂L

∂uα̌
J̌

+
∂L

∂uα̂
Ĵ

∂Φα̂
Ĵ

∂uα̌
J̌

−BJ̌j
α̌j −B

Ĵj
α̂j

∂Φα̂
Ĵ

∂uα̌
J̌

, with |J̌ | = 0, . . . , k.

(4.137)

Note that, when |J̌ | = k, the term BJ̌j
α̌j disappears, but B

Ĵj
α̂j

∂Φα̂
Ĵ

∂uα̌
J̌

do not necessarily. This

is circumvent by supposing that, if |Ĵ | < k, then
∂Φα̂

Ĵ

∂uαK
= 0 for any |K| = k. That

is the case when the constraint submanifold C has no constraint of higher order, i.e.
C = π−1

k,k−1(πk,k−1(C)), or, more generally, when C �bers by πk,k−1 over its image.
Taking this into account, we expand the previous equation (4.137), obtaining then

constrained equations of dynamics freed of the Lagrange multipliers

∑
I+1i=Ĵ

pIiα̂
∂Φα̂

Ĵ

∂uα̌
=

∂LC

∂uα̌
−B j

α̌j −B
Ĵj
α̂j

∂Φα̂
Ĵ

∂uα̌
; (4.138)

∑
I+1i=J̌

pIiα̌ +
∑

I+1i=Ĵ

pIiα̂
∂Φα̂

Ĵ

∂uα̌
J̌

=
∂LC

∂uα̌
J̌

−BJ̌j
α̌j −B

Ĵj
α̂j

∂Φα̂
Ĵ

∂uα̌
J̌

, with |J̌ | = 1, . . . , k − 1;(4.139)

∑
I+1i=Ǩ

pIiα̌ +
∑

I+1i=K̂

pIiα̂
∂Φα̂

K̂

∂uα̌
Ǩ

=
∂LC

∂uα̌
Ǩ

, with |Ǩ| = k; (4.140)

where ∂LC

∂uα̌
J̌

= ∂L
∂uα̌

J̌

+ ∂L
∂uα̂

Ĵ

∂Φα̂
Ĵ

∂uα̌
J̌

, being LC = L ◦ i : C −→ ΛmM the restricted Lagrangian.

We are now in disposition to de�ne the submanifold W C
2 along to which solutions of

the constrained dynamical equation (4.128) exist,

W C
2 =

{
w ∈ W C

0 : (4.140)
}

=


w ∈ W :

uα̂
Ĵ

= Φα̂
Ĵ
(xi, uα̌

J̌
)

p = L(xi, uαJ)− pIiα uαI+1i∑
I+1i=Ǩ

pIiα̌ +
∑

I+1i=K̂

pIiα̂
∂Φα̂

K̂

∂uα̌
Ǩ

=
∂LC

∂uα̌
Ǩ


(4.141)
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Tangency conditions on X with respect to W C
2 will give us the constrained equations

of tangency

Aα̂
Ĵj

=
∂Φα̂

Ĵ

∂xj
+ Aα̌

J̌j

∂Φα̂
Ĵ

∂uα̌
J̌

, (4.142)

Cj =
∂LC

∂xj
+

k−1∑
|J̌ |=0

uα̌
J̌+1j

∂LC
∂uα̌

J̌

−
∑

I+1i=J̌

pIiα̌

 (4.143)

−
k−1∑
|Ĵ |=0

uα̂
Ĵ+1j

∑
I+1i=Ĵ

pIiα̂ −
∑
|K̂|=k

∂Φα̂
K̂

∂xj

∑
I+1i=K̂

pIiα̂ −
k−1∑
|I|=0

uαI+1i
BIi
αj,

∑
I+1i=Ǩ

BIi
α̌j =

∂2LC

∂xj∂uα̌
Ǩ

−
∑

I+1i=K̂

pIiα̂
∂2Φα̂

K̂

∂xj∂uα̌
Ǩ

(4.144)

+ Aβ̌
J̌j

 ∂2LC

∂uβ̌
J̌
∂uα̌

Ǩ

−
∑

I+1i=K̂

pIiα̂
∂2Φα̂

K̂

∂uβ̌
J̌
∂uα̌

Ǩ

−∑
I+1i=K̂

BIi
α̂j

∂Φα̂
K̂

∂uα̌
Ǩ

, |Ǩ| = k.

Proposition 4.58. Let ΩC2 be the pullback of the premultisymplectic form ΩH to W C
2 by

the natural inclusion i : W C
2 ↪→ W , that is ΩC2 = i∗(ΩH). Suppose that m = dimM > 1,

then the (m + 1)-form ΩC2 is multisymplectic if and only if L is regular along W C
2 , i.e. if

and only if the matrix  ∂2LC

∂uβ̌
Ř
∂uα̌

Ǩ

−
∑

I+1i=K̂

pIiα̂
∂2Φα̂

K̂

∂uβ̌
Ř
∂uα̌

Ǩ


|Ř|=|Ǩ|=k

(4.145)

is non-degenerate along W C
2 .

Proof. First of all, let us make some considerations. By de�nition, ΩC2 is multisymplectic
whenever ΩC2 has trivial kernel, that is,

if v ∈ TW2, ivΩ
C
2 = 0 ⇐⇒ v = 0 .

This is equivalent to say that

if v ∈ i∗(TW2), ivΩH|i∗(TW2) = 0 ⇐⇒ v = 0 .

Let v ∈ TW be a tangent vector whose coe�cients in an adapted basis are given by

v = γi
∂

∂xi
+ AαJ

∂

∂uαJ
+BIi

α

∂

∂pIiα
+ C

∂

∂p
.

Using the expression (4.51), we may compute the contraction of ΩH by v,

ivΩH =−BIi
α duαI ∧ dm−1xi + AαI dpIiα ∧ dm−1xi − γj dpIiα ∧ duαI ∧ dm−2xij

+

(
AαI+1i

pIiα +BIi
α u

α
I+1i
− AαJ

∂L

∂uαJ

)
dmx

− γj
(
pIiα duαI+1i

+ uαI+1i
dpIiα −

∂L

∂uαJ
duαJ

)
∧ dm−1xj.

(4.146)
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In addition to this, let us consider a vector v ∈ TW tangent toW2, that is v ∈ i∗(TW2),
we then have that

d(uα̂
Ĵ
− Φα̂

Ĵ
)(v) = 0, d

 ∑
I+1i=Ǩ

pIiα̌ +
∑

I+1i=K̂

pIiα̂
∂Φα̂

K̂

∂uα̌
Ǩ

− ∂LC

∂uα̌
Ǩ

 (v) = 0 and dH(v) = 0,

which leads us to the following relations for the coe�cients of v:

Aα̂
Ĵ

= γj
∂Φα̂

Ĵ

∂xj
+ Aα̌

J̌

∂Φα̂
Ĵ

∂uα̌
J̌

, (4.147)

∑
I+1i=Ǩ

BIi
α̌ = γj

 ∂2LC

∂xj∂uα̌
Ǩ

−
∑

I+1i=K̂

pIiα̂
∂2Φα̂

K̂

∂xj∂uα̌
Ǩ

 (4.148)

+Aβ̌
J̌

 ∂2LC

∂uβ̌
J̌
∂uα̌

Ǩ

−
∑

I+1i=K̂

pIiα̂
∂2Φα̂

K̂

∂uβ̌
J̌
∂uα̌

Ǩ

−∑
I+1i=K̂

BIi
α̂

∂Φα̂
K̂

∂uα̌
Ǩ

C = γj

∂LC
∂xj
−
∑

I+1i=K̂

pIiα̂
∂Φα̂

K̂

∂xj

 (4.149)

+Aα̌
J̌

∂LC
∂uα̌

J̌

−
∑

I+1i=J̌

pIiα̌ −
∑

I+1i=Ĵ

pIiα̂
∂Φα̂

Ĵ

∂uα̌
J̌

−BIi
α u

α
I+1i

.

It is important to note that, even though in all the previous equations (4.146), (4.147),
(4.148) and (4.149) explicitly appear A's with multi-index of length k, for such a vector
v ∈ i∗(TW2), the terms associated to these A's cancel out in the development of ivΩH,
Equation (4.146), and the third tangency relation (4.149). Thus, a tangent vector v ∈
i∗(TW2) would kill ΩH if and only if its coe�cients satisfy the following relations

γj = 0, AαI = 0, BIi
α = 0, C = 0,

Aα̂
K̂

= Aα̌
Ǩ

∂Φα̂
K̂

∂uα̌
Ǩ

and Aβ̌
Ř

 ∂2LC

∂uβ̌
Ř
∂uα̌

Ǩ

−
∑

I+1i=K̂

pIiα̂
∂2Φα̂

K̂

∂uβ̌
Ř
∂uα̌

Ǩ

 = 0.

These considerations being made, the assertion is now clear.

Proposition 4.59. . Let σ ∈ ΓπW,M be an integral section of a solution X of the
constrained dynamical equation (4.128). Then, its �Lagrangian part� σ1 = pr 1◦σ is
holonomic, σ1 = jkφ for some section φ ∈ Γπ, which furthermore satis�es the constrained
higher-order Euler-Lagrange equations (4.46).

Proof. If X is locally expressed as in (4.125), we know that it must satisfy the equations
of dynamics (4.130), (4.132) and (4.132), for unknown Lagrange multipliers λµ. If we
note λ′µ = λµ ◦ σ and L′ = L − λ′µΨµ, it su�ces to follow the proof for L′ of Theorem
4.50.
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Example: Controlled Fluid Mechanics

Here, we study an incompressible �uid under control as in [3]. The corresponding equa-
tions are the Navier-Stokes one plus the divergence-free condition:

∂v

∂t
+∇vv +∇Π = ν∆v + f (4.150)

∇ · v = 0 (4.151)

where the vector �eld v is the velocity of the �uid, f is the �eld of exterior forces acting
on the �uid, which will be our controls, and the scalar functions Π and ν are the pressure
and the viscosity, respectively. In particular, our case of interest is the two dimensional
case on R2 endowed with the standard metric. If we �x global Cartesian coordinates
(x, y) on R2 and adapted coordinates (x, y, u, v) on its tangent TR2 = R4, the previous
equations become

ut + u · ux + v · uy + ∂xΠ = ν · (uxx + uyy) + F (4.152)

vt + u · vx + v · vy + ∂yΠ = ν · (vxx + vyy) +G (4.153)

ux + vy = 0 (4.154)

where, with some abuse of notation, v(t, x, y) = (u, v) and f = (F,G).
We therefore look for time-dependent vector �elds v = (u, v) on R2 that satisfy the

Navier-Stokes equations (4.152) and (4.153) for a prescribed control f = (F,G) and
submitted to the free divergence condition (4.154). Moreover, we look for such vector
�elds v = (u, v) that are in addition optimal in the controls for the integral action

AL(v, R) =
1

2

∫
R

‖f‖2 dt ∧ dx ∧ dy. (4.155)

In order to apply the development of the present jet bundle framework, all of this is
restated in the following way: We set a �ber bundle π : E −→M by puttingM = R×R2,
E = R× TR2 and π = (pr 1, prR2). We �x global adapted coordinates (t, x, y, u, v) on E,
which induce the corresponding global adapted coordinates on Jkπ and Jkπ†. Besides,
we choose the volume form η on M to be dt ∧ dx ∧ dy. Thus, the Lagrangian function
L : J2π → R is nothing else but

L =
1

2
(F 2 +G2),

where we obtain F and G as functions on J2π using the equations (4.152) and (4.153).
To make the reading easier, we change slightly the coordinate notation of jet bundles

to �t in this example: The coordinate �velocities� associated to u and v will still be
labeled u and v, respectively, with symmetric subindexes (as in the original equations);
the coordinate �momenta� associated to u and v will now be labeled p and q, respectively,
with non-symmetric subindexes. Finally and as we will focus on the equations of dynamics
(4.138), (4.139) and (4.140), the coe�cients in the local expression (4.125) of a multivector
X associated to the coordinate momenta p and q will be labeled B and D, respectively.

Example 4.60 (The Euler equation). We will �rst suppose that the �uid is Eulerian, that
is, it has null viscosity. In this case, the Lagrangian function L = (F 2 +G2)/2 associated
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to the integral action (4.155) is of �rst order when the �Euler equations�, (4.152) and
(4.153) with ν = 0, are taken into account. In J1π, we consider the divergence-free
constraint submanifold C = {z ∈ J1π : ux + uy = 0}, which introduces a single Lagrange
multiplier λ.

Proceeding with the theoretical machinery, we compute the bottom level equations of
dynamics corresponding to those of (4.130)

0 = ux · F + vx ·G− (Bt
t +Bx

x +By
y )

0 = uy · F + vy ·G− (Dt
t +Dx

x +Dy
y)

and the top level equations of dynamics (there are no middle ones) corresponding to those
of (4.132)

pt =F qt =G

px =u · F − λ qx =u ·G
py = v · F qy = v ·G− λ

We can dispose of the only Lagrange multiplier λ by putting

px − qy = u · F − v ·G,

what de�nes W C
1 together with the top level equations of dynamics with no Lagrange

multiplier.
From here, we may compute also the constrained Euler-Lagrange equations (4.46) for

this problem, which are

dtF + u · dxF + v · dyF + vy · F − vx ·G = ∂xλ

dtG+ u · dxG+ v · dyG+ ux ·G− uy · F = ∂yλ

where d∗ = d
d∗ .

Finally, we note that L is not regular along W C
2 since the square matrix, that corre-

spond to (4.145), 
1 u v 0 0
u u2 + v2 u · v −v −u · v
v u · v v2 0 0
0 −v 0 1 u
0 −u · v 0 u u2


has obviously rank 2. Here we have used as ux as independent (�check�) coordinate and
vy as dependent (�hat�) coordinate.

Example 4.61 (The Navier-Stokes equation). Now, we tackle the full problem of the
Navier-Stokes equations. In this case, the Lagrangian function L = (F 2 + G2)/2 is of
second order. In J2π, we consider the constraint submanifold

C =
{
z ∈ J2π : ux + uy = 0, utx + vty = 0, uxx + vxy = 0, uxy + vyy = 0

}
which comes from the �rst order constraint (4.151), free divergence, and its consequences
to second order (see Remark 4.22). These constraints introduce for Lagrange multiplier
λ, λt, λx and λy that are associated to them respectively.
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We now proceed like in the previous example by computing the equations of dynamics.
In �rst place, we have the bottom level ones corresponding to those of (4.130)

0 = ux · F + vx ·G− (Bt
t +Bx

x +By
y )

0 = uy · F + vy ·G− (Dt
t +Dx

x +Dy
y)

Note that they are formally the same as before. In second place, the mid level equations
corresponding to those of (4.131)

pt =F − (Btt
t +Btx

x +Bty
y ) qt =G− (Dtt

t +Dtx
x +Dty

y )

px =u · F − (Bxt
t +Bxx

x +Bxy
y ) + λ qx =u ·G− (Dxt

t +Dxx
x +Dxy

y )

py = v · F − (Byt
t +Byx

x +Byy
y ) qy = v ·G− (Dyt

t +Dyx
x +Dyy

y ) + λ

Note that formally they also coincide with the top level ones of the previous example but
for the coe�cients that now appear in them. And in third place, the top level equations
corresponding to those of (4.132)

ptt = 0 qtt = 0

pxx = − ν · F − λx qxx = − ν ·G
pyy = − ν · F qyy = − ν ·G− λy

ptx + pxt = − λt qtx + qxt = 0

pty + pyt = 0 qty + qyt = − λt
pxy + pyx = − λy qxy + qyx = − λx

We can again get rid easily of the Lagrange multipliers by putting

ptx + pxt = qty + qyt pxx + ν · F = qxy + qyx pxy + pyx = qyy + ν ·G

what de�nes W C
1 together with the top level equations of dynamics with no Lagrange

multiplier.
From here, we may compute also the constrained Euler-Lagrange equations (4.46) for

this problem, which are

2∂2
txλt + ∂2

xxλx + 2∂2
xyλy − ∂xλ = ∂2

xxν · F + 2∂xν · dxF + ν · d2
xxF +

+∂2
yyν · F + 2∂yν · dyF + ν · d2

yyF −
− dtF − u · dxF − v · dyF − vy · F + vx ·G

2∂2
tyλt + 2∂2

xyλx + ∂2
yyλy − ∂yλ = ∂2

xxν ·G+ 2∂xν · dxG+ ν · d2
xxG+

+∂2
yyν ·G+ 2∂yν · dyG+ ν · d2

yyG−
− dtG− u · dxG− v · dyG− ux ·G+ uy · F

As before, the Lagrangian is not regular along W C
2 , what seems to be clear if we observe

that L is highly non-degenerate: It depends only on 4 of the 12 coordinates of second
order. It is worthless to show its �Hessian�, even though it is interesting to say that it is
null only when ν is.
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4.2.5 Hamilton-Pontryagin Principle

We next show how the higher-order Euler-Lagrange equations for unconstrained systems
can be derived from a Hamilton-Pontryagin principle (see [156]).

De�nition 4.62. Let L : Jkπ −→ ΛmM be a Lagrangian density. The associated
(extended) Hamiltonian-Pontryagin action is the map AL : ΓπW,M ×K → R given by

AL(σ,R) :=

∫
R

L ◦ σk +
〈
σ†k, j

1σk−1

〉
−
〈
σ†k, σk

〉
(4.156)

where K is the collection of smooth compact regions of M .

Theorem 4.63. A section σ : M → W of πW,M : W → M is a critical point of the
Hamiltonian-Pontryagin action AL if and only if σk is holonomic, being σk = jkσ0, and
σ satis�es the local equations

0 =
∂L

∂uα
− ∂σ j

α

∂xj
; (4.157)∑

I+1i=J

σIiα =
∂L

∂uαJ
− ∂σJjα

∂xj
, with |J | = 1, . . . , k − 1; (4.158)

∑
I+1i=K

σIiα =
∂L

∂uαK
, with |K| = k. (4.159)

on M , and
σIiα = 0, with |I| = 0, . . . , k − 1. (4.160)

on the boundary ∂M of M , where (xi, uαJ , p, p
Ii
α ) denotes adapted coordinates on W and

σ = (xi, σαJ , σ̃, σ
Ii
α ).

Proof. Given a section σ ∈ ΓπW,M and a compact region R ⊆ M , we have that the
variation of the Hamiltonian-Pontryagin action AL with respect to a vertical variation δσ
of σ is given by

δAL
δσ

∣∣∣∣
(σ,R)

· δσ =

∫
R

δ

δσ

[
L(xi, σαJ ) + σIiα

(
∂σαI
∂xi
− σαI+1i

)] ∣∣∣∣
σ

· δσ dmx

=

∫
R

[
∂L

∂uαJ
δσαJ + δσIiα

(
∂σαI
∂xi
− σαI+1i

)
+ σIiα

(
∂

∂xi
δσαI − δσαI+1i

)]
dmx

=

∫
R

[
∂L

∂uαJ
δσαJ + δσIiα

(
∂σαI
∂xi
− σαI+1i

)
− ∂σIiα

∂xi
δσαI − σIiα δσαI+1i

]
dmx

+

∫
∂R

σIiα δσ
α
I dm−1xi

=

∫
R

( ∂L

∂uα
− ∂σ j

α

∂xj

)
δσα +

k−1∑
|J |=1

(
∂L

∂uαJ
− ∂σJjα

∂xj
−
∑

I+1i=J

σIiα

)
δσαJ

+
∑
|K|=k

(
∂L

∂uαK
−

∑
I+1i=K

σIiα

)
δσαK +

(
∂σαI
∂xi
− σαI+1i

)
δσIiα

 dmx

+

∫
∂R

σIiα δσ
α
I dm−1xi
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where (xi, uαJ , p, p
Ii
α ) denotes adapted coordinates on W and σ = (xi, σαJ , σ̃, σ

Ii
α ). We

thus infer that σ is a critical point of AL, i.e. δAL/δσ = 0, if and only if the relations
(4.157�4.160) are satis�ed and σk = jkσ0, what is derived from the last term of the �rst
integrand.

4.2.6 The space of symmetric multimomenta

Lemma 4.64. Let (xi, uα) and (yj, vβ) be adapted coordinates on E, whose domains have
a non-empty intersection, and let (xi, uαI , p, p

Ii
α ) and (yj, vβJ , q, q

Jj
β ) be the corresponding

induced coordinates on the space of forms Λm
2 J

kπ, where 0 ≤ |I|, |J | ≤ k.

1. For any pair of multi-indexes I, J ∈ Nm of length k and any pair of indexes 1 ≤
α, β ≤ n, the following holds:

∂vβJ
∂uαI

=
∑
π∈Σk

1

I!

∂vβ

∂uα
∂xiπ(1)

∂yj1
· · · ∂x

iπ(k)

∂yjk
, (4.161)

where Σk denotes the collection of permutations π of k elements and the indexes
1 ≤ i1, . . . , ik ≤ m and 1 ≤ j1, . . . , jk ≤ m are such that I = 1i1 + · · · + 1ik and
J = 1j1 + · · ·+ 1jk .

2. For any multi-index I ∈ Nm of length k and any indexes 1 ≤ α ≤ n (and 1 ≤ β ≤ n),
the following holds:

∑
|J |=k

∂vβJ
∂uαI

qJjβ =
∑
j1,...,jk

Jk!

I!

∂vβ

∂uα
∂xi1

∂yj1
· · · ∂x

ik

∂yjk
qJkjβ , (4.162)

where Jk := 1j1 + · · · + 1jk and the indexes 1 ≤ i1, . . . , ik ≤ m are such that
I = 1i1 + · · ·+ 1ik .

Proof. The �rst equation is proven by induction on k. The case k = 0 is trivial thus, let
us suppose that the result is true for k−1 ≥ 0 and show that it is also true for k. Thanks
to Equation (4.4) and the identity (A.6), we may write

∂vβJ
∂uαI

=
∑

S+1s=I

∂vβJk−1

∂uαS

∂xs

∂yjk

=
k∑
s=1

1

I(is)

∂vβJk−1

∂uαIŝ

∂xis

∂yjk
,

where we have used the fact that vβJ only depends on uαI 's of order |I| ≥ |J |, which is in
this case on uαI 's of order k. We therefore have by the hypothesis of induction

∂vβJ
∂uαI

=
k∑
s=1

∑
π∈Σk−1

1

I(is)

1

Iŝ!

∂vβ

∂uα
∂x

isπ(1)

∂yj1
· · · ∂x

isπ(k−1)

∂yjk−1

∂xis

∂yjk

=
∑
π∈Σk

1

I!

∂vβ

∂uα
∂xiπ(1)

∂yj1
· · · ∂x

iπ(k)

∂yjk
.
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The second statement is easily proved using the �rst one.∑
|J |=k

∂vβJ
∂uαI

qJjβ =
∑
j1,...,jk

Jk!

k!

∂vβJk
∂uαI

qJkjβ

=
∑
π∈Σk

∑
j1,...,jk

Jk!

k!

1

I!

∂vβ

∂uα
∂xiπ(1)

∂yj1
· · · ∂x

iπ(k)

∂yjk
qJkjβ .

Now, for each permutation π ∈ Σk, we relabel the indexes js in such a way its subindexes
s coincide with those of is, i.e.∑

|J |=k

∂vβJ
∂uαI

qJjβ =
∑
π∈Σk

∑
j1,...,jk

Jk!

k!

1

I!

∂vβ

∂uα
∂xiπ(1)

∂yjπ(1)
· · · ∂x

iπ(k)

∂yjπ(k)
qJkjβ

=
∑
π∈Σk

∑
j1,...,jk

Jk!

k!

1

I!

∂vβ

∂uα
∂xi1

∂yj1
· · · ∂x

ik

∂yjk
qJkjβ

=
∑
j1,...,jk

Jk!

k!

k!

I!

∂vβ

∂uα
∂xi1

∂yj1
· · · ∂x

ik

∂yjk
qJkjβ .

Note that in any moment Jk is a�ected by the relabelling.

Theorem 4.65. Let (xi, uαI , p, p
Ii
α ) be an adapted system of coordinates on Λm

2 J
kπ. The

relation

I! · pIiα = I ′! · pI′i′α , whenever I + 1i = I ′ + 1i′ and |I| = |I ′| = k, (4.163)

is invariant under change of coordinates.

Proof. Consider adapted coordinates (xi, uαI , p, p
Ii
α ) and (yj, vβJ , q, q

Jj
β ) on Λm

2 J
kπ, where

0 ≤ |I|, |J | ≤ k, whose domains have a non-empty intersection. Let pIiα a �xed coordinate
where I ∈ Nm is a multi-index of length k, there must be k integers 1 ≤ i1, . . . , ik ≤ m
such that we have the decomposition I = 1i1 + · · ·+1ik . Using the dual coordinate change
formula (4.29) and the previous Lemma 4.64, we obtain

Jac(x(y))pIiα =
∑
j

∑
|J |=k

∂vβJ
∂uαI

qJjβ
∂xi

∂yj

=
∑
j

∑
j1,...,jk

Jk!

I!

∂vβ

∂uα
∂xi1

∂yj1
· · · ∂x

ik

∂yjk
qJkjβ .

Let (I, i), (I ′, i′) such that I + 1i = I ′ + 1i′ and |I| = |I ′| = k. Then I = Ĩ + 1i′ and
I ′ = Ĩ + 1i, for some multi-index Ĩ of length |Ĩ| = k − 1. If I! · pIiα = I! · pI′i′α , by the
previous reasoning, we do have

∑
j1,...,jk+1

Jk! ·
∂vβ

∂uα
∂xi1

∂yj1
· · · ∂x

ik−1

∂yjk−1

∂xi
′

∂yjk
∂xi

∂yjk+1
q
Jkjk+1

β =

=
∑

j′1,...,j
′
k+1

J ′k! ·
∂vβ

∂uα
∂xi1

∂yj
′
1
· · · ∂x

ik−1

∂yj
′
k−1

∂xi

∂yj
′
k

∂xi
′

∂yj
′
k+1

q
J ′kjk+1

β
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Note that (∂vβ/∂uα) is regular and ∂vβ/∂uα · ∂uα/∂vβ′ = δββ′ , thus∑
j1,...,jk+1

Jk(jk)Jk−1! · ∂x
i1

∂yj1
· · · ∂x

ik−1

∂yjk−1

∂xi
′

∂yjk
∂xi

∂yjk+1
q
Jkjk+1

β =

=
∑

j′1,...,j
′
k+1

J ′k(j
′
k)J

′
k−1! · ∂x

i1

∂yj
′
1
· · · ∂x

ik−1

∂yj
′
k−1

∂xi

∂yj
′
k

∂xi
′

∂yj
′
k+1

q
J ′kjk+1

β

As (∂xi/∂yj) is also regular, we have

∑
jk,jk+1

(Jk−1(jk) + 1)Jk−1! · ∂x
i′

∂yjk
q
Jkjk+1

β

∂xi

∂yjk+1
=

=
∑
j′k,j
′
k+1

(Jk−1(j′k) + 1)Jk−1! · ∂x
i

∂yj
′
k

q
J ′kjk+1

β

∂xi
′

∂yj
′
k+1

,

thus
(Jk−1(j′) + 1)Jk−1!q

Jk−1+1j′j

β = (Jk−1(j) + 1)Jk−1!q
Jk−1+1jj

′

β .

Which is equivalent to
J !qJjβ = J ′!qJ

′j′

β ,

whenever J + 1j = J ′ + 1j and |J | = |J ′| = k.

Corollary 4.66. The space of (k + 1)-symmetric multimomenta

Jk+1π‡ := {ω ∈ Λm
2 J

kπ : I! · pIiα = I ′! · pI′i′α , I + 1i = I ′ + 1i′ , |I| = |I ′| = k} (4.164)

is an embedded submanifold of Jk+1π†. A system of adapted coordinates (xi, uα) on E
induces coordinates (xi, uαI , p, p

I′i
α , p

K
α ) on Jk+1π‡, where 0 ≤ |I ′| < |I| ≤ |k| and |K| =

k + 1. The natural embedding Jk+1π‡ ↪→ Jk+1π† is then given in coordinates by pIiα =
pI+1i
α /(I(i) + 1), for |I| = k. This manifold is transverse to π†k+1 and therefore �bers over
Jkπ.

Remark 4.67. For the second order case, there is an intrinsic de�nition of this space that
involves the use of the semi-holonomic jets (see De�nition 4.26) and which was presented
by Saunders and Crampin in [140].

Note that the k-symmetric multimomenta space Jkπ‡ coincides with the whole dual
Jkπ† whenever we are considering a �rst order theory (k = 1) or a unidimensional one
(m = 1). Thus, in the forthcoming discussion we may assume that we are not in any of
these cases (k,m ≥ 2).

Remark 4.68. Unfortunately, the restriction I! ·pIiα = I ′! ·pI′i′α , I+1i = I ′+1i′ , is no longer
invariant under a change of coordinates when |I| = |I ′| < k. For instance, if |I| = k − 1,
we have that

Jac(x(y))pIiα =
k∑

|J |=k−1

∂vβJ
∂uαI

qJjβ
∂xi

∂yj

=
∑
|J |=k−1

∂vβJ
∂uαI

qJjβ
∂xi

∂yj
+
∑
|J |=k

∂vβJ
∂uαI

qJjβ
∂xi

∂yj
.
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The �rst term will be easily expandable to the form (4.162) and, following the proof
of Theorem 4.65, it is invariant. However, this is not true for the second term, which
depends on the chosen coordinates (see Example 4.70 below).

Example 4.69 (Second order case). Consider the dual space Λm
2 J

1π of J2π and let (xi,
uα, uαi , p, p

i
α, p

Ii) and (yj, vβ, vβj , q, q
j
β, q

Jj
β ) denote adapted coordinates on it. As the

multi-indexes I and J have unitary length, we may view them as a regular indexes. In
this case, the higher momenta transform accordingly to

Jac(x(y))pIiα =
∑
|J |=1

∂vβJ
∂uαI

qJjβ
∂xi

∂yj

=
∂vβ

∂uα
∂xI

∂yJ
qJjβ

∂xi

∂yj
.

Indeed, the relation (4.163) that de�nes the space of 2-symmetric multimomenta is in-
variant,

pIiα = piIα =⇒ qJjβ = qjJβ ,

as stated by Theorem 4.65.

Example 4.70 (Third order case). Consider the dual space Λm
2 J

2π of J3π and consider
the induced coordinates from adapted ones (xi, uα) and (yj, vβ) on E. Consider a �xed
multimomentum coordinate pIiα where I has length |I| = 2. If we assume that I = 1i′′+1i′ ,
then the change of coordinates (4.30) reads

Jac(x(y))p1i′′+1i′ ,i
α =

∑
j

∑
|J |=2

∂vβJ
∂uα1i′′+1i′

qJjβ
∂xi

∂yj

=
∑
j,j′,j′′

δj
′

j′′ + 1

δi
′
i′′ + 1

∂vβ

∂uα
∂xi

′′

∂yj′′
∂xi

′

∂yj′
q

1j′′+1j′ ,j

β

∂xi

∂yj
.

Which proof that the relation I! ·pIiα = I ′! ·pI′i′α , for I+ 1i = I ′+ 1i′ , is invariant whenever
|I| = |I ′| = 2.

Let I now denote a multi-index of length |I| = 1. In this case, the rule (4.30) is
written

Jac(x(y))pIiα =
∑
|J |=1

∂vβJ
∂uαI

qJjβ
∂xi

∂yj
+
∑
|J |=2

∂vβJ
∂uαI

qJjβ
∂xi

∂yj
.

The �rst term, may be treated as in the previous example 4.69. The second term is

∑
|J |=2

∂vβJ
∂uαi′

qJjβ
∂xi

∂yj
=
∑
j,j′,j′′

[
d

dxi′′
∂vβ

∂uα
∂xi

′′

∂yj′′
∂xi

′

∂yj′
∂xi

∂yj
+

1

2

∂vβ

∂uα
∂2xi

′′

∂yj′′∂yj′
∂xi

∂yj

]
qJ3
β .

From here, we see that the relation pi
′i
α = pii

′
α fails to be coordinate independent in Λm

2 J
2π,

while it is in Λm
2 J

1π (see Example 4.69 and Remark 4.68 above).

Proposition 4.71. Assume that k,m ≥ 2 and consider the pullback Ωs of the canonical
multisymplectic form Ω of Λm

2 J
kπ to the space of (k + 1)-symmetric multimomenta. We

have that Ωs is still multisymplectic.
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Proof. From the local description (4.34) of Ω, we have that

Ωs = − dp ∧ dmx−
k−1∑
|I|=0

dpIiα ∧ duαI ∧ dm−1xi −
∑
|K|=k

dpK+1i
α ∧ duαK ∧ dm−1xi (4.165)

= − dp ∧ dmx−
k−1∑
|I|=0

dpIiα ∧ duαI ∧ dm−1xi −
∑

|K+|=k+1

dpK+
α ∧

∑
K+1i=K+

duαK ∧ dm−1xi.

Let V ∈ TJk+1π‡ be of the form

V = γi
∂

∂xi
+ AαJ

∂

∂uαJ
+BIi

α

∂

∂pIiα
+BK+

α

∂

∂p
K+
α

+ C
∂

∂p
,

then

iV Ωs = −C dmx−
k−1∑
|I|=0

BIi
α duαI ∧ dm−1xi +

k−1∑
|I|=0

AαI dpIiα ∧ dm−1xi

−
∑
|K|=k

BK+1i
α duαK ∧ dm−1xi +

∑
|K+|=k+1

dpK+
α ∧

∑
K+1i=K+

AαK dm−1xi.

We deduce from this expression that Ωs has a trivial kernel (iV Ωs = 0 i� V = 0), thus
Ωs is multisymplectic.

This result turns to be trivial for a �rst order theory or a unidimensional one since,
as stated earlier, in either cases the space of symmetric multimomenta coincides with the
whole dual space.

Symmetric multimomenta constraints within the Skinner-Rusk formalism

We are now in disposition to introduce the k-symmetric multimomenta within the Skinner-
Rusk formalism. Two options are available here: First, we could consider the �bered
product Jkπ ×Jk−1π J

kπ‡ and work directly there following the schema of the Skinner-
Rusk formalism presented in Section �4.2.3; The second option is to mimic the constrained
version of it, presented in Section �4.2.4, but considering the k-symmetric multimomenta
constraints in Jkπ† instead of an arbitrary constraint submanifold of Jkπ. We will stick
to the latter.

Let W = Jkπ ×Jk−1π J
kπ† be the mixed space of velocities and momenta and W s =

Jkπ ×Jk−1π J
kπ‡ = π−1

2 (Jkπ‡) be the mixed space of velocities and k-symmetric multi-
momenta. There is a natural embedding W s ↪→ W which is described in coordinates by
pIiα = pI+1i

α /(I(i) + 1), where |I| = k− 1 (see Corollary 4.66). Therefore W s is de�ned by
the constraints I!pIiα = I ′pI

′i′
α , where I + 1i = I ′ + 1i′ and |I| = |I ′| = k − 1. As usual, we

consider in addition the constraint H = 0 that de�nes the Hamiltonian submanifold W0

ofW . Thus, we will work onW s
0 = W s∩W0 rather than onW s. If ΩH = Ω+ dH denotes

the Cartan (m + 1)-form of W associated to a Lagrangian density L : Jkπ → ΛmM , we
write Ωs

H and Ωs
0 for their pullbacks to W s and W s

0 , respectively.
In order to be able to use the free coordinates of W , we use again the Proposition

4.56 (more precisely, an adaptation of it) that establishes that the dynamical equation in
terms of multivectors

iXΩs
0 = 0, X ∈ X

m
d (TW s

0 ),
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is equivalent to

ii∗XΩH ∈ T 0W s
0 , X ∈ X

m
d (TW s

0 ),

where T 0W s
0 is the annihilator of i∗(TW s

0 ) in TW . To write down in coordinates the last
equation, we �rst have to describe properly de set of constraints. For each multi-index K
of length k, we �x a pair (IK , iK) where IK is a multi-index of length k−1 and 1 ≤ ik ≤ m

such that IK +1iK = K. The set of constraints is I! ·pIiα = (II+1i)! ·p
II+1i

iI+1i
α , for arbitrary

pairs (I, i) where I is a multi-index of length k− 1 and 1 ≤ i ≤ m. Note that in this set,
for each multi-index K of length k, there is a trivial identity for the �xed pair (IK , ik).
We therefore look for solutions of the dynamical equation

(−1)miXΩH =
∑

(I,i)6=(II+1i
,iI+1i

)

|I|=k−1

λαIi

(
I! · dpIiα − (II+1i)! · dp

II+1i
iI+1i

α

)
+ λ dH, (4.166)

where X is a multivector �eld tangent along W s
0 and the λ's are Lagrange multipliers to

be determined.

If we assume that the locally decomposable m-multivector �elds X ∈ X(W ) have the
form

X = X1 ∧ · · · ∧Xm =
∂

∂xj
+ AαJj

∂

∂uαJ
+BIi

αj

∂

∂pIiα
+ Cj

∂

∂p
, (4.167)

expanding the �rst member in local coordinates and equating coe�cients, we obtain:

coe�s. in dp : 0 =λ;

coe�s. in dpIiα : AαIi =uαI+1i
, |I| = 0, . . . , k − 2;

AαIi + I! · λαIi =uαI+1i
, |I| = k − 1, (I, i) 6= (II+1i , iI+1i);

AαIK iK −
∑

(I,i)6=(IK ,iK)
I+1i=K

IK ! · λαIi =uαK , |K| = k;

coe�s. in duαJ : B i
αi =

∂L

∂uα
;

BIi
αi =

∂L

∂uαI
−
∑

J+1j=I

pJjα , |I| = 1, . . . , k − 1;

0 =
∂L

∂uαK
−

∑
J+1j=K

pJjα , |K| = k;

coe�s. in dxj : AαIiB
Ii
αj − AαIjBIi

αi =

(
∂L

∂uαJ
−
∑

I+1i=J

pIiα

)
AαJj + uαI+1i

BIi
αj.

To get rid o� the Lagrange multipliers that appear in the equations coming from the coe�-
cients of dpIiα with |I| = k−1, we multiply the corresponding equations by I(i) + 1/|I|+ 1
and sum over I + 1i = K. Besides, the last equation turns to be null thanks to the other
ones and the tangency equations (see below) which come from the k-symmetric restriction
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of the multimomenta. So, we do have

AαIi = uαI+1i
, with |I| = 0, . . . , k − 2, i = 1, . . . ,m; (4.168)∑

I+1i=K

I(i) + 1

|I|+ 1
AαIi = uαK , with |K| = k; (4.169)

0 =
∂L

∂uα
−B j

αj; (4.170)∑
I+1i=J

pI,iα =
∂L

∂uαJ
−BJj

αj , with |J | = 1, . . . , k − 1; (4.171)

∑
I+1i=K

pI,iα =
∂L

∂uαK
, with |K| = k. (4.172)

Furthermore, we have the tangency conditions

I! ·BIi
αj = I ′! ·BI′i′

αj , I + 1i = I ′ + 1i′ , |I| = |I ′| = k − 1; (4.173)∑
I+1i=K

BIi
αj =

∂2L

∂xj∂uαK
+

k−1∑
|I|=0

AβIj
∂2L

∂uβI ∂u
α
K

+
∑
|J |=k

AβJj
∂2L

∂uβJ∂u
α
K

; (4.174)

Cj =
∂L

∂xj
+ AαJj

∂L

∂uαJ
− AαI+1ij

pI,iα −BIi
αju

α
I+1i

. (4.175)

with respect to the k-symmetry restriction, the equation (4.172) and the zero-level set of
H, respectively. Note that, the Lagrange multipliers are hidden in Equation (4.174) and
(4.175) through the coe�cients AαJj of X of degree k − 1.

Remark 4.72. We have obtained the same equations than in the free case, cf. equa-
tions (4.64�4.67), but with a slight di�erence in the highest order equations of holonomy
(4.169). What does that imply? An integral section σ ∈ ΓπW,M of a solution X of the
dynamical equation (4.166) will no longer be holonomic (at order k) as happens in the
free case, cf. Proposition 4.50 and we will have to require it.

Proposition 4.73. Given a solution X ∈ Xm
d (i∗(TW

s
0 )) of the dynamical equation

iXΩH ∈ T 0W s
0 ,

let σ ∈ ΓπW,M be an integral section of X and denote its Lagrangian part σk = pr 1 ◦σ.
If j1(πk,k−1 ◦ σk) = σk, then σk is holonomic, i.e. σk = jkφ, and σ0 = πk,0 ◦ σk satis�es
the higher order Euler-Lagrange equations.

Proof. The hypotesis σk = j1(πk,k−1 ◦ σk) directly implies that σ is holonomic, i.e. σk =
jk(σ0) (and that the Lagrange multipliers are null along the image of σ). The rest of the
proof is the same than the one of Proposition 4.50 (note that equations (4.170), (4.171)
and (4.172) coincide with (4.65), (4.66) and (4.67)).

This result ensures that, even with the addition of the k-symmetric multimomenta
constraints, the holonomic integral sections of a solution of the dynamical equation are
still solutions of the Euler-Lagrange equations. Furthermore, there is an improvement
with respect to the free case, Section 4.2.3. If we consider the system of linear equations
in terms of coe�cients B's with multi-indexes of length k − 1, the highest one, given by



114 CHAPTER 4. HIGHER ORDER CLASSICAL FIELD THEORY

Equation (4.171), (4.173) and (4.174), then the system is overdetermined in oposition to
the free case (see Proposition 4.46). This is because now we have added the tangency con-
dition with respect to the k-symmetry, Equation (4.173). If we put BI+1i

αj = BIi
αj/(I(i)+1),

for |I| = k−1, which is well de�ned thanks to (4.173), then Equation (4.171) and (4.174)
is rewritten to

∑
I+1i=J

pI,iα =
∂L

∂uαJ
−BJ+1j

αj , with |J | = k − 1; (4.176)

BK
αj =

∂2L

∂xj∂uαK
+

k−1∑
|I|=0

AβIj
∂2L

∂uβI ∂u
α
K

+
∑
|J |=k

AβJj
∂2L

∂uβJ∂u
α
K

, with |K| = k.(4.177)

Now, the new unknowns BK
αj are explecitely given in Equation (4.177). Thus, for �xed

coe�cients AαKj with |K| = k, we may consider Equation (4.176) as an extra constraint
on W . Tangency conditions on it will then give conditions on the B's of order k− 2 but,
since there are no (k−1)-symmetric constraints on the multimomenta (see Remark 4.68),
we have to deal again with an undeterminacy on the coe�cients of a solution X of the
dynamical equation.

Let us recover some examples to clarify this.

Example 4.74 (First order Lagrangian as second order). In Example 4.74, we set up a �rst
order Lagrangian L : J1π → ΛmM as a second order one L̄ : J2π → ΛmM by putting
L̄ = L ◦ π2,1. We saw that, we cannot go pass the �rst constraint manifold even though
L̄ is completely degenerate (in the second order sense). The space of solutions X̄ of the
second order dynamical equation is too big and the natural �rst order solutions cannot
been determined from it since the system of linear equations of the coe�cients B̄ of X̄ is
underdetermined.

We considered the �rst and second order velocity-momenta mixed spaces W 1 =
J1π ×E J1π† and W 2 = J2π ×J1π J

2π†, together with the premultisymplectic forms
ΩH and ΩH̄, where H and H̄ are the corresponding Hamiltonian functions associated
to the Lagrangians L and L̄. Adapted coordinates are denoted (xi, u, ui, p, p

i) and
(xi, u, ui, uK , p, p

i, pij) (with |K| = 2) on W 1 and W 2, respectively. For the sake of
simplicity, we assume that the �bers of π : E →M have dimension n = 1.

W 2 //

''PPPPPPPPPPPPPP

��

W 1

''OOOOOOOOOOOOOO

��
J2π

π2,1 //

L̄

((PPPPPPPPPPPPP J1π //

π1

''PPPPPPPPPPPPP

L
��

E

π

��
ΛmM M

Figure 4.7: The 1st and 2nd order Lagrangian settings

If the multivector �eld X ∈ Xm
d (W 1) and X̄ ∈ Xm

d (W 2), solutions of the respective
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(free) dynamical equations iXΩH = 0 and iX̄ΩH̄ = 0, have the form

X =
m∧
j=1

(
∂

∂xj
+ Aj

∂

∂u
+ Aij

∂

∂ui
+Bi

j

∂

∂pi
+ Cj

∂

∂p

)
,

X̄ =
m∧
j=1

(
∂

∂xj
+ Āj

∂

∂u
+ Āij

∂

∂ui
+ ĀKj

∂

∂uK
+ B̄i

j

∂

∂pi
+ B̄ki

j

∂

∂pki
+ C̄j

∂

∂p

)
,

where |K| = 2. We then obtain the relations

Ai = ui,

0 =
∂L

∂u
−Bj

j ,

pi =
∂L

∂ui
, (4.178)

for (W 1,ΩH, X); and

Āi = ui,

Āij = u1i+1j ,

0 =
∂L

∂u
− B̄j

j ,

pi =
∂L

∂ui
− B̄ij

j ,

pij + pji = (1i + 1j)! ·
∂L̄

∂u1i+1j

= 0, (4.179)

for (W 2,ΩH̄, X̄). Equations (4.178) and (4.179), together with H = 0 and H̄ = 0, de�ne
the corresponding submanifolds W 1

1 and W 2
1 of W 1 and W 2. The tangency condition to

(4.179) is
B̄ij
k + B̄ji

k = 0,

which is not enough to overdetermine the B̄'s of highest order.
We therefore introduce the 2-symmetric multimomentum constraint pij = pji in W 2

and denote the resulting submanifold W 2,s. If we use adapted coordinates (xi, u, ui, uK ,
p, pi, pK) (with |K| = 2) on W 2,s, then the embedding is given by pij = p1i+1j . Now, a
solution X̄ ∈ Xm

d (W 2) of iX̄ΩH̄ = 0 along W 2,s is governed by

Āi = ui,

Āij + Āji = u1i+1j ,

0 =
∂L

∂u
− B̄j

j ,

pi =
∂L

∂ui
− B̄ij

j ,

pij + pji = (1i + 1j)! ·
∂L̄

∂u1i+1j

= 0.

This, together with the 2-symmetric multimomentum constraint pij = pji and the tan-
gency contitions

B̄ij
k + B̄ji

k = 0 and B̄ij
k = B̄ji

k ,
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reduces the previous system to

Āi = ui,

Āij + Āji = u1i+1j ,

0 =
∂L

∂u
− B̄j

j ,

pi =
∂L

∂ui
,

pij = 0,

B̄ij
k = 0,

which is precisely the �rst order one (if we ignore the second order terms).
If we compare this example with Example 4.55), we have again that the Euler-

Lagrange equations appear as a constraint at the second step of the reduction algorithm
(combine the tangency condition to pi = ∂L/∂ui with 0 = ∂L/∂u−B̄j

j ). But, in this case,
and in contrast to the free setting, now it manages to detect if a second order Lagrangian
is actually a �rst order one.

Example 4.75 (The second order case). Given a second order Lagrangian L : J2π → ΛmM ,
let H : W = J2π×J1π J

2π† → ΛmM be the associated Hamiltonian and let ΩH = Ω− dH
denote the Cartan (m + 1)-form. If we consider the dynamical equation iXΩH = 0 �in�
the space of mixed velocities and 2-symmetric momentaW s (de�ned by pijα = pjiα ) instead
of �along� W s, then a solution X ∈ Xm

d (W s) will be governed by the equations

Aαi = ui,

Aαij + Aαji = uα1i+1j
,

0 =
∂L

∂uα
−B j

αj,

piα =
∂L

∂uαi
−B1i+1j

αj , (4.180)

pKα =
∂L

∂uαK
, |K| = 2, (4.181)

where (xi, u, ui, uK , p, p
i, pK), |K| = 2, denote adapted coordinates on W s and X has the

form

X =
m∧
j=1

(
∂

∂xj
+ Aαj

∂

∂uα
+ Aαij

∂

∂uαi
+ AαKj

∂

∂uαK
+B i

αj

∂

∂piα
+BK

αj

∂

∂pKα
+ Cj

∂

∂p

)
.

The tangency condition to Equation (4.181) explicitly gives the coe�cients BK
αj, |K| = 2,

of X. Thus, Equation (4.180) is a space constraint from which we may determine the
coe�cients B i

αj of X. Moreover, if L was degenerate, then further constraints would be
determined, so reducing the space of possible solutions.

So far, we have seen that the introduction of the k-symmetric momentum constraints
not only removes the ambiguity in the simple case of a 1st order Lagrangian viewed from
a 2nd order setting, but also the full general problem within the 2nd order setting. All
this ambiguity was one of the reasons why it was not possible to de�ne a Legendre trans-
form nor a Poincaré-Cartan form in higher-order �eld theories, problem of furthermost
importance. Having removed this ambiguity, is it possible now to de�ne such objects?
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Given a solution X ∈ Xm
d (W s) of the dynamical equation iXΩH = 0, let σ ∈ ΓπW s,M

be a holonomic integral section of X, meaing that its Lagrangian part σk = pr 1 ◦σ is
holonomic. Then,

BK
αj ◦ σ =

∂σKα
∂xj

=
∂

∂xj

(
∂L

∂uαK
◦ σk

)
=

(
d

dxj
∂L

∂uαK

)
◦ j1σk.

We therefore de�ne the 2nd order (extended) Legendre transform as the �bered map
LegL : J3π → J2π‡ locally given by

pKα =
∂L

∂uαK
, |K| = 2, (4.182)

piα =
∂L

∂uαi
− d

dxj
∂L

∂uα1i+1j

, (4.183)

p = L− uαi ·

(
∂L

∂uαi
− d

dxj
∂L

∂uα1i+1j

)
− uαK ·

∂L

∂uαK
. (4.184)

The Poincaré-Cartan form is then the (m+ 1)-form ΩL along π3,2 locally given by

ΩL =− d

(
L− uαi ·

(
∂L

∂uαi
− d

dxj
∂L

∂uα1i+1j

)
− uαK ·

∂L

∂uαK

)
∧ dmx

− d

(
∂L

∂uαi
− d

dxj
∂L

∂uα1i+1j

)
∧ duα ∧ dm−1xi

− d

(
∂L

∂uα1i+1j

)
∧ duαj ∧ dm−1xi.

(4.185)

For a similar approach, the paper [140] by Saunders and Crampin is strongly recom-
mended.

Example 4.76 (The third order case). In this example, we are going to see that the
improvements we got in the second order case by introducing the 2-symmetric momentum
constraints are only partial for the third order case. We �x a third order Lagrangian
L : J3π → ΛmM and look for solutions X ∈ Xm

d (W ), where W = J3π ×J2π J
3π†, of

the dynamical equation iXΩH ∈ T 0W s
0 , where W

s is the Hamiltonian mixed space of
velocities and 3-symmetric momenta given by H = 0 and I! · pIiα = J ! · pJjα , for I +
1i = J + 1j and |I| = |J | = 2. Recall that, as usual, we denote adapted coordinates
on W by (xi, uα, uαi , u

α
I , u

α
K , p, p

i
α, p

i′i
α , p

Ii
α ), with |I| = 2 and |K| = 3. Thus, we take

coordinates (xi, uα, uαi , u
α
I , u

α
K , p, p

i
α, p

i′i
α , p

K
α ), with |I| = 2 and |K| = 3, on W s such that

the embedding W s ↪→ W is given by pIiα = pI+1i
α /(I(i) + 1).

If X ∈ Xm
d (W s) has the form

X =
m∧
j=1

(
∂

∂xj
+ Aαj

∂

∂uα
+ Aαij

∂

∂uαi
+ AαIj

∂

∂uαK
+ AαKj

∂

∂uαK

+B i
αj

∂

∂piα
+Bi′i

αj

∂

∂pi′iα
+BIi

αj

∂

∂pIiα
+ Cj

∂

∂p

)
,
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in order to be a solution of the dynamical equations in W s, its coe�cients must satisfy
the following relations

Aαi = ui,

Aαij = uα1i+1j
,∑

J+1j=I

AαJj = uαI , |I| = 2,

0 =
∂L

∂uα
−B j

αj,

piα =
∂L

∂uαi
−Bij

αj,∑
1i′+1i=I

pi
′i
α =

∂L

∂uαI
−BI+1j

αj , |I| = 2, (4.186)

pKα =
∂L

∂uαK
, |K| = 3. (4.187)

Tangency conditions on Equation (4.187) gives explicitly all the coe�cients BK
αj, with

|K| = 3. This turns Equation (4.186) into a space constraint in W s; however, tangency
conditions on it do not give enough conditions on the coe�cients Bi′i

αj to determined
them, like in the free second order case. In general, the top level coe�cients BK

αj are
overdetermined inducing a new space constraint on W s, but the subsequent coe�cients
BIi
αj (of order k − 1) with |I| = k − 2 are always undetermined, unless k = 2.
This example is of furthermost importance since it is the key step to solve the ambi-

guity that exists in the solutions of the dynamical equation for higher order �eld theories.
Moreover, to solve or describe this ambiguity will also do it for the de�nition of the
higher-order Legendre transform and, consequently, higher-order Poincaré-Cartan form.



Chapter 5

Conclusions and future work

As for conclusion, I summarize the main results obtained in this memory.

• First, we have given a description without ambiguity of the higher-order classical
�eld theory within a formulation of Skinner and Rusk type, which has permitted
to de�ne a premultisymplectic form and a unique Hamiltonian function; and in
consequence a global and unique formulation of the dynamics. This part of the
treatise has been published in Journal of Physics A: Mathematical and Theoretical
Vol. 42 (2009).

• Secondly, we have developed the previous work and exposed an intrinsic formulation
of the variational problem equations subjected to constraints dependent on higher
order partial derivatives of the �elds with respect to the base coordinates. As a study
case, we have apply this theory to optimal control systems of partial di�erential
equations. This results are gathered in the proceedings of di�erent congresses: �18th
International Fall Workshop on Geometry and Physics� and �Variational Integratos
in Nonholonomic and Vakonomic Mechanics�; and in a paper that has to appear in
the Journal of Physics A: Mathematical and Theoretical.

• Finally, we have given an important step in order to answer the inherent ambiguity
of the Hamiltonian formulation. This work has proven to de�ne univocally the
Hamiltonian formulation of classical �eld theories of second order; speci�cally, we
have successfully established a space of momenta in which the reduction algorithm
does not stop and continues giving the subsequent steps.

Besides, also some results have been obtained in continuum mechanics with of applying
the developed work in classical �eld theory to it (see Section �5.4 below).

• Within the theory of constitutive equations of material, a new de�nition has been
given for materials know as functionally grade media thanks to their inherent prop-
erties. This de�nition has been proven to generalize the classical one, which has
been published in the proceedings of the �XVI International Fall Workshop on Ge-
ometry and Physics� and in the International Journal of Geometric Methods in
Modern Physics.

In particular, this results are given by Equation (4.52), Proposition 4.46, Proposition
4.48, Theorem 4.50, Example 4.55, Equation (4.124), Proposition 4.58, Theorem 4.59,

119



120 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Theorem 4.63, Theorem 4.66, Theorem 4.73, Examples 4.74 and 4.75, De�nition 5.15 and
Theorems 5.20 and 5.22.

These results haven been published in

- C. M. Campos, M. Epstein y M. de León, Functionally graded media. Int. J.
Geom. Methods Mod. Phys. 5 (2008), no. 3, 431-455.

- C. M. Campos y M. de León, Functionally graded media. Proceedings of the
"XVI International Fall Workshop on Geometry and Physics" (2007)

- C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver,
Unambiguous formalism for higher order Lagrangian �eld theories. J. Phys. A:
Math. Theor. 42 (2009) 475207 (24pp)

- C. M. Campos, Vakonomic Constraints in Higher-Order Classical Field Theory.
Proceedings of the "XVIII International Fall Workshop on Geometry and Physics"
(2010)

- C. M. Campos, Higher-Order Field Theory with Constraints. To appear in Rev.
R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM

- C. M. Campos, M. de León and D. Martín de Diego, Constrained Variational
Calculus for Higher Order Classical Field Theories. To appear in J. Phys. A:
Math. Theor.

The geometrical framework of the developed �eld theory is already prepared for its
application to di�erent lines of research, for instance: continuum mechanics, media with
microstructure, multisymplectic integrators in higher-order �eld theory with or without
constraints, etc. I debrief some of them in the following sections.

5.1 Geometric integrators for higher-order �eld theo-

ries

During the last years, there was a great interest in developing of geometric integrators for
mechanical systems using a discrete variational principle (see [123] and references therein).
In particular, this e�ort has been concentrated for the case of discrete Lagrangian func-
tions Ld on the cartesian product Q × Q of a di�erentiable manifold. This cartesian
product plays the role of a �discretized version" of the standard velocity phase space TQ.
Applying a natural discrete variational principle and assuming a regularity condition, one
obtains a second order recursion operator Υ : Q×Q −→ Q×Q assigning to each input
pair (q0, q1) the output pair (q1, q2). When the discrete Lagrangian is an approximation
of a continuous Lagrangian function (more appropriately, when the discrete Lagrangian
approximates the integral action for Ld) we obtain a numerical integrator which inherits
some of the geometric properties of the continuous Lagrangian (symplecticity, momentum
preservation). Although this type of geometric integrators have been mainly considered
for conservative systems, the extension to geometric integrators for more involved sit-
uations is relatively easy, since, in some sense, many of the constructions mimic the
corresponding ones for the continuous counterpart. In this sense, it has been recently
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shown how discrete variational mechanics can include forced or dissipative systems, holo-
nomic constraints, explicitely time-dependent systems, frictional contact, nonholonomic
constraints... All these geometric integrators have demonstrated, in worked examples, an
exceptionally good longtime behavior and obviously this research is of great interest for
numerical and geometric considerations (see [104, 135]).

These methods have also extended for lagrangian �eld theories (see [120] and references
therein) of order 1. These methods start by discretizing the spacetime M and in many
cases it is assumed for simplicity that M = R2, and Y = R2 × Q, where Q is a vector
space. Typically, it is considered a mesh as a discretized version of M . Remember that a
mesh X is a discrete subset of R2. For instance, the quadrangular mesh X = hZ× kZ =
{xi,j = (hi, kj) | (i, j) ∈ Z × Z}. In this sense a discrete �eld is a map φd : X −→ Q.
In the following we will restrict ourselves to quadrangular mesh although it is easily
generalizable to other types of meshes. De�ne the set of squares X 4 whose elements are
the ordered quadruples of the form

�i,j = (xi,j, xi+1,j, xi+1,j+1, xi,j+1)

The idea behind these discretizations is that the values of the discrete �eld at the
vertices of the squares can be used to de�ne the concept of discrete jet as an approximation
of the continuous jet. In the case of a �rst order �eld theory the discrete jet bundles is
de�ned as

J1
dπ = X 4 ×Q4

and a discrete jet is a pair (�i,j, [qi,j, qi+1,j, qi+1,j+1, qi,j+1]).
For discretizing the theory it can be useful to de�ne appropriate discretization maps

Φd = J1
dπ → J1π as for instance:

φd((�i,j, [qi,j, qi+1,j, qi+1,j+1, qi,j+1])

= (
xi,j + xi+1,j + xi+1,j+1 + xi,j+1

4
,
qi,j + qi+1,j + qi+1,j+1 + qi,j+1

4
, V1, V2)

where

V1 =
1

2

(
qi+1,j − qi,j

k
+
qi+1,j+1 − qi,j+1

h

)
,

V2 =
1

2

(
qi,j+1 − qi,j

h
+
qi+1,j+1 − qi+1,j

k

)
,

which are considered as an approximation of the partial derivatives of the �eld.
Then, given a lagrangian L : J1π → R, we de�ne the discrete lagrangian Ld : J1

dπ → R
by Ld = hkΦ∗d.

The discrete �eld equations are deduced extremizing an appropriate discrete sum. In
this particular case, the discrete �eld equations are (see [120]:

0 = D1Ld((�i,j, [qi,j, qi+1,j, qi+1,j+1, qi,j+1])

+D2Ld((�i,j−1, [qi,j−1, qi+1,j−1, qi+1,j, qi,j])

+D3Ld((�i−1,j, [qi−1,j, qi,j, qi,j+1, qi−1,j+1])

+D4Ld((�i−1,j−1, [qi−1,j−1, qi,j−1, qi,j, qi−1,j]).
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Of course we can generalize these methods for higher order �eld theories adding dis-
cretizations of the higher-order derivatives (the second order case is already studied in
[112]). For instance, for a second-order lagrangian we can consider a discrete Lagrangian
de�ned by

L2
d : (X 4 ×X 4)2 ×Q7 → R

where (X 4×X 4)2 are rectangles such that the third right-upper vertex of the �rst rectangle
is also, the left-bottom vertex of the second one. Now, a discretization of the second-order
derivatives is given, for instance, by:

V11 =
qi+1,j − 2qi.j + qi−1,j

2h

V22 =
qi,j+1 − 2qi.j + qi,j−1

2k

V12 = V21 =
qi+1,j+1 − qi,j+1 − qi,j−1 + qi−1,j−1

2hk

In future research we will study these methods for higher order lagrangian systems in-
cluding their geometric preservation properties (multisymplecticity, etc.). Moreover, it is
possible to extend these techniques for the case of Lagrangian systems with constraints
(see [15]).

5.2 Space+Time Decomposition

As for the Skinner-Rusk formalism, another framework of interest is the so called �space+
time decomposition� originally developed by Gotay in [96] (see also [21]). This formalism
is strongly based on the theory of Cauchy surfaces, in which ones assumes that there
exists a space-like surface in the ambient space that evolves along the time line such that
it covers the whole ambient space. This description allow us to consider any �eld theory
in �frozen time� and then watch it evolve.

To be more precise, let as usual π : E → M be a �ber bundle whose �bers have
dimension n but whose base manifold, which is assumed to be orientable and oriented
with a provided volume form η, has now dimension m + 1. We assume that there exists
an m-dimensional manifold X that can be embedded into M . Let ε ∈ Emb(X,M) be
one of such embeddings, we view Mε := ε(X) as a Cauchy surface. We now consider the
�eld theory restricted to Mε, that is me shall consider the �ber bundle πε : Eε → Mε,
where Eε = EMε = π−1(Mε) and πε = π|Eε . The space of sections Ẽε = Γπε is called the
instantaneous con�guration space at �time� ε.

In this setting, given a section σ ∈ Ẽε we have that the tangent space to Ẽε at σ is

TσẼε = {v : Mε → V πε | v covers σ} ,

and the cotangent space to Ẽε at σ is

T ∗σ Ẽε = {α : Mε → L(V πε,ΛmMε) | α covers σ} ,

where L(V πε,ΛmMε) is the vector bundle over Eε whose �ber at u ∈ (Eε)x is the set of
linear maps form VuEε to Λm

xMε. Thus the pairing between the elements of T ∗σ Ẽε and
those of TσẼε is given by the integral expression:

〈α, v〉 =

∫
Mε

α(v).
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Furthermore, we can de�ne a Liouville form on the ε-phase space T ∗Ẽε in the usual
manner:

θε(α)(V ) =
〈
α, TαπẼε(V )

〉
.

And, of course, the canonical symplectic form ωε = − dθε.
Before we give a Lagrange description of the �eld dynamics within this setting, we

must introduce two concepts. First, we consider a slicing of M with section X, that is a
time-dependent family of embeddings χ : I × X → M , where I ⊂ R, such that χ is in
fact a di�eomorphism. We de�ne the generator of χ as the push forward of ∂/∂t, that is

ξχ ◦ χ := Tχ

(
∂

∂t

)
.

Secondly, we assert that TẼε is isomorphic to the collection of restrictions of holonomic
sections of π1 : J1π →M (see [96]).

Now, given a Lagrangian density L : J1π → ΛmM , we de�ne a Lagrangian function
L : TẼε → R in the following way:

Lε,χ(σ) =

∫
Mε

iξχL(j1φ),

where j1φ is the holonomic section that corresponds to σ.
From here we could proceed in the standard ways but, we remark that we �nally

have the three basic elements to follow the Skinner-Rusk formalism: the Lagrangian,
the pairing and the canonical form. The goals of this work is to study the space+time
decomposition within the Skinner-Rusk formalism and extend it to higher-order theories.
Since the base manifold adds a new data in the picture, the slicing, it could possibly
reduce the ambiguity in the space of solutions.

5.3 Reduction

Among di�erent extra structures that the �ber bundle π : E →M may carry, of particular
interest is the case when π is a principal �ber bundle. In this context and under extra
assumptions on the Lagrangian, one may seek for symmetries of the problem or use
reduction techniques to eliminate variables and simplify the problem. This is a natural
step when a dynamic formalism is well established, which is the case of �rst order classical
�eld theories, and which has already started (see for instance [37, 38, 39]).

The aim of a future work is to study and develop a theory of multisymplectic reduction
in higher-order �eld theories and, in view of example 4.75, particularly for the second order
case.

5.4 Continuous Media

The study of the mechanics of continuous media constitutes a non-trivial example of the-
ory of classical �elds, whose structure and dynamics may be characterized geometrically.
Nonetheless, there still is a long way in process to geometrize this study. From the use
of Lie algebra to describe the movement of a rigid body, to the modeling of Cosserat
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media and liquid crystals by means of principal �ber bundles. Before focusing on the dy-
namical aspects of a continuum, one should start studying the behavior of a body under
in�nitesimal deformations in order to understand its internal structure, which is the basis
of constitutive theory of materials. In this sense, what follows is the work developed in
[28], which is a study of materials that gradually change its behavior from point to point,
that is, functionally graded media.

The mechanical response at a point X of a simple (�rst-grade) local elastic body B
depends on the �rst derivative F at X ∈ B of the deformation. In other words, B obeys
a constitutive law of the form:

W = W (F (X);X) (5.1)

where W measures the strain energy per unit volume. The linear map F (X) is called
the deformation gradient at X. Of course, there are materials for which the constitutive
equation implies higher order derivatives or even internal variables as it happens with
the so-called Cosserat media or, more generally, media with microstructure, but such
materials will not be considered here.

An important problem in Continuum Mechanics is to decide if the body is made of
the same material at all its points. To handle this question in a proper mathematical
way, one introduces the concept of material isomorphism, that is, a linear isomorphism
PXY : TXB −→ TYB such that

W (FPXY ;X) = W (F ;Y )

for all deformation gradients F at Y . Intuitively, this means that we can extract a
small piece of material around X and implant it into Y without any change in the
mechanical response at Y . If such is the case for all pairs of body points, we say that
the body B is uniform. This has been the starting point of the work by Noll and Wang
[130, 146, 155, 154] in their approach to uniformity and homogeneity.

In this context, a material symmetry at X is nothing but a material automorphism
of the tangent space TXB. The collection of all the material symmetries at X forms
a group, the material symmetry group G(X) at X. An important consequence of the
uniformity property is that the material symmetry groups at two di�erent points X and
Y are conjugate.

A natural question arises: Is there a more general notion that permits to compare the
material responses at two arbitrary points even if the body does not enjoy uniformity? An
answer to this question is based on the comparison of the symmetry groups at di�erent
points. Indeed, we say that the body B is unisymmetric if the material symmetry groups
at two di�erent points are conjugate, whether or not the points are materially isomor-
phic. From the point of view of applications, this kind of body corresponds to certain
types of the so-called functionally graded materials (FGM for short). The unisymmetry
property was introduced in [81] with the objective to extend the notion of homogeneity
to non-uniform material bodies. Let us recall that the homogeneity of a uniform body is
equivalent to the integrability of the associated material G-structure [22, 80]. Roughly
speaking, this material G-structure is obtained by attaching to each point of B the cor-
responding material symmetry group via the choice of a given linear reference at a �xed
point; a change of the linear reference gives a conjugate G-structure. In a more sophis-
ticated framework, the set of all material isomorphisms de�nes a Lie groupoid, which in
some sense is a way to deal with all these conjugate G-structures at the same time.
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In the case of unisymmetric materials the attached group is not the material sym-
metry group, but its normalizer within the whole general linear group. This implies a
more di�cult understanding of the generalized concept of homogeneity associated with
unisymmetric materials. The main aim of the present paper is to provide a convenient
characterization of this homogeneity property. In this sense, this work may be regarded
as a continuation and improvement of the results obtained in [81].

The paper is organized as follows. Section �B.1 is devoted to a brief introduction to
groupoids and Lie groupoids; in particular, we de�ne the normalizoid of a subgroupoid
within a groupoid, which is just the generalization of the notion of normalizer in the
context of groups. An important family of examples is provided by the frame-groupoid,
consisting of all the linear isomorphisms between the tangent spaces at all the points
of a manifold M ; if M is equipped with a Riemannian metric g, one can introduce the
notion of orthonormal groupoid (taking the orthogonal part of the linear isomorphisms
given by the polar decomposition). If, without necessarily possessing a distinguished
Riemannian metric,M is endowed with a volume form, one obtains the Lie subgroupoid of
unimodular isomorphisms. In Section �B.2 we analyze the relations between Lie groupoids
and principal bundles; in particular, we examine the relation between the frame groupoid
and G-structures on a manifold M . In Section �5.4.1 we study the concepts of material
symmetry and material symmetry groups, and in Section �5.4.2 we discuss uniformity
and homogeneity. Finally, Section �5.4.3 is devoted to study the case of FGM materials,
and the geometric characterization of homogeneity in this case is obtained for both solid
and �uids.

5.4.1 The Constitutive Equation

In the most general sense (see [119], for instance), a body is a manifold B that can be
embedded in a Riemannian manifold (S, g) with the same dimension, the ambient space.
Usually, the body B is a simply connected open set of R3 and the ambient space is R3

itself with the standard metric. Each embedding K : B → S is called a con�guration
and its tangent map TK : TB → TS is called an in�nitesimal con�guration. If we �x a
con�guration K (the reference con�guration) and we pick an arbitrary con�guration K̃,
then the embedding compositon φ = K̃ ◦K−1 : K(B) ⊂ S → S is considered as a body
deformation and we call its tangent map TXφ at a point X in B an in�nitesimal defor-
mation or the deformation gradient, usually denoted by F . Since (S, g) is a Riemannian
manifold, we can induce a Riemannian metric on B by the pull-back of g by a reference
con�guration K. Since the metric on B depends from a chosen reference con�guration,
it is not canonical. However, for solid materials, we are able to de�ne an �almost� unique
metric compatible with the material structure, as we will show in section �5.4.2.

Usually, points in the body or in the reference con�guration (when they are identi�ed)
are denoted by capital letters X, Y , Z, etc., and by small letters x, y, z, etc., in the
deformed con�guration. At the moment we have the picture shown at Figure 5.1.

As stated by the principle of determinism, the mechanical and thermal behaviors of
a material or substance are determined by a relation called the constitutive equation. It
does not follow directly from physical laws but it is combined with other equations that
do represent physical laws (the conservation of mass for instance) to solve some physical
problems, like the �ow of a �uid in a pipe, or the response of a crystal to an electric
�eld. In our case of interest, elastic materials, the constitutive equation establishes that,
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Figure 5.1: Deformation in a reference con�guration.

in a given reference con�guration, the Cauchy stress tensor depends only on the material
points and on the in�nitesimal deformations applied on them, that is

σ = σ(FKr , Kr(X)). (5.2)

This relation is simpli�ed in the particular case of hyperelastic materials, for which equa-
tion (5.2) becomes

W = W (FKr , Kr(X)). (5.3)

where W is a scalar valued function which measures the stored energy per unit volume.
Among other postulates (principle of determinism, principle of local action, principle

of frame-indi�erence, etc.), it is claimed that a constitutive equation must not depend
on the reference con�guration. It turns out that equation (5.2) (and (5.3)) now can be
written in the form

σ = σ(F,X) (W = W (F,X), respectively), (5.4)

where F stands for the tangent map at X of a local con�guration (deformation).

De�nition 5.1. A material symmetry at a given point X ∈ B is a linear isomorphism
P : TXB → TXB such that

σ(F · P,X) = σ(F,X), (5.5)

for any deformation F at X. The set of material symmetries at X ∈ B is denoted by
G(X) and it is called the symmetry group of B at X. Given a con�guration K, we will
denote by GK(X) the symmetry group G(X) in the con�guration K, that is

GK(X) = TXK · G(X) · (TXK)−1. (5.6)

Di�erent types of elastic materials are given in terms of their symmetry groups. For
instance, a point is solid whenever its symmetry group in some reference con�guration is
a subgroup of the orthogonal group O(3) and, �uid whenever the orthogonal group is a
proper subgroup of the symmetry group. In [118, 154] it is possible to �nd a classi�cation,
due to Lie, of the connected Lie subgroups of Sl(3) and their corresponding Lie algebras.

De�nition 5.2. Given an elastic material B, let X ∈ B and consider its symmetry group
G(X). If there exists a con�guration K such that:

1. GK(X) is a subgroup of the orthogonal group of transformations O(3), then X is
said to be an elastic solid point. If furthermore
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Figure 5.2: Material symmetry.

(a) GK(X) = O(3), then we call X a fully isotropic elastic solid point ;

(b) GK(X) is a transverse orthogonal group (a group of rotations which �x an
axis), then X is said to be a transversely isotropic elastic solid point ;

(c) GK(X) consists only of the identity element, then X will be a triclinic elastic
solid point ;

2. GK(X) is a subgroup of the unimodular group of transformations U(3) and has the
orthogonal group O(3) as a proper subgroup, then X is said to be an elastic �uid
point. If furthermore

(a) GK(X) = Sl(3) then we still call X an elastic �uid ; and

(b) GK(X) is a transverse unimodular group (a group of unimodular transforma-
tions which �x an axis or a group of unimodular transformations which �x a
plane) then we call X an elastic �uid crystal.

The in�nitesimal con�guration TXK or the induced frame z = (TXK)−1 is called an
undistorted state of X.

This material classi�cation is pointwise. A body is solid if every point is solid.

5.4.2 Uniformity and Homogeneity

To de�ne the uniformity of a material, we �rst have to give a criterion that establishes
when two points are made of the same material. To compare their symmetry groups is
not su�cient since this is only a qualitative aspect. Indeed, consider two points in a
rubber band, one point may be relaxed while another point may be under stress. But we
are still able to release the stress on the second point and bring it to the same state as
the �rst one, and then compare their responses.

De�nition 5.3. We say that two points X, Y ∈ B are materially isomorphic, if there
exists a linear isomorphism PXY : TXB → TYB such that

σ(F · PXY , X) = σ(F, Y ), (5.7)

for any deformation F at Y . The linear map PXY is called a material isomorphism.

Even if the de�nition of material isomorphism and material symmetries are mathe-
matically similar, there is an important conceptual di�erence. While the symmetry group
of a point characterizes the material behavior of that point, a material isomorphism estab-
lishes a relation between two di�erent points. In fact, as already pointed out, a material
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Figure 5.3: Material isomorphism.

symmetry can be viewed as a material automorphism by identifying X with Y in the
above de�nition.

De�nition 5.4. Given a material body B, the material groupoid is the set of all the
material isomorphisms and symmetries, that is the set

G(B) = {P ∈ Π(B) satisfying De�nition 5.3} . (5.8)

It is easy to check that the material groupoid G(B) is actually a groupoid. Further-
more, it is a subgroupoid of the frame groupoid Π(B), but note that it is not necessarily
a Lie groupoid or even transitive as the frame groupoid. In fact, when all the points of
a body are pairwise related by a material isomorphism, it means that the body consists
only of one type of material. In this case, it is materially uniform.

De�nition 5.5. Given a material body B, we say that it is uniform if the material
groupoid G(B) is transitive, and smoothly uniform when the material groupoid is a tran-
sitive di�erential groupoid (and hence a Lie subgroupoid of Π(B)).

A simple but important property of uniform materials is that the groups of material
symmetries are mutually conjugate by any material isomorphism between the respective
base points. To be more precise, equation (B.2) reads in terms of elastic bodies:

G(Y ) = P · G(X) · P−1, ∀P ∈ G(B)X,Y , (5.9)

for any pair of materially isomorphic points X, Y ∈ B.
When we look a material through di�erent con�gurations, there are prefered states

of the material we want to distinguish: e.g. transversely isotropic solids have a �xed axis
�invariant� under material isomorphisms that we prefer to align with the vertical axis.
Such a state may be modelized in an in�nitesimal con�guration by a linear frame z. As we
have just said, in the material paradigm, this frame of reference z has some behaviors that
will be mainted by material isomorphisms. If we consider the set of all these distinguished
references that arise from material transformations of the `reference crystal' (see Figure
5.4), then we obtain the so called material G-structure of B. As far as we know, Wang
was the �rst to realize that the uniformity of a material can be modeled by a G-structure
[154], although this fact was emphasized by Bloom [22]. For de�niteness,

De�nition 5.6. A material G-structure of a smoothly uniform body B is any of the
Gz-structures induced by the material groupoid G(B) as shown in Theorem B.17. The
chosen frame of reference z ∈ FB is called the reference crystal.



5.4. CONTINUOUS MEDIA 129

Figure 5.4: The reference crystal.

De�nition 5.7. Given a smoothly uniform body B, a con�guration K that induces a
cross-section of a material G-structure will be called uniform. If there exists an atlas
{(Uα, Kα)}α∈A of B of local uniform con�gurations for a �xed material G-structure, the
body B will be said locally homogeneous, and (globally) homogeneous if the body B may
be covered by just one uniform con�guration.

The material concept of homogeneity corresponds to the mathematical concept of in-
tegrability. By Theorem B.22, a smoothly uniform body B will be locally homogenous if
and only if one (and therefore any) of the associated material G-structures is integrable.
Let K a uniform con�guration for a particular integrable G-structure G(B) of a homo-
geneous elastic material B. If (X, v1, v2, v3) denotes the cross section induced by K, thus
the constitutive equation (5.2) may be written in the form

σ = σ(FK , K(X)) = σ(F i
j , x

i), (5.10)

with obvious notation. Now note that, since through K any material isomorphism P
may be considered as an element of the structure group G, which is clear for material
symmetries, and since the body B is uniform, we have that

σ(F i
j , y

i) = σ(FK , K(Y )) = σ(FK · PK , K(X)) = σ(F i
k · P k

j , x
i) = σ(F i

j , x
i). (5.11)

Thus, we have just proved the following result:

Theorem 5.8. If K is a uniform con�guration of a homogeneous elastic body B, the
constitutive equation (5.2) is independent of the material point and invariant under the
right action of the structure group G of the G-structure G(B) related to K. Thus,

σ = σ(F i
j ) and σ(F i

k · P k
j ) = σ(F i

j ) for any P ∈ G. (5.12)

The physical interpretation of this theorem is that points of a homogenous elastic
body B can be put by means of a con�guration K in such a manner they are all at the
same state, at least locally. This con�guration K is uniform. Even if the material G-
structures of a smoothly uniform body B are di�erent (but equal via conjugation), there
must be at least one of them in which the structure group G satis�es a condition of the
material classi�cation 5.2.

De�nition 5.9. Accordingly to De�nition 5.2, a smoothly uniform elastic body B is solid
or �uid, if all the points are solid or �uid, respectively. Any of the material G-structures
for which the structure group ful�lls the classi�cation is called undistorted.
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Uniform Elastic Solids

The following result is due to Wang (cf. [154]). In his paper, Wang de�nes the material
G-structures from the point of view of atlases, families of cross-sections of the frame
bundle, instead of our approach through groupoids. These families are the cross-sections
of the resulting G-structures. When a material is solid, it is possible to endow the body
with a metric wich is compatible with the material structure. Wang calls such a metric
an intrinsic metric.

Theorem 5.10. Let B be a uniform elastic solid material; each undistorted material
G-structure G(M) de�nes a Riemannian metric g, invariant under material symmetries
and isomorphisms.

Proof. Given a cross-section (U, σ) of a �xed undistorted material G-structure G(B), let
X ∈ U and de�ne

gσX(v, w) :=
〈
σ(X)−1 · v, σ(X)−1 · w

〉
, ∀X ∈ U,∀v, w ∈ TXB, (5.13)

where 〈 , 〉 is the Euclidean scalar product. Thus, gσ is clearly a smoooth positive de�nite
symmetric bilinear tensor �eld on U , since it is nothing more than the pullback of the
Euclidean metric. Let us check that, in this manner, the metric gσ does not depend on
the chosen cross-section (U, σ). Given any other cross-section (V, τ), let X ∈ B be in the
intersection of their domains (if not empty, of course), then

gσX(v, w) = 〈σ(X)−1 · v, σ(X)−1 · w〉
= 〈Q · τ(X)−1 · v,Q · τ(X)−1 · w〉
= 〈τ(X)−1 · v, τ(X)−1 · w〉
= gτX(v, w),

(5.14)

where we used the fact that, by hypothesis, Q = σ(X)−1 · τ(X) ∈ G is orthogonal.
Now, let P ∈ GX,Y (B) be a material isomorphism; there will exist cross-sections

(U, σ), (V, τ) such that P = τ(Y ) · σ(X)−1. Then, we have

gY (P · v, P · w) = 〈τ(Y )−1 · P · v, τ(Y )−1 · P · w〉
= 〈σ(X)−1 · v, σ(X)−1 · w〉
= gY (v, w).

(5.15)

The metric we where looking for is just the metric g de�ned in (5.13).

If we consider the orthogonal groupoid O(B) related to this metric, we have that
the material groupoid is included in it, G(B) ⊂ O(B). Reciprocally, if B is a smoothly
uniform material such that it can be endowed with a Riemannian metric for which the
material symmetries and isomorphisms are orthogonal transformations, G(B) ⊂ O(B),
then B must be an elastic solid. Thus, elastic solids are completely characterized by
Riemannian metrics with the property of being invariant under material symmetries and
isomorphisms.

Remark 5.11. Given two material G-structures, G1(B) and G2(B), of a uniform elastic
solid B, we know that they must be related by the right action of a linear isomorphism F ∈
Gl(3), that is G2(B) = G1(B) · F . Thus, if G1(B) is undistorted, the G-structure G2(B)
will be undistorted if and only if the symmetric part V of the left polar decomposition
of F , F = V · R, lies in the centralizer of G1, that is V ∈ C(G1) (cf. [154], proposition
11.3). But this does not imply that G1(B) and G2(B) de�ne the same metric, which is
true only if V = I.
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Uniform Elastic Fluids

There are similar results for �uids as for solids. In this case, the �uid structure induces
volume forms.

Proposition 5.12. Let B be a uniform �uid material, then each undistorted material
G-structure G(B) de�nes a volume form ρ invariant under material symmetries and
isomorphisms.

Proof. Given a cross-section (U, σ) of a �xed undistorted material G-structure G(B), let
us de�ne on U the volume form

ρσ = σ∗1 ∧ σ∗2 ∧ σ∗3, (5.16)

where σ∗ denotes the co-frame cross-section of σ, that is σ∗ : U −→ F∗B such that
σ∗i(σj) ≡ δij on U . Let us show that the volume form ρσ does not depend on the chosen
cross-section (U, σ). In fact, let (U, σ), (V, τ) be two cross-sections with non-empty domain
intersection, then for any n vectors v1, . . . , vn ∈ TXB, with X ∈ U ∩ V , we have

ρσ(v1, . . . , vn) = det(vji )

= det((σ−1τ)ki ) · det(ṽjk)

= ρτ (v1, . . . , vn),

where we have used vi = vjiσi = ṽji τi, v
j
i = (σ−1τ)ki · ṽ

j
k and σ−1τ ∈ U(n). Since the

tangent vectors v1, . . . , vn are arbitrary, ρσ and ρτ coincide on the intersection of their
domains, U ∩ V . Thus, the volume form given in (5.16) de�nes locally a volume form ρ
on the whole material body B.

Let us see how ρ is invariant under material symmetries and isomorphisms. Given
P ∈ GX,Y (B), there must exist cross-sections (U, σ), (V, τ) such that P = τ(Y ) · σ(X)−1.
Then, we have

ρ ◦ P = (P−1τ)∗1 ∧ (P−1τ)∗2 ∧ (P−1τ)∗3 = σ∗1 ∧ σ∗2 ∧ σ∗3 = ρ, (5.17)

which �nishes the proof.

Considering now the induced unimodular groupoid U(B), by the invariance we have
the inclusion G(B) ⊂ U(B) which also characterizes elastic �uids.

5.4.3 Unisymmetry and Homosymmetry

As we have seen, the concept of homogeneity must be understood within the framework
of uniformity. But, there are materials that are not uniform by their very de�nition, the
so called functionally graded materials, or FGM for short. This type of material can be
made by techniques that accomplish a gradual variation of material properties from point
to point: for instance, ceramic-metal composites, used in aeronautics, consist of a plate
made of ceramic on one side that continuously change to some metal at the opposite
face. The material properties are also given through a constitutive equation like (5.4).
Therefore, we will have a notion of material symmetry and the symmetry groups will
be non-empty as in the case of uniform materials. For a FGM material, the symmetry
groups at two di�erent points are still conjugate, accordingly to the following de�nition.
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De�nition 5.13. Given a functionally graded material B, let be X, Y ∈ B; we say that a
linear map A : TXB −→ TYB is a unisymmetric (material) isomorphism if it conjugates
the symmetry groups of X and Y , namely,

G(Y ) = A · G(X) · A−1. (5.18)

As for uniform bodies, the material properties of a FGM are now characterized by the
collection of all the possible unisymmetric isomorphisms.

De�nition 5.14. Given a functionally graded material B, the set of unisymmetric iso-
morphisms, that is the set

N (B) =
{
A ∈ Π(B) : G(Y ) = A · G(X) · A−1

}
, (5.19)

will be called the FGM material groupoid of B.

Figure 5.5: The FGM material groupoid.

We may now extend the ideas of section �5.4.2 using this new object. Then we obtain:

De�nition 5.15. A functionally graded material B will be said unisymmetric if the FGM
material groupoid N (B) is transitive and, smoothly unisymmetric if it is a Lie groupoid.

Note that the notion of unisymmetry covers a qualitative aspect in the sense that a
unisymmetric FGM is made of only one �type� of material. For instance, it will be a fully
isotropic solid everywhere or a �uid everywhere, but it cannot be a fully iscotropic solid
at some point and a �uid at another point.

For this groupoid, we also have the associated G-structures.

De�nition 5.16. Let B be a smoothly unisymmetric body. Any of the asociated G-
strutures Nz(B), with z ∈ FB, will be called a material N-structure. A cross-section of
a material N -structure will be a unisymmetric cross-section and a con�guration inducing
such a cross-section will be a unisymmetric con�guration. If for any of the material N -
structures there exists a covering by unisymmetric con�gurations, the body B will be said
locally homosymmetric, and (globally) homosymmetric if the covering consists of only one
unisymmetric con�guration.

As we may see, the homosymmetry property is equivalent to the integrability of any
of the material N -structures. However, there is not an analogue result to Theorem 5.8 for
homosymmetric bodies. Since, even if we have an N -structure and the group structure
is the same for any point through any unisymmetric con�guration, the symmetry groups
may be represented by di�erent subgroups of N at each point.
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De�nition 5.17. We will say that a functionally graded elastic material B is a func-
tionally graded solid if there is a Riemmanian metric on B invariant under material
symmetries, that is every point is solid. Furthermore, B will be said

1. fully isotropic if every point is fully isotropic;

2. transversely isotropic if every point is transversely isotropic; and

3. triclinic if every point is triclinic.

The compatible metric is called a material metric.

We have not used the term �intrinsic� for the material metric, since it does not arise
from the material structure as for uniform elastic solids (cf. Theorem 5.10). The material
metric is an extra structures that ensures that the solid points are glued in a solid way.

If B is a FGM solid and we consider the orthonormal cross-sections (U, σ) of the
O(3)-structure given by a solid metric, then they must verify:

σ(X)−1 · G(X) · σ(X) ⊆ O(3) ∀X ∈ U ∀(U, σ), (5.20)

σ(X)−1 · τ(X) ∈ O(3) ∀X ∈ U ∩ V ∀(U, σ), (V, τ); (5.21)

where G(X) is the material symmetry group of B at X. In fact, these two conditions are
necessary and su�cient to de�ne a solid metric compatible with the material structure
by means of a family of cross-sections of FB.

On the other hand, if we consider another O(3)-structure, giving a second solid metric,
the two structures are not a priori related by the right action of a linear isomorphism
F ∈ Gl(3). But if they are, then the symmetric part of the polar decomposition of F
must be spherical, a homothety. This can be interpreted as the material being in both
cases in the same state but the measures of stress, or strain, are performed with di�erent
scales.

De�nition 5.18. A solid FGM B will be said to be relaxable if the O(3)-structure
given by some solid metric is integrable or, equivalently, if the Riemannian curvature
(with respect to this metric) vanishes identically. We then say that the O(3)-structure is
relaxed.

De�nition 5.19. We say that a body B is homosymmetrically relaxable if B is an unisym-
metric solid material for which there exists a covering Σ of local con�guration that are
both, unisymmetric and relaxed con�gurations.

Let B be a homosymmetrically relaxable elastic solid, then we have these two struc-
tures, the unisymmetric and the orthogonal, which are in certain manner interconnected.
As B is a solid, intuitively we may perceive that only the orthogonal part of a unisym-
metric isomorphism must be important. In what follows, we will explain this fact in more
detail.

A direct consequence of the previous Lemma B.11 and Proposition B.23 is the following
theorem, which implies a result proved by Epstein and de León [81].
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Theorem 5.20. If B is relaxable elastic solid that is also homosymmetric, we have

N̄ (B) = N (B) ∩ O(B), (5.22)

where N̄ (B) consits in the orthogonal part of the isomorphisms of N (B). Therefore, if
N̄z(B) is a smooth N̄z-structure, B will be homosymmetrically relaxable if and only if the
reduced material groupoid N̄z(B) is integrable (where z ∈ FB is �xed).

Let B a relaxable and homosymmetric elastic solid and let g denote the compatible
material metric

• If B is fully isotropic, which means the symmetry group G(X) of each point X ∈ B
is equal to the orthogonal group O(TXB, g) itself, then the reduced FGM material
groupoid N̄ (B) coincides with the orthogonal groupoid O(B).

• If B is triclinic (the only element of the symmetry group is the identity map), the
FGM material groupoid N (B) is the full frame groupoid Π(B), and thus N̄ (B) =
O(B) as before.

• If B is transversally isotropic, at each point X ∈ B there exists a basis of TXB in
which the material symmetries g ∈ G(X) may be represented by matrices of the
form: 1 0 0

0 cos θ − sin θ
0 sin θ cos θ


Thus, for this basis, the normalizer of G(X) is

N (X) =

〈1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

α 0 0
0 β 0
0 0 β

〉

where the brackets denote the group generated by the elements enclosed, and where
θ, α, β are real numbers, α, β being in addition positive. Therefore, the group at
any base point of the reduced FGM material groupoid coincides with the respective
symmetry group, that is

N̄ (X) = G(X) ∀x ∈ B.
This means that, even if the material groupoid G(B) (the set consisting of material
isomorphisms and symmetries) is not transitive (i.e. B is not uniform), the reduced
FGM material groupoid N̄ (B) is, and it coincides with G(B) on the symmetry
groups. Thus, there is some kind of uniformity that generalizes the classical one.
Finally, note that any G-structure related to N̄ (B) will have a transversely isotropic
structural group as mentioned before.

Finally, note that we recover an analogue result to Theorem 5.8, which is also
true for fully isotropic FGM solids. If B is homosymmetrically relaxable, then for
a unisymmetric and relaxable con�guration K, the constitutive equation will be
invariant under the action of the structure group of the reduced N -stucture, related
to the con�guration K. In this case, the structure group will coincide through K
with the symmetry group GK(X) at any point X in the domain of K. However, the
constitutive equation will not be independent of the point.
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Functionally Graded Elastic Fluids

In the same way we have generalized the de�nition of elastic solids in section �5.4.3, we
are going to give a new de�nition of elastic �uids. Classically, an elastic �uid is a uniform
elastic material which posses a unimodular material structure, that is a U(3)-structure
(see [146] for instance), even though there are smaller �uid structures as the ones of �uid
crystals (cf. [118]).

De�nition 5.21. We will say that a functionally graded elastic material B is a function-
ally graded �uid (or a functionally graded �uid crystal) if there is a volume form ρ on
B invariant under material symmetries such that every point is �uid (or, respectivelly, if
every point is a �uid crystal). The volume form is called a material form.

As in the case of functionally graded elastic solids, the following two conditions on
cross-sections (U, σ) of the frame bundle FB,

σ(X)−1 · Gx · σ(X) ⊆ U(3) ∀X ∈ U ∀(U, σ) (5.23)

σ(X)−1 · τ(X) ∈ U(3) ∀X ∈ U ∩ V ∀(U, σ), (V, τ) (5.24)

characterize the �uid material structure.
Given a functionally graded elastic �uid B, consider the unimodular groupoid U(B)

related to the volume form ρ (Example B.7). When two �uid points have conjugate
symmetry groups, only the unimodular part of the conjugate transformation plays a role
in the conjugation. That is, if P is the transformation that conjugates these two groups,
then the unimodular transformation P/detρ(P ) still realizes the conjugation.

Proposition 5.22. If B is a unisymmetric elastic �uid, then

N 1(B) = N (B) ∩ U(B), (5.25)

where N 1(B) is the unimodular reduction of the FGM material groupoid.

Let B a �uid crystal of �rst kind (see [118, 154]), that is, an elastic �uid as in 5.21
such that, for each material point X ∈ B, the symmetry group G(X) may be represented
for some reference z at X by matrices of the form

A =

a b 0
c d 0
e f g


with det(A) = ±1. The normalizer in Gl(3) of this group of matrices is the set of
matrices of the same form but with the restriction det(A) 6= 0. Therefore, when we
intersect the normalizer with U(3) we obtain the original group of matrices. This means
that N 1(X) = G(X) for every material point x ∈ B.

The latter example shows us how a �uid material, which is not necessarily uniform,
preserves uniformly the symmetry group structure across the body.
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Appendix A

Multi-index properties

Given a function f : Rm −→ R, its partial derivatives are classically denoted

fi1i2···ik =
∂kf

∂xi1∂xi2 · · · ∂xik
.

When smooth functions are considered, their cross derivatives coincide. Thus, the order
in which the derivatives are taken is no longer relevant, but the number of times with
respect to each variable.

Another notation to denote partial derivatives is de�ned through �symmetric� multi-
indexes (see [139]). A multi-index I will be an m-tuple of non-negative integers. The i-th
component of I is denoted I(i). Addition and subtraction of multi-indexes are de�ned
component-wise (whenever the result is still a multi-index), (I ±J)(i) = I(i)±J(i). The
length of I is the sum |I| =

∑
i I(i), and its factorial I! = ΠiI(i)!. In particular, 1i will

be the multi-index that is zero everywhere except at the i-th component which is equal
to 1.

Keeping in mind the above de�nition, we shall denote the partial derivatives of a
function f : Rm −→ R by:

fI =
∂|I|f

∂xI
=

∂I(1)+I(2)+···+I(m)f

∂x
I(1)
1 ∂x

I(2)
2 · · · ∂xI(m)

m

.

Thus, given a multi-index I, I(i) denotes the number of times the function is di�erentiated
with respect to the i-th component. The former notation should not be confused with the
latter one. For instance, the third order partial derivative ∂3f

∂x2∂x3∂x2
(with f : R4 −→ R)

is denoted f232 and f(0,2,1,0), respectively.
Here we present some simple, but useful, results on multi-indexes.

Lemma A.1. Given k integers 1 ≤ i1, . . . , ik ≤ m, with k ≥ 0 and m ≥ 1, de�ne the
function

n(i1, . . . , ik) := Πk
l=1Il(il) (n(∅) := 1), (A.1)

where Il := 1i1 + · · · + 1il ∈ Nm, for l = 1, . . . , k. We have that n is invariant under
permutations, that is, if π ∈ Σk is a permutation of k elements, then

n(i1, . . . , ik) = n(iπ(1), . . . , iπ(k)). (A.2)

Moreover, n(i1, . . . , ik) = Ik!.

137
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Proof. We proceed by induction on k. The cases k = 0 and k = 1 are trivial thus,
let us suppose that the result is true for some integer k ≥ 1 to show that it is also
true for k + 1. Since n(i1, . . . , ik, ik+1) = Ik+1(ik+1) · n(i1, . . . , ik), by the hipotesys of
induction, it su�es to show that n(i1, . . . , ik−1, ik, ik+1) = n(i1, . . . , ik−1, ik+1, ik), which is
equivalent to Ik+1(ik+1) · Ik(ik) = I ′k+1(ik) · I ′k(ik+1), where I ′k = 1i1 + · · · + 1ik−1

+ 1ik+1

and I ′k+1 = 1i1 + · · ·+ 1ik−1
+ 1ik+1

+ 1ik .

Ik+1(ik+1) · Ik(ik) = (
k−1∑
l=1

δikil + δikik + δikik+1
)(
k−1∑
l=1

δ
ik+1

il
+ δ

ik+1

ik+1
)

=
k−1∑
l=1

δikil ·
k−1∑
l=1

δ
ik+1

il
+

k−1∑
l=1

δikil +
k−1∑
l=1

δ
ik+1

il
+ δikik+1

·
k−1∑
l=1

δ
ik+1

il

=
k−1∑
l=1

δ
ik+1

il
·
k−1∑
l=1

δikil +
k−1∑
l=1

δ
ik+1

il
+

k−1∑
l=1

δikil + δ
ik+1

ik
·
k−1∑
l=1

δikil

= (
k−1∑
l=1

δ
ik+1

il
+ δ

ik+1

ik+1
+ δ

ik+1

ik
)(
k−1∑
l=1

δikil + δikik+1
)

= I ′k+1(ik) · I ′k(ik+1)

Note that J ! = J(i) · I! for any pair (I, i) such that I + 1i = J .

Lemma A.2. 1. Let {aI,i}I,i be a family of real numbers indexed by a multi-index
I ∈ Nm and by an integer i such that 1 ≤ i ≤ m. Given an integer k ≥ 1, we have
that ∑

|I|=k−1

m∑
i=1

aI,i =
∑
|J |=k

∑
I+1i=J

aI,i. (A.3)

2. More generally, let {aI1,I2}I1,I2 be a family of real numbers indexed by two multi-
indexes I1, I2 ∈ Nm. Given two integers k ≥ l ≥ 0, we have that∑

|I1|=l

∑
|I2|=k−l

aI1,I2 =
∑
|J |=k

∑
I1+I2=J
|I1|=l

aI1,I2 . (A.4)

Proof. The proof is trivial when we realize that the sets {(I, i) : |I| = k− 1, 1 ≤ i ≤ m}
and {(I, i) : I + 1i = J, |J | = k} are in bijective correspondence. For the general case,
we shall consider the sets {(I1, I2) : |I1| = l, |I2| = k − l} and {(I1, I2) : I1 + I2 =
J, |I1| = l, |J | = k}.

∑
|I1|+|I2|=k

aI1,I2 =
k∑
l=0

∑
|I1|=l

∑
|I2|=k−l

aI1,I2 =
∑
|J |=k

∑
I1+I2=J

aI1,I2 . (A.5)
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Lemma A.3. Let {aI,i}I,i be a family of real numbers indexed by a multi-index I ∈ Nm

and by an integer i such that 1 ≤ i ≤ m. If J = 1i1 + · · ·+ 1ik ∈ Nm is a multi-index of
length k ≥ 0, we then have that

∑
I+1i=J

aI,i =
k∑
l=1

1

J(il)
· aJl̂,il , (A.6)

where Jl̂ := 1i1 + · · ·+ 1il−1
+ 1il+1

+ · · ·+ 1ik .

Proof. We proceed by induction on the dimension of the multi-indexes, m. The case
m = 1 is clear thus, let us suppose that the result is true for m − 1 ≥ 1 to show that
it is also true for m. We �rst note without lose of generality that we may suppose that
i1 ≤ i2 ≤ · · · ≤ ik and that J(m) 6=. Otherwise, we could easily reorder the indexes and
the coordinates correspondingly before the computations and undo the changes at the
end. ∑

I+1i=J

aI,i =
∑

I+1i=J
i 6=m

aI,i + aJ−1m,m

=
∑

I+1i=J̃

aI+J(m)1m,i + aJ−1m,m

where J̃ = J − J(m)1m

=

k−J(m)∑
l=1

1

J̃(il)
· aJ̃l̂+J(m)1m,il

+ aJ−1m,m

where we have applied the hypothesis of induction

=

k−J(m)∑
l=1

1

J(il)
· aJl̂,il +

k∑
l=k−J(m)+1

1

J(il)
· aJl̂,il

Lemma A.4. Let J ∈ Nm be a non-zero multi-index. We have that∑
I+1i=J

I(i) + 1

|I|+ 1
= 1. (A.7)

Proof.

1 =
m∑
i=1

J(i)

|J |
=
∑

I+1i=J

J(i)

|J |
=
∑

I+1i=J

I(i) + 1

|I|+ 1

Lemma A.5. Let {aJ}J be a family of real numbers indexed by a multi-index J ∈ Nm.
Given a positive integer l ≥ 1, we have that

∑
|J |=l

aJ =
∑
|I|=l−1

m∑
i=1

I(i) + 1

|I|+ 1
aI+1i , (A.8)
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Proof. ∑
|J |=l

aJ =
∑
|J |=l

( ∑
I+1i=J

I(i) + 1

|I|+ 1

)
aJ

=
∑
|J |=l

∑
I+1i=J

I(i) + 1

|I|+ 1
aI+1i

=
∑
|I|=l−1

m∑
i=1

I(i) + 1

|I|+ 1
aI+1i .

Lemma A.6. Let {aJ}J be a family of real numbers indexed by a multi-index J ∈ Nm.
Given a positive integer k ≥ 1, we have that∑

|J |=k

aJ =
∑

1≤j1,...,jk≤m

Jk!

k!
aJk , (A.9)

where Jk := 1j1 + · · ·+ 1jk .

Proof. We proceed by induction on k. The case k = 1 is trivial thus, let us suppose that
the result is true for some integer k ≥ 1 to show that it is also true for k + 1.∑

|J |=k+1

aJ =
m∑

jk+1=1

∑
|J |=k

J(jk+1) + 1

k + 1
aJ+1jk+1

=
m∑

jk+1=1

∑
1≤j1,...,jk≤m

Jk!

k!

Jk(jk+1) + 1

k + 1
aJk+1jk+1

=
∑

1≤j1,...,jk+1≤m

Jk+1(jk+1) · Jk!
(k + 1)!

aJk+1

Lemma A.7. Let
{
aJ , b

J
}
J
be a family of real numbers indexed by a multi-index J ∈ Nm.

Given an integer l ≥ 1, we have that∑
|J |=l

bJaJ =
∑
|I|=l−1

m∑
i=1

I(i) + 1

|I|+ 1
(bI+1i +QI,i)aI+1i , (A.10)

where
{
QI,i

}
I,i

is a family of real numbers such that for any multi-index J ∈ Nm (with
|J | ≥ 1) we have that ∑

I+1i=J

I(i) + 1

|I|+ 1
QI,i = 0. (A.11)

Proof. ∑
|J |=l

bJaJ =
∑
|J |=l

( ∑
I+1i=J

I(i) + 1

|I|+ 1

)
bJaJ

=
∑
|J |=l

∑
I+1i=J

I(i) + 1

|I|+ 1
(bI+1i +QI,i)aI+1i .



Appendix B

Groupoids and G-structures

B.1 Groupoids

Groupoids are a generalization of groups; indeed, they have a composition law with
respect to which there are some identity elements and every element has an inverse. For
a good reference on groupoids, the reader is refered to Mackenzie [117].

De�nition B.1. Given two sets Ω and M , a groupoid Ω over M , the base, consists of
these two sets together with two mappings α, β : Ω→M , called the source and the target
projections, and a composition law satisfying the following conditions:

1. The composition law is de�ned only for those η, ξ ∈ Ω such that α(η) = β(ξ) and,
in this case, α(ηξ) = α(ξ) and β(ηξ) = β(η). We will denote Ω∆ ⊂ Ω × Ω the set
of such pairs of elements.

2. The composition law is associative, that is ζ(ηξ) = (ζη)ξ for those ζ, η, ξ ∈ Ω such
that each member of the previous equality is well de�ned.

3. For each x ∈M there exists an element 1x ∈ Ω, called the unity over x, such that

(a) α(1x) = β(1x) = x;

(b) η · 1x = η, whenever α(η) = x;

(c) 1x · ξ = ξ, whenever β(ξ) = x.

4. For each ξ ∈ Ω there exists an element ξ−1 ∈ Ω, called the inverse of ξ, such that

(a) α(ξ−1) = β(ξ) and β(ξ−1) = α(ξ);

(b) ξ−1ξ = 1α(ξ) and ξξ−1 = 1β(ξ).

The groupoid Ω will be said transitive if, for every pair x, y ∈M , the set of elements that
have x as source and y as target, i.e. Ωx,y = α−1(x) ∩ β−1(y), is not empty.

A subset Ω′ ⊂ Ω is said to be a subgroupoid of Ω over M if itself is a groupoid over
M with the composition law of Ω.

The elements ofM are often called objects and those of Ω arrows due to their graphical
interpretation as we may see in the Figure B.1 or in the example B.2. By the very
de�nition of groupoids, the unity over an object and the inverse of an arrow are unique.
Note also that Ωx,x is a group and the unity 1x is the group identity.
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Figure B.1: The arrow picture.

Example B.2 (The trivial groupoid). Let M denote any non-empty set. The Cartesian
product M ×M is trivially a groupoid over M . The source of an arrow (x, y) is x and
the target y, and the composition (y′, z) · (x, y) is (x, z) if and only if y′ = y.

Example B.3 (The action groupoid). Now, let G be a group acting on the left on M .
Then the product G×M is a groupoid over M with the following structural maps:

• the source, α(g, x) = x;

• the target, β(g, x) = g · x;

• and the composition law, (h, y) · (g, x) = (h · g, x) if and only if y = g · x.

With these considerations, the unity over an element x ∈M and the inverse of an arrow
(g, x) ∈ G×M are respectively given by 1x = (e, x) and (g−1, g · x), where e ∈ G denotes
the identity and g−1 the inverse of g.

Proposition B.4. Let Ω be a groupoid over a setM . Then, given three points x, y, z ∈M
such that they can be connected by arrows, we have the relation

Ωx,z = g · Ωx,y = Ωy,z · f, ∀g ∈ Ωy,z, ∀f ∈ Ωx,y; (B.1)

in particular,
Ωy,y = g · Ωx,x · g−1, ∀g ∈ Ωx,y. (B.2)

For the moment, we have only algebraic structures on groupoids. Let us endow them
with di�erential structures.

De�nition B.5. We say that a groupoid Ω over M is a di�erential groupoid if the
groupoid Ω and the base M are equipped with respective di�erential structures such
that:

1. the source and the target projections α, β : Ω→ M are smooth surjective submer-
sions;

2. the unity or inclusion map i : x ∈M 7→ 1x ∈ Ω is smooth;

3. and the composition law, de�ned on Ω∆, is smooth.
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Additionally if Ω is transitive, then we call it a Lie groupoid.
A subgroupoid Ω′ of a di�erential (or Lie) groupoid Ω which is in turn a di�erential

groupoid with the restricted di�erential structure is called a di�erential subgroupoid (resp.
Lie subgroupoid).

Note that the condition (1) in De�nition B.5 implies that the αβ-diagonal Ω∆ is an
embeded submanifold of Ω× Ω, and then (3) makes sense. Ver Eecke showed (cf. [117])
that, even with more relaxed conditions, the inverse map ξ ∈ Ω 7→ ξ−1 ∈ Ω is smooth, and
therefore a di�eomorphism. In fact, there is a more general way to de�ne groupoids and
subgroupoids (di�erentiable or not) as the reader may �nd in [117], but for our purposes
these de�nitions will be su�cient.

Example B.6 (The frame groupoid). Let M be a smooth manifold with dimension n and
consider the space of linear isomorphisms between tangent spaces to M at any pair of
points, namely

Π(M) =
⋃

x,y∈M

Iso(TxM,TyM). (B.3)

This set is called the frame groupoid of M and, in fact, it is a Lie groupoid over M , as
we are going to show.

First of all, we must give a manifold structure to Π(M). Let (U, φ) and (V, ψ) be two
charts of M and consider the map given by

χ : W −→ φ(U)×Gl(n)× ψ(V )

A 7−→ (xi, Aji , y
j)

(B.4)

where Gl(n) denotes the general linear group on Rn,

W =
⋃

x∈U,y∈V

Iso(TxM,TyM) and A

(
∂

∂xi

)
= Aji

∂

∂yj
. (B.5)

By means of the induced chart (W,χ) we endow Π(M) with a di�erential structure of
dimension 2n+ n2.

The structural maps are given in the following way:

• the source and the target projections: if A ∈ Iso(TxM,TyM), then α(A) = x and
β(A) = y;

• the composition law is the natural composition between isomorphisms when it is
de�ned;

• and the inclusion: if x ∈ M , then the unity 1x over x is the identity map of
Gl(TxM) = Iso(TxM,TxM).

These maps de�ne clearly a groupoid over M and, through (B.4) and (B.5), they are
smooth for the di�erential structure naturally induced from the one of M .

Example B.7 (The unimodular groupoid). Let M be an orientable smooth manifold of
dimension n and let ρ be a volume form on it (in a more general case, without the
assumption of orientation, we can consider a volume density). We can use ρ to de�ne a
determinant function over the frame groupoid Π(M) by the formula:

ρ(A · v1, . . . , A · vn) = detρ(A) · ρ(v1, . . . , vn) ∀A ∈ Π(M), (B.6)
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where v1, . . . , vn ∈ Tα(A)M . Now, it is easy to check that the set of unimodular transfor-
mations

U(M) = det−1
ρ ({−1,+1}), (B.7)

which is called the unimodular groupoid, is a transitive subgroupoid of Π(M). In fact,
it is a Lie subgroupoid of Π(M), since detρ is a smooth submersion and thus U(M) is a
closed submanifold.

Example B.8 (The orthogonal groupoid). Let (M, g) be a Riemannian manifold of dimen-
sion n and consider the space of orthogonal linear isomorphisms between tangent spaces
to M at any pair of points, namely

O(M) =
⋃

x,y∈M

O(TxM,TyM). (B.8)

This set is called the orthogonal groupoid of M and, with the restriction to it of the
structure maps of the frame groupoid Π(M), O(M) is a subgroupoid of Π(M). Since
O(M) is de�ned by closed and smooth conditions, namely

O(M) =
{
A ∈ Π(M) : A−1 = AT

}
,

this set is a closed submanifold of Π(M), and thus a Lie subgroupoid.
Furthermore, the orthogonal groupoid O(M) is also a Lie subgroupoid of the unimod-

ular groupoid U(M) related to the Riemannian density induced by the metric.

De�nition B.9. Let Ω be a groupoid over M ; then the normalizoid of a subgroupoid Ω̃
of Ω is the set de�ned by

N(Ω̃) =
{
g ∈ Ωx,y : Ω̃y,y = g · Ω̃x,x · g−1, x, y ∈ B

}
. (B.9)

From the de�nition, it is obvious that a subgroupoid Ω̃ of a groupoid Ω is also a
subgroupoid of its normalizoid N(Ω̃) which is, in turn, a subgroupoid of the ambient
groupoid Ω.

Note that the group over a base point in the normalizoid is the normalizer of the
group over this point in the subgroupoid, that is

(N(Ω̃))x,x = N(Ω̃x,x), (B.10)

which explains the used terminology. The di�erence between a subgroupoid and its
normalizoid can be huge. For instance, given a transitive groupoid Ω over a set M ,
consider its base groupoid, that is the subgroupoid consisting of the groupoid unities:

1(Ω) = {1x : x ∈M} . (B.11)

Then, the normalizoid of 1(Ω) in Ω is the whole groupoid Ω. From now on, we will focus
on subgroupoids of the frame groupoid over a manifold and we will see how to reduce the
normalizoid of a subgroupoid whenever an extra structure is avaible on the base manifold.

First of all, recall that there exists a unique decomposition of a linear isomorphism
into an orthogonal part and a symmetric one. More precisely, let F : E −→ E ′ be
a linear isomorphism between two inner product vector spaces E and E ′. There exist
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an orthogonal map R : E −→ E ′ and positive de�nite symmetric maps U : E −→ E,
V : E ′ −→ E ′ such that:

F = R · U and F = V ·R. (B.12)

As we have mentioned, each of these decompositions is unique and they are called the left
and right polar decompositions of F , respectively; the orthogonal part R will be denoted
by F⊥.

Proposition B.10. Let Ω be a (transitive) subgroupoid of the frame groupoid Π(M) of
a Riemannian manifold (M, g). Denote by Ω̄ the set of the orthogonal part of elements
of Ω, that is

Ω̄ =
{
F⊥ : F ∈ Ω

}
. (B.13)

Then Ω̄ is a (transitive) subgroupoid of the orthogonal groupoid O(M). We call Ω̄ the
orthogonal reduction of Ω (or the reduced groupoid, for the sake of simplicity).

Proof. In order to show that Ω̄ is a subgroupoid of O(M), we only have to check that it
is a groupoid over M with the restriction of the structure maps of Π(M), which is clear
once we note that for any three linear isomorphisms F1, F2, F3, such that F3 = F2 ·F1, we
have by the uniqueness of the polar decomposition that F⊥3 = F⊥2 · F⊥1 .

Note that the orthogonal reduction of a normalizoid is not necessarily a subgroupoid
of the original one.

Proposition B.11. In the hypotesis of Proposition B.10, if Ω is such that, for every
base point x ∈ M , Ωx,x is a subgroup of Ox,x(M) (the orthogonal group at x), then
the orthogonal reduction of the normalizoid of Ω coincides with the intersection of the
orthogonal groupoid and the normalizoid itself, i.e.

N̄ (Ω) = N (Ω) ∩ O(M). (B.14)

Proof. The inclusion N̄ (Ω) ⊃ N (Ω) ∩ O(M) is clear and, from the above Proposition
B.10, we have N̄ (Ω) ⊂ O(M), thus we only need to show that N̄ (Ω) ⊂ N (Ω). Let
R ∈ N̄x,y(Ω), then there exist a linear isomorphism F ∈ Nx,y(Ω) such that F⊥ = R.
Since F conjugates the orthogonal subgroups Ωx,x and Ωy,y, so does its orthogonal part
(cf. [81], Lemma A.2). Hence, R ∈ Nx,y(Ω) and N̄ (Ω) ⊂ N (Ω) ∩ O(M).

Similar results can be given whenever M is equipped with a volume form.

Proposition B.12. Given a smooth manifold M , suppose it is endowed with a volume
form (or density) ρ. If Ω denotes a (transitive) subgroupoid of the frame groupoid Π(M),
then the set

Ω1 = Ω/detρ, (B.15)

is a (transitive) subgroupoid of the unimodular groupoid U(M) associated with ρ and it
will be called the unimodular reduction of Ω.

Even more, if Ω is such that, for every base point x ∈ M , Ωx,x is a subgroup of
Ux,x(M) (the unimodular group at x), then the unimodular reduction of the normalizoid
of Ω coincides with the intersection of the unimodular groupoid and the normalizoid itself,
i.e.

N 1(Ω) = N (Ω) ∩ U(M). (B.16)
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B.2 G-structures

Lie subgroupoids of the frame groupoid of a manifold are closely related to another
geometric object: G-structures, which are a particular case of �ber bundles. For a com-
prehensive reference related to principal �ber bundles and G-structures see [84, 110, 111].
We give here their de�nition and some results about the interconnection with groupoids.

De�nition B.13. Given two manifolds P,M and a Lie group G, we say that P is a
principal bundle over M with structure group G if G acts on the right on P and the
following conditions are satis�ed:

1. the action of G is free, i.e. the fact that ua = u for some u ∈ P implies a = e, the
identity element of G;

2. M = P/G, which implies that the canonical projection π : P −→ M is di�eren-
tiable;

3. P is locally trivial, i.e. P is locally isomorphic to the product M ×G, which means
that for each point x ∈ M there exists an open neighborhood U and a di�eomor-
phism Φ : π−1(U) −→ U×G such that Φ = π×φ, where the map φ : π−1(U) −→ G
has the property φ(ua) = φ(u)a for all u ∈ π−1(U), a ∈ G.

A principal bundle is commonly denoted by P (M,G), π : P −→M or simply by P , when
there is no ambiguity. The manifold P is called the total space, M the base space, G the
structure group and π the projection. The closed submanifold π−1(x), with x ∈ M , is
called the �ber over x and is denoted Px; if u ∈ P , Pπ(u) is called the �ber through u and
is denoted Pu. The maps given in (3) are called (local) trivializations.

It should be remarked that a similar de�nition can be given for left principal bundles
using left actions.

Notice that any �ber Px is di�eomorphic to the structure group G, but not canonically
so. On the other hand, if we �x u ∈ Px, then Pu = uG. We may visualize a principal
�ber bundle P (M,G) as a copy of the structure Lie group G at each point of the base
manifold M in a di�entiable way as it is stated by the trivialization property (3).

An elementary example of principal bundle is the frame bundle FM of a manifoldM .
This manifold consists of all the reference frames at all the point ofM . The frame bundle
FM is a principal bundle over M with structure group Gl(n), where n is the dimension
of M . As it is obvious, the canonical projection π sends any frame x ∈ FM to the base
point x ∈ M where it lies. The right action of Gl(n) over M is de�ned in the following
way:

R : FM ×Gl(n) −→ FM
(z, a) 7−→ Raz = z · a = (ajivj),

(B.17)

where (aji ) is the matrix representation of a ∈ Gl(n) in the canonical basis of Rn and (vi)
is the ordered basis given by z ∈ FM .

De�nition B.14. Let P (M,G) and Q(M,H) be two principal bundles such that Q is
an embedded submanifold of P and H is a Lie subgroup of G. We say that Q(M,H) is
a reduction of the structure group G of P if the principal bundle structure of Q(M,H)
comes from the restriction of the action of G on P to H and Q. In this case, we call Q
the reduced bundle.
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Consider the following (non rigorous) construction: take a principal bundle P (M,G),
shrink its structure group to a Lie subgroup H of G, �x an element u ∈ P in each �bre
of the bundle and apply the action of H to each of these chosen elements; this gives us a
subset Q ⊂ P . The obtained set Q is a reduced bundle when the selection of the u's is
made smoothly and with certain compatibility.

De�nition B.15. Let M be an n-dimensional smooth manifold and G a Lie subgroup
of Gl(n); then a G-structure G(M) is a G-reduction of the frame bundle FM .

Note that there may exist di�erent G-structures with the same structure group. As
an example of G-structure, consider a Riemannian manifold (M, g). The set of orthonor-
mal references of FM gives us an O(n)-structure. In fact, any O(n)-structure on M is
equivalent to a Riemannian structure (see [84]).

Now let us introduce two results from [118] that show how a G-structure may arise
from a Lie groupoid.

Proposition B.16. Let Ω be a Lie groupoid over a smooth manifold M with source and
target projections α and β, respectively. Given any point x ∈M , we have that:

1. Ωx,x = α−1(x) ∩ β−1(x) is a Lie group and

2. Ωx = α−1(x) is a principal Ωx,x-bundle over M whose canonical projection is the
restriction of β.

Given a smooth manifold M of dimension n, any reference z ∈ FM (at a point
x ∈ M) may be seen as the linear mapping ei ∈ Rn 7→ vi ∈ TxM , where (e1, . . . , en) is
the canonical basis of Rn and (v1, . . . , vn) the basis of TxM de�ned by z.

Theorem B.17. Suppose that M is a smooth n-dimensional manifold and Ω is a Lie
subgroupoid of the frame groupoid Π(M). If α and β denote the respective source and
target projections of Ω, then we have that for any point x ∈ M and any frame reference
z ∈ FM at x:

1. Gz = z−1 · Ωx,x · z is a Lie subgroup of Gl(n) and

2. the set Ωz of all the linear frames obtained by translating z by Ωx, that is

Ωz = {gx,y · z : gx,y ∈ Ωx} , (B.18)

is a Gz-structure on M .

Once the reference z is �xed, the linear frames that lie in the Gz-structure are called
adapted or distinguished references.

Even though the frame groupoid (and hence each of its subgroupoids) acts on the left
on the frame bundle of the base manifold, the structural group that arises from a frame
subgroupoid acts naturally on the right on any of the induced G-structures:

zy · gzx = (gx,y · zx) · (z−1
x · gx,x · zx) = gx,y · gx,x · zx = g′x,y · zx = z′y, (B.19)

where zx ∈ FxM , zy ∈ (Ωzx)y, gzx ∈ Gzx , gx,y ∈ Ωx,y and so on.
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Remark B.18. It is readily seen from equation (B.2) that two G-structures that come
from the same Lie groupoid are equal if and only if they have a reference in common,

Ωz1 = Ωz2 ⇔ Ωz1 ∩ Ωz2 6= ∅. (B.20)

Here �equal� means that the two G-structures are the same as sets and they have the
same structure groups. By the above statement, given two G-structures Ωz1 and Ωz2

induced by a Lie groupoid Ω, we can suppose without loss of generality that z1 and z2

are linear frames at the same base point. Thus, it is easy to see that their respective
structure groups Gz1 and Gz2 are conjugate; more precisely:

Gz2 = z−1
2 z1 ·Gz1 · z−1

1 z2. (B.21)

In short, given a Lie subgroupoid Ω of Π(M), the frame bundle FM is the disjoint union
of G-structures related to Ω by Theorem B.17. Moreover, they have conjugate group
structures and one of these G-structures may be transformed to another by means of
any element g ∈ Gl(n) that conjugates their structural groups. Hence, modulo these
transformations, a G-structure related to a Lie subgroupoid Ω of Π(M) is unique, which
is clear since Ω is �xed.

A natural question is whether Theorem B.17 has a converse. Given a G-structure, it
seems reasonable to be able to choose di�erentially isomorphisms that transform adapted
references to their counterparts.

Theorem B.19. Let ω be a G-structure over an n-dimensional smooth manifold M .
Then the set of linear isomorphism that transforms distinguished frames into distinguished
frames, that is the set

Ω =
{
A ∈ Π(M) : Az ∈ ω, z ∈ ωα(A)

}
, (B.22)

where Π(M) is the frame groupoid ofM and α the source projection, is a Lie soubgroupoid
of Π(M). Furthermore, for any reference frame z ∈ ω, the G-structure associated to Ω
and given by Theorem B.17 coincides with ω, i.e.

Ωz = ω and Gz = G. (B.23)

Proof. The set de�ned by equation (B.22) is obviously a transitive subgroupoid of Π(M).
It remains only to show that it is a di�erential groupoid with the restriction of the
structural maps. Given two local cross-sections (U, σ) and (V, τ) of ω, consider the set of
isomorphisms in Ω with source in U and target in V , namely

ΩU,V = α−1(U) ∩ β−1(V ), (B.24)

where α and β are the restrictions to Ω of the source and the target projections of Π(M).
Given an isomorphism A ∈ ΩU,V , let x = α(A) ∈ U and y = β(A) ∈ V . If we denote
the components of the ordered bases σ(x) and τ(y) by (σi(x)) and (τj(y)) respectively,
we have that there exist coe�cients Aji such that

Aσi(x) = Ajiτj(y). (B.25)

Since σ(x) = (σi(x)) is a linear frame at x in ω, Aσ(x) = (Ajiτj(y)) is a linear frame
at y in ω too. But τ(y) = (τj(y)) is also a linear frame at y in ω, thus a = (Aji ) must
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necessarily be an element of the structure group G. This consideration being made, we
de�ne the coordinate chart Φσ,τ by

Φσ,τ : ΩU,V −→ U ×G× V
A 7−→ (x, a, y)

. (B.26)

Given a covering of M by local sections of ω, say Σ, the atlas

{(ΩU,V ,Φσ,τ ) : (U, σ), (V, τ) ∈ Σ} (B.27)

de�nes a smooth structure on Ω, from which it is a straightforward computation to show
that the projections α and β and the composition law are smooth.

Remark B.20. The result we have just proved, toghether with Theorem B.17, shows the
equivalence between Lie subgroupoids of Π(M) and reductions of the frame bundle FM .
In fact it is still true for principal bundles in general: by Proposition B.16 we are able to
associate some principal bundles to a groupoid and, given a principal bundle P (M,G),
the set of maps φx,y : Px −→ Py such that φx,y(u · g) = φx,y(u) · φ(g), for a suitable group
isomorphism φ : G −→ G, is a Lie groupoid related to P by Proposition B.16.

De�nition B.21. A G-structure G(M) over a manifoldM is said to be integrable if there
exists an atlas {(Uα, φα)}α∈A of the base manifold, such that the induced cross-sections
σα(x) = (Txφα)−1 take values in G(M).

By the very de�nition, if a G-structure is integrable, the same happens to all its
conjugate G-structures.

Theorem B.22. A G-structure over a manifold M with dimension n is integrable if and
only if it is locally isomorphic to the standard G-structure of Rn, that is, to Rn ×G.

The following result will be useful in the next section.

Lemma B.23. Let M be a manifold. If Ω and Ω̃ are two subgroupoids of the frame
groupoid Π(M), then their intersection Ω̂ := Ω ∩ Ω̃ is again a subgroupoid of Π(M) (and
of Ω and Ω̃). Furthermore, if they are Lie groupoids, then we have the following relations:

Ω̂z = Ωz ∩ Ω̃z and Ĝz = Gz ∩ G̃z, (B.28)

where z ∈ FM is a �xed frame and Ωz, Ω̃z, Ω̂z, Gz, G̃z and Ĝz are the respective G-
structures and structural groups.
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