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Prologo

Este trabajo recopila la investigacion desarrollada y los resultados obtenidos durante
mis cuatro anos como becario predoctoral en el Instituto de Ciencias Matematicas (y
anteriormente a su formacion, en el Instituto de Matematicas y Fisica Funtamental). Su
defensa tendra lugar en la Universidad Autéonoma de Madrid con objetivo de obtener el
grado de Doctor en Matematicas. La direccion ha sido llevada a cabo por Manuel de Leén
Rodriguez, Profesor de Investigacion y Director del Instituto de Ciencias Mateméticas,
y David Martin de Diego, Investigador Cientifico de la misma institucion. En cuanto a
tutor he contado con Rafael Orive Illera, Profesor Titular de la Universidad Auténoma de
Madrid. De la tarea de lector se ha encargado Marco Castrillon Lopez, Profesor Titular
de la Universidad Complutense de Madrid.

La monografia versa sobre teorfa clasica de campos de orden superior. El lector podra
encontrar en sus capitulos iniciales una revision de algunos de los hechos conocidos en
mecanica clasica y teoria clasica de campos (de primer orden). En los capitulos finales,
se expone la parte original de la memoria con la extension de estas teorias a campos
clasicos de orden superior, centrandose en la problematica de un formalismo candnico
hamiltoniano. Algunos ejemplos son propuestos con el fin de facilitar la comprension y
analisis de los resultados obtenidos.

Se ha pretendido dar una organizacién gradual y un tratamiento unificado de la ma-
teria de tal manera que pueda ser usada en posibles desarrollos futuros.

Cédric M. Campos
Madrid, 27 de julio de 2010

vil



viii PROLOGO



Agradecimientos

Hace ya varios anos, cuando decidi empezar los estudios de doctorado, ya no con el fin de
obtener el grado de doctor, sino méas bien con el simple objetivo de continuar lo que habia
iniciado durante mis estudios de licenciatura, no habria podido imaginar los derroteros
que tomarfa mi vida ni mi carrera académica. No deja de ser un hecho natural e inherente
al devenir del tiempo, pero atin asi me sorprende. Después de recorrer este camino, me doy
cuenta de que una tesis doctoral supone mucho mas que la acumulaciéon de conocimientos
y el desarrollo intelectual que se le asocia, lo que de por si no es poco. Al llegar al final
de esta etapa de mi vida, veo como he crecido a nivel personal y profesional, emocional
e intelectual. Todo ello no ha sido gratuito, sino gracias a la contribucién de las muchas
personas con las que me he encontrado a lo largo de este tiempo. Como digo, han sido
numerosas y sus aportaciones cuantiosas a la par que diversas, desde senalarme un detalle
clave en un problema tedrico, a ofrecerme apoyo en una situacion comprometida. A todas
ellas les estoy enormemente agradecido y, sin lugar a dudas, las tendré presentes siempre
que recorra las lineas de estas paginas. Por ello, les debo al menos dejar aqui escrito sus
nombres. Quisiera poder dar gracias personalmente a cada una de ellas, recordar cada
cara y cada instante, pero temo fallar. De todas formas, voy a enfrentarme a tan ardua
tarea.

En primer lugar, quiero agradecer a quiénes han estado conmigo en el dia a dia,
alimentando mi mente con conversaciones cientificas, politicas, filoséficas o religiosas,
siempre acompanadas de buen humor. Ha sido un placer y un honor compartir mis horas
de trabajo con todos ellos, pues he disfrutado enormemente al estar rodeado de un grupo
que considero parte de la élite cientifica espanola, a la cual desde luego no pertenezco. Sin
duda alguna, echaré de menos el reunirnos a comer en la cafeteria del CSIC. De entre ellos,
quisiera destacar a Manuel y David, mis directores de tesis. Sin ellos, todo esto no seria
posible. Me dieron la oportunidad (y no solo una) de embarcarme en este proyecto, me
dieron problemas a los que enfrentarme (en mas de un sentido) y medios para resolverlos.
Se han convertido en mas que mentores para mi. También un espacial agradecimiento a
mi compaiero de despacho y gran amigo, Angel. Su rapidez de respuesta nunca dejara de
sorprenderme, pese a que desgasta la particula negativa. Ojala su fatbol tuviese la misma
velocidad. Ademas, estuvo conmigo en los buenos momentos, en los malos y los peores.
Por todo esto, siempre tendré mi reconocimiento. Tampoco quiero olvidarme de los demés
miembros de la plantilla, todos ellos con algo realmente especial. Gracias a Ana (y sus
tapers), Ana Maria, Carolina (enemiga de las impresoras), Dan (por su introduccion a
la cultural norte-americana y su “fe” en la seleccion), David (aka RyC One, mi discipulo
ubuntero y ex-compaifiero de habitacion), Diego (por los chicles), Emilio (con bici, pero
sin perro ni flauta), Fernando (actual compafiero de habitacion hasta que la Red o una
Ramon y Cajal nos separe), José Antonio (tnico linuxero convencido, pero estancado en
Debian), Luis, Maria (mi amor en el despacho), Mario (gran escalador), Marta (no tan

X



X AGRADECIMIENTOS

siniestra), Paco, Paz (con su eterna aura primaveral que nos aportaba juventud a todos)
y Roberto (artista redomado, pozo de conocimiento, companero de viajes a Valencia).
No me olvido de los que cruzaron el charco y estuvieron aqui, gracias a Poi (por tantas
cosas, pero especialmente por los paseos a Malasana o al centro después de trabajar y las
salidas al Yesterday los fines de semana), a Sebastian y Cecilia (por las “argentinadas”)
v Viviana (por ese humor negro que tanto la hace brillar). Aprovecho este parrafo para
agradecer por su trabajo, por un lado, a mis colaboradores Marcelo y Joris y, por otro
lado, a Marco, que ha dedicado su tiempo en leer esta tesis, y a Rafa, por acceder a ser
mi tutor.

Mi trabajo no sélo se ha visto beneficiado de mi labor en el CSIC, sino también de
los congresos a los que he asistido y de las personas con las que alli me he encontrado.
Esto ha sido, sin lugar a dudas, gracias a la Red de Geometria, Mecanica y Control y
sus miembros. Mi trabajo se basa en el de muchos de ellos y no podian faltar aqui sus
nombres. Dificil seria explayarme aqui individualmente y con detalle, pues la virtud de
este grupo nace de su unién e intercambio de ideas. Mi agradecimiento a todos ellos por
su recibimiento, los buenos consejos y su experiencia, me han sido de gran ayuda. Gracias
a Edith, Juan Carlos, David, Diana, Elisa, Miguel C., Narciso, Xavi, Marfa, Eduardo,
Jests, Pepin, Andreu, Javi, Modesto, Silvia, Luis y Miguel.

En ocasiones, las largas horas de trabajo mental se hacian pesadas y me era necesario
liberar la energia acumulada (ademés de mis frustraciones doctorales). Esto lo hacia
en los intensos partidos de fatbol sala de los jueves jugados en el pabellon deportivo de
la Auténoma. Asi que agradezco a Diego el haberme invitado insistentemente a dichos
eventos y felicitarle por su més que buen hacer en el terreno de juego. A todos los
demés, companeros y contrincantes, los buenos ratos que he pasado alli. Los golpes han
sido duros, pero los goles marcados bien valian la pena. Gracias a Angel (por cansar al
adversario chupando bola), Dani (subido de Cola-Cao), Eugenio (porterazo), Javi (los
dos, a uno por los pases, al otro por la rivalidad), Jorge (siempre tirando de su equipo),
Pablo (un maestro), Rafa (siempre decidido), Raul (los dos), Rubén (generoso), Sasha
(aka la Rubia, por el cuerpo a cuerpo), Samuel (lleno de energia), Saul (por esas patadas)
y Wagner. Me atrevo a decir que, pese a mi nula aptitud para este deporte, algo he
aprendido y, sin duda, ha sido por ellos.

Ademaés de haberme nutrido intelectualmente en el &mbito laboral, también lo he hecho
en mi “propia” casa. Compartir piso tiene, segiin muchos, numerosos inconvenientes, pero
son escasos ante todas sus ventajas, ante la experiencia de convivir y compartir. Pero
ello apenas es una pequenia parte de lo que he recibido. Mis companeros (y allegados)
han sido una fuente de riqueza interior, diversidad cultural, confianza, desahogo, risas
y diversion. Me siento mas que afortunado por haber disfrutado de todo esto dia tras
dia, de las charlas en la cena, las peliculas en “familia”, las salidas en grupo, etc. De
todos los companeros que han pasado por Mariano de Cavia, destaco mi especial afecto
y agradecimiento a David (aka zupermercadona), Julie (e Isabella), Mariana y Enrico (y
Sara). Tampoco me quiero olvidar de los demas: Marie, Sofie, Tom, Andrew, Chris, Will,
Jeff, Mariana (Angela, Carlos, Diana, Mara y Marcela), Sergio, Viviana, Juanpi y Sofi y
Zack (y Virginia). No me quiero olvidar de Charo, reina de La Casa de la Charidad, y a
Gregor por las siempre agradables conversaciones antes de subir al piso. Y por supuesto,
a la gente del Rincon: Marcelino, Natalia, Dioni y Manolo, por cientos (o miles) de cafas
bien servidas y otras tantas discusiones de bar.

Aparte de en mi casa y en el campo de fatbol, otro lugar de esparcimiento ha estado



xi

en las vastas tierras de Tyria, un mundo virtual més alld de este Mundo Real. Mi alter
ego (Ashaka Enora) y yo, queremos darle las gracias a mis companeros de aventuras por
las horas de entretenimiento, las largas charlas y, sobretodo, por el apoyo en los momen-
tos dificiles. Gracias a los de Alcorcon(Bronx) David (aka Adnon Mizzrim), Guille (aka
Kratio Trase), Jorge (aka Demona Almasalvaje) y Sergio (aka Doua Ayame), y a los de
Valencia, Willy (aka Sir Talent), Xing Chi (aka Pie Mojado) e Yvan (aka Quebrantahue-
sos). También incluyo aqui por pertenecer al mundo del bit a Ernestin, uno de los pocos
que me entiende. Gracias por los “t0 aqui, yo alla”, y las canitas en Trevino.

Cuatro anos son tiempo y, como dicen, things happen (ocurren cosas), algunas no muy
buenas. Afortunadamente uno encuentra buenos profesionales para lidiar con estas. Por
un lado, mi agradecimiento al equipo de fisioterapeutas del Hospital Gregorio Maranon.
Gracias a Miriam por recuperar mis manos y a sus compaiieros (y demés pacientes) Gema,
José Luis, Cristina, Marfa José y Rubén, por hacerme mas llevadera la rehabilitacion.
Por otro lado, gracias a Carmen por ensenarme a andar, por su profesionalidad y ayuda.

Por 1ltimo y, como dicen en estos casos, no por ello menos importante, gracias a mi
gente de Valencia: a los de siempre, Ana (y Geraldo) y Ali (y Jose), por su constancia,
animo y confianza; a la gente del gimnasio, Alfredo y Vicente, por su apoyo; a los de la
carrera, Andrea, Elvira, Maria Dolores, Xing Chi, Caja, Juan y Olga; a mis tios y primos,
por ser tan ruidosos; a mi querido hermano Yvan, por cuidarme cuando yo no podia
hacerlo; a mi padre; y a las mujeres de mi vida, mi madre por su apoyo incondicional, mi
abuela por sus abrazos, y Laura por su confianza, apoyo, amor y eterna paciencia.

Antes de finalizar, quisiera expresar mi reconocimiento a ciertas personas a las cuales
debo buena parte de mi trabajo pero que, sin embargo, ni siquiera conozco. No sé trata
de grandes cientificos de antafio, sino gente del aqui y ahora que con su labor han fa-
cilitado la mia (y la de muchos més). Con esto sé que sello mi fama de geek/freak
para siempre, pero bien se lo merecen. Para redactar esta tesis, no sélo en cuanto al
esfuerzo de redaccion per se, sino también en cuanto a su desarrollo, he hecho uso diario
de varias herramientas: GNU /Linux, Emacs, ITEX, Google, Wikipedia, etc. Por ello mi
reconocimiento a Richard Stallman, fundador del movimiento de Software Libre, desar-
rollador del editor de macros Emacs y creador (junto con Linus Torwalds) del sistema
operativo GNU /Linux; a Lawrence Lessig, precursor del movimiento de Cultura Libre y
fundador de la iniciativa Creative Commons; por ende, a toda la comunidad de Software
y Cultura Libre por desarrollar y crear en beneficio de todos; a Donald Knuth y Leslie
Lamport, creadores de TEXy KTEX, sistemas de composicion (especializados en textos
cientificos); a Jimmy Wales y Larry Sanger, creadores de la Wikipedia, siempre tan ttil
para aclarar conceptos; a Larry Page y Sergey Brin, creadores del buscador Google, sin el
cual no encuentro ni mis llaves; y a Mark Shuttleworth, fundador de Canonical, empresa
desarrolladora de Ubuntu, mi distribucion favorita de GNU/Linux, y a toda la comunidad
de Debian/Ubuntu por su ayuda, esfuerzo y contribucion.

Gracias.



xii

AGRADECIMIENTOS



Generamos conocimiento.
Dr. Angel Castro






Introduccion

Una teoria de campos es una teoria fisica que describe como uno o mas campos fisicos
interactian con la materia. Un campo fisico puede ser entendido como una asignacion
continua de una magnitud fisica en cada punto del espacio y el tiempo: por ejemplo,
la velocidad de un fluido, el electromagnetismo o incluso la gravedad. Estos son ejemp-
los de campos macroscopicos o “clasicos” en contraste a los microscopicos o “cuénticos”.
Nos centraremos en los primeros. En cierto sentido, la teoria clasica de campos es una
generalizacion de la mecanica clasica, en la cual el (inico campo es la linea temporal.

Desde un punto de vista matematico, los campos clasicos pueden ser descritos como
secciones ¢ de un fibrado 7 : £ — M. El marco se completa introduciendo una funcién
que abarca la dinamica del sistema fisico, la funcién lagrangiana. Para una teoria clasica
de campos, esto es una funcién L : J'm — R, donde J'7 es el fibrado de jets de orden uno
de 7. Este fibrado de jets ofrece una descripcion geométrica de las derivadas parciales
de las coordenadas fibradas de E con respecto a las de M, donde una seccién es fijada.
Buscamos pues aquellas secciones ¢ del fibrado 7 : E — M, los campos, que extremizan
el funcional

AL(6R) = /R L',

donde 7 es una forma de volumen prefijada (se da por supuesto que M es orientable),
R C M es una region compacta de M y j'¢ es la primera prolongacion jet de ¢.

Uno de los resultados més basicos del calculo variacional es la construccién a partir
del funcional anterior de un conjunto de ecuaciones en derivadas parciales, las ecuaciones

de Euler-Lagrange
0L d oL

oue  dxiouy
las cuales deben ser satisfechas por cualquier extremal suave. Mas interesante, la propiedad
de extremizacion del problema no depende de la eleccién particular del sistema de coor-
denadas (hecho que not6 J. L. Lagrange durante sus estudios de mecanica analitica), por
tanto debe ser posible escribir las ecuaciones de Euler-Lagrange de forma intrinseca.

La interpretacion geométrica de las ecuaciones de Euler-Lagrange se realiza por medio
de la asi llamada forma de Poincaré-Cartan €2;. Esta forma estd construida usando la
geometria del fibrado de jets y también estd relacionada con el trasfondo variacional
[97]. Usando esta forma, es posible escribir la ecuaciones de Euler-Lagrange de forma
intrinseca. Es maés, ¢ satisface las ecuaciones de Euler-Lagrange (es decir, es un punto
critico de la accion Ay) siy solo si

('¢)*(ivQr) = 0, para todos los vectores tangentes V en T'.J'7.

Ademas, esta forma juega un papel importante en la conexiéon entre las simetrias y las
leyes de conservacion (see [53]).

XV
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Otra manera de describir la evolucién de los campos es introduciendo una funcién
dindmica el dual a J'm, esto es, una funcion hamiltoniana H : J'7#' — R, donde J'r'
es el dual extendido del fibrado de jets de primer orden de w. Entonces, la dinamica
del sistema viene descrita gracias a las soluciones de las bien conocidas ecuaciones de
Hamilton A

oH op., OH  Ou®

R opi, Ozt
las cuales son extremales para el principio variacional dado en Jl7z' (véanse [31, 61, 115,
134, 147]).

La relacion entre estos dos marcos, el formalismo lagrangiano y el hamiltoniano, es de-
scubierto por la transformada de Legendre. Dado un lagrangiano L : J'm — R, podemos
definir el mapa Leg; : J'm — Jln. Esta funcion tiene interesantes propiedades como
enviar las soluciones de las ecuaciones de Euler-Lagrange a soluciones de las ecuaciones
de Hamilton, o bien retrotraer la (m -+ 1)-forma de Cartan Qg de J'7' ala (m -+ 1)-forma
de Poincaré-Cartan J'm (véanse [35, 61, 134, 147]). Es més, cuando L es regular, esto es

cuando su “hessiano”
0L
Ov*ovP

es regular, la transformada de Legendre Leg; es un difeomorfismo local en su imagen, la
cual es a su vez difeomorfa al dual reducido del fibrado de jets de primer orden, J7°.

En la actualidad, se posee una muy buena comprension de las teorias de campos de
primer orden. Pero muchos lagrangianos que aparecen las teorias de campos son de orden
superior (como por ejemplo en elasticidad o gravitacion), por tanto es de sumo interés
encontrar un marco completamente geométrico también para estas teorfas de campos, esto
cuando uno considera una funcién lagrangiana L : J*7 — R, donde J* es el fibrado de
jets de orden k de m. Durante las ultimas décadas del pasado siglo, han habido diferentes
estudios e intentos para definir de manera global e intrinseca el calculo variacional de
orden superior en varias variables. Los objetivos principales son describir las ecuaciones
de Euler-Lagrange asociadas para secciones del fibrado, derivar las formas de Poincaré-
Cartan como version intrinseca las ecuaciones anteriores, y construir transformadas de
Legendre adecuadas que nos permitan escribir estas ecuaciones en el marco hamiltoniano
(véanse, por ejemplo, [4, 6, 65, 66, 89, 94, 106, 113, 63, 62, 140] para méas informacion).

El marco geométrico estandar de la teoria de campos de orden superior se inicia con
la busqueda de extremales del funcional

donde como antes 7 es una forma de volumen prefijada, R C M es una regiéon compacta
y j*¢ es la prolongacién k-jet de ¢. El calculo variacional establece que los extremales de
esta accion integral deben satisfacer las ecuaciones de Euler-Lagrange de orden superior

k k
Z _1)|J|d|‘]| oL B oL d 0oL d? oOL . ] kd_ oL B

dz’ Oug — Jue a @(‘M? * A’ dug ;. — 4 (=1) dxja_uf} N

0,
|71=0

las cuales son un conjunto de ecuaciones en derivadas parciales en J*7. Al igual que
en el caso de primer orden, estas ecuaciones no dependen de la eleccién de coordenadas.
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Por tanto, uno puede llegar a preguntarse si existe un objeto candénico que describa
geométricamente este conjunto de ecuaciones y sus soluciones. En tal caso, deberia de
ser una forma de Poincaré-Cartan de orden superior.

La situacion esta bien establecida para el caso de una variable dependiente (mecénica
de orden superior) y para el caso de primer orden [85, 91, 93, 105]. En este tltimo caso,
la expresion tipica de la forma de poincaré-Cartan asociado en mecanica clasica a un
lagrangiano L : J'm — R puede ser escrita como S*(dL) + Ldt, donde S* es el adjunto
del endomorfismo vertical actuando sobre 1-formas. Con el objetivo de generalizar este
concepto a teorias de campos de orden superior, uno necesita definir una aplicaciéon de las
1-formas (la diferencial de L) a m-formas e incorporar de manera global las derivadas de
orden superior. Esta es una de las razones para el grado de arbitrariedad en la definicion
de la forma de Cartan para funciones lagrangianas L : J¥7 — R, con k > 1y dim M > 1.
En otras palabras, habran diferentes formas de Cartan definidas a partir de la misma
funcion que definan una formulacion intrinseca de las ecuaciones de Euler-Lagrange. La
razom principal de este problema es la conmutatividad de las derivadas parciales iteradas.
Por tanto, la forma de Cartan es tnica si (y solo si) bien k& o bien m es igual a uno.

En la literatura, encontramos diferentes aproximaciones para fijar la forma de Cartan
en teorias de campos de orden superior. Un trato directo es la aproximacion de Aldaya y
Azcarraga [4, 6]. Otro punto de vista es el de Arens [8], que consiste en inyectar el fibrado
de jets J*7 en un fibrado de jets de orden 1 apropiado, con la introduccién de numerosas
variables dentro de una teorfa de multiplicadores de Lagrange. Desde un punto de vista
mas geométrico, Garcia y Munoz describen un método global para la construccion de
formas de Poincaré-Cartan en el calculo de variaciones de orden superior de espacios
fibrados por medio de conexiones (see [88, 89]). En particular, construyen formas de
Cartan que dependen de la eleccion de dos conexiones, una conexion lineal en la base y otra
conexion lineal en el fibrado vertical Y . Mas tarde, Crampin y Saunders [140] proponen
el uso de operadores andlogos a la estructura casi tangente canénicamente definida en el
fibrado tangente de una variedad de configuracion dada M para la construccion global
de formas de Poincaré-Cartan; este operador depende de la forma de volumen elegida en
la base.

En esta monografia, propones un camino alternativo, evitando el uso de estructuras
adicionales y trabajando tnicamente con objetos intrinsecos del lado lagrangiano y del
hamiltoniano. Los resultados pueden encontrase publicados en [24, 25, 26, 27| (para un
punto de vista complementario, se sugiere el trabajo de Vitagliano [152]). Con vistas a
tratar sistemas lagrangianos singulares, Skinner y Rusk construyen un sistema hamilto-
niano en la suma de Whitney TQ) ® T*(Q de los fibrados tangente y cotangente de una
variedad de configuracion (). La ventaja de su acercamiento yace en el hecho de que
la condicion de segundo orden de la dindmica es satisfecha autométicamente. Esto no
ocurre en el lado lagrangiano de la formulacion de Gotay y Nester, donde la condition de
segundo orden debe de ser considerada tras la implementacion del algoritmo de ligaduras
(ver [100, 101, 102]), aunque otros formalismos incluyen esta condicion de segundo orden
desde el principio (ver 34, 36]).

En teorias de campos de orden superior, empezamos con un lagrangiano definido en
JEm. Consideramos el fibrado myar : W — M, donde W = J*r x peor AJ(JF 1)
es un producto fibrado, el espacio de velocidades y momentos. En W construimos una
forma premultisimpléctica haciendo el “pull back” de la forma multisimpléctica canoénica
de A7'(J*17), y definimos un formalismo hamiltoniano conveniente gracias al pairing
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natural canonico y la funcion lagrangiana dada. Las soluciones de la ecuacion de campos
son entendidas como secciones integrales de conexiones de Ehresmann en el fibrado 7y 5/ :
W — M. En este espacio, obtenemos una expresion global, intrinseca y tnica de una
ecuacion tipo Cartan para las ecuaciones de Euler-Lagrange para teorias de campos de
orden superior. Adicionalmente, obtenemos algoritmo de ligaduras. Nuestro esquema es
aplicado a diferentes ejemplos para ilustrar el método.

A parte de la carencia de ambigiiedad inherente a nuestra construccion, vale la pena
enfatizar que este formalismo se puede extender facilmente a teorias de campos de orden
superior con restricciones o problemas de control 6ptimo en ecuaciones en derivadas par-
ciales. En este sentido, obtenemos una descripcion unificadora y geométrica de ambos
tipos de sistemas, con posibles aplicaciones futuras a teorfas de reducciéon por simetrias y
la construccion de métodos numeéricos que preserven la estructura geométrica (ver [116]).
Por tanto, introducimos restricciones en el marco de trabajo, las cuales estan represen-
tadas geométricamente como una subvariedad C de J*7. En otras palabras, imponemos
restricciones en el espacio de secciones donde la accion estd definida. El formalismo in-
troducido en [27] es adaptado al caso de teorias de campos restringidas, derivando asi un
marco intrinseco de las ecuaciones de Euler-Lagrange restringidas. Para la descripciéon
geométrica, inducimos una subvariedad W¢ de W usando las restricciones dadas por C.
Algunos ejemplos son dados para ilustrar la teoria, la cual esta recogida en [26].

El Capitulo §1 recopila la notaciéon utilizada a lo largo de la monografia asi como
el fondo matematico necesario: distribuciones, las diferentes geometrias simplécticas, la
estructura del fibrado tangente, etc. También contiene un esquema del algoritmo de
Gotay-Nester-Hinds.

El Capitulo §2 es una somera revision de la mecénica clasica. Describe los principales
resultados de la teoria desde el lado lagrangiano y el hamiltoniano.

El Capitulo §3 es una breve introduccion a la teoria clasica de campos. Desarrolla la
teoria (generalmente sin pruebas) en los diferentes formalismos, el lagrangiano y el hamil-
toniano, y los diferentes posibles acercamientos, el variacional y el geométrico. También
muestra la relacion entre ellas e introduce el formalismo de Skinner y Rusk para teorias
de campos.

El Capitulo §4 esta dedicado al estudio de la teoria clasica campos clasicos de orden
superior. El lector podréd encontrar una primera generalizacion de los principales objetos
geométricos de la teoria de primer orden, senalando las causas de la ambigiiedad inherente
a la teoria de orden superior. En adelante, el capitulo se centra en la resolucién de esta
ambigiiedad por medio del formalismo de Skinner y Rusk. También introduce restric-
ciones en el esquema. Finalmente, hay una presentacion de algunos resultados parciales
en la reduccién de la arbitrariedad en el espacio de soluciones de la teoria.

Por tltimo, el Capitulo §5 expone un resumen de los principales resultados obtenidos
a lo largo de mis estudios, junto con algunas conclusiones y los trabajos futuro que se
inician con este tratado.



Introduction

A field theory is a physical theory that describes how one or more physical fields interact
with matter. A physical field can be thought of a continuous assignment of a physical
quantity at each point of space and time: For instance, the velocity of a fluid, electro-
magnetism or even gravitation. These are macroscopic or “classical” field examples in
contrast to “microscopic” or quantum ones. We will focus on the former. In some sense,
classical field theory is a generalization of classical mechanics, in which the only field is
the time line.

From the mathematical point of view, classical fields may be described by sections ¢
of a fiber bundle 7 : E — M. The picture is completed by introducing a function that
encompasses the dynamics of the physical system, the Lagrangian. For first order field
theories, it is a function L : J'7m — R, where J'7 is the first-jet bundle of w. This jet
bundle gives a geometrical description of the partial derivatives of the fiber coordinates
of F with respect to those of M, where a section is fixed. We then look for those sections
¢ of the fiber bundle 7 : £ — M, the fields, that extremize the functional

AL(6.R) = /R Lo,

where 7 is a fixed volume form (it is assumed that M is orientable and oriented), R C M
is a compact region of M and j'¢ is the 1st-jet prolongation of ¢.

The most basic result on variational calculus is the construction from the above func-
tional of a set of partial differential equations, the Euler-Lagrange equations
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which must be satisfied by any smooth extremal. More interesting, the property of
extremizing the problem does not depend on the particular chosen coordinate system
(fact noted by J. L. Lagrange during his studies of analytical mechanics), therefore it
must be able to write the Euler-Lagrange equations in an intrinsic way.

The geometric interpretation of the Euler-Lagrange equations is done by means of the
so-called Poincaré-Cartan form €, which is an (m + 1)-form (dim M = m) univocally
associated to the Lagrangian. This form is constructed using the geometry of the jet
bundle and it is also related with the variational background [97]. Using this form, it
is possible to write down the Euler-Lagrange equations in an intrinsic way. Indeed, ¢
satisfies the Euler-Lagrange equations (that is, it is a critical point of the action Ap) if
and only if

(7'¢)*(ivQr) = 0, for all tangent vector V in T.J 7.

Moreover, this form plays an important role in the connection between symmetries and
conservation laws (see [53]).

Xix
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Besides, another way to describe the evolution of the fields is by introducing a dynami-
cal function in the dual side of J 7, that is, by introducing the Hamiltonian H : J'7T — R,
where J'7t is the extended dual first-jet bundle of 7. Then, the dynamics of the system
is described by means of the solutions of the well known Hamilton’s equations
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which are extremals of a variational principle given in J'zt (see [31, 61, 115, 134, 147]).

The relation between these two pictures, the Lagrangian and the Hamiltonian for-
malisms, is unveiled by the Legendre transformation. Given a Lagrangian L : J'm — R,
we may define a mapping Leg; : J'm — Jlxf. This function has interesting properties
like it maps the solutions of the Euler-Lagrange equation to solutions of the Hamilton’s
equations or it pulls back the Cartan (m + 1)-form Qg of J'7° into the Poincaré-Cartan
(m + 1)-form of J'm (see |35, 61, 134, 147]). Moreover, when L is regular, that is when

its “Hessian”
0*L
Ov*ovP

is regular, the Legendre map Leg; is a local diffeomorphism into its image, which is in
its turn diffeomorphic to the reduced dual first-jet bundle J7°.

So far, the first-order case of field theories is pretty well understood. But many of the
Lagrangians which appear in field theories are of higher order (as for instance in elasticity
or gravitation), therefore it is interesting to find a fully geometric setting also for these
field theories, that is when one considers a Lagrangian function L : J*7 — R, where Jk7
is the kth-order jet bundle of 7. During the last decades of the past century, there have
been different studies and attempts to define in a global and intrinsic way the higher-
order calculus of variations in several independent variables. The main objectives are to
describe the associated Euler-Lagrange equations for sections of the fiber bundle, to derive
Poincaré-Cartan forms for use in intrinsic versions of the above equations, and to construct
adequate Legendre maps which permit to write the equations in the Hamiltonian side (see,
for instance, [4, 6, 65, 66, 89, 94, 106, 113, 63, 62, 140] for further information).

The standard geometric framework of higher-order field theories starts by looking for
the extremals of the functional

Ao B) = [ Lo
R
where as before 7 is a fixed volume form, R C M is a compact region and j*¢ is the k-jet
prolongation of ¢. Variational calculus states that the extremizers of this integral action
must satisfy the higher-order Euler-Lagrange equations
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which is a set of partial differential equations in J?*7. As in the first order case, these
equations do not depend on the chosen coordinates. Thus, one may wonder if there is a
canonical object that describes geometrically this set of equations and their solutions. In
such a case, it should be a higher-order Poincaré-Cartan form.
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The situation is well established for the case of one independent variable (higher order
mechanics) and for the case of first order calculus of variations [85, 91, 93, 105]. In this
last situation, the typical expression of the Poincaré-Cartan form associated in classical
mechanics to a Lagrangian L : J'm — R may be written as S*(dL) + Ldt, where S*
is the adjoint of the vertical endomorphism acting on 1-forms. In order to generalize
this concept to higher order field theories, one needs to define a mapping from 1-forms
(the differential of L) to m-forms and to incorporate in a global way the higher order
derivatives. This is one of the reasons for the degree of arbitrariness in the definition of
Cartan forms for Lagrangian functions L : J¥7 — R, with k¥ > 1 and dim M > 1. In
other words, there will be different Cartan forms which carry out the same function in
order to define an intrinsic formulation of Euler-Lagrange equations. The main reason
of this problem is the commutativity of repeated partial differentiation. Therefore, the
Cartan form is unique if (and only if) either & or m equals one.

In the literature, we find different approaches to fix the Cartan form for higher order
field theories. A direct attempt is the approach by Aldaya and Azcéarraga [4, 6]. Another
point of view is that by Arens [8], which consists of injecting the jet bundle J*7 to an
appropriate first-order jet bundle by the introduction of a great number of variables into
the theory and Lagrange multipliers. From a more geometrical point of view, Garcia and
Munoz described a method of constructing global Poincaré-Cartan forms in the higher
order calculus of variations in fibered spaces by means of linear connections (see [88, 89]).
In particular they show that the Cartan forms depend on the choice of two connections, a
linear connection on the base M and a linear connection on the vertical bundle Y 7. Later,
Crampin and Saunders [140] proposed the use of an operator analogous to the almost
tangent structure canonically defined on the tangent bundle of a given configuration
manifold M for the construction of global Poincaré-Cartan forms; this operator depends
on the chosen volume form on the base.

In this monograph, we propose an alternative way, avoiding the use of additional
structures, working only with intrinsic objects from both the Lagrangian and Hamiltonian
sides. The results main be found published here [24, 25, 26, 27| (for a complementary
point of view, see the work by Vitagliano [152]). This formalism is strongly based on
the one developed by Skinner and Rusk [142, 143, 144]. In order to deal with singular
Lagrangian systems, Skinner and Rusk construct a Hamiltonian system on the Whitney
sum T'Q) & T*Q of the tangent and cotangent bundles of the configuration manifold Q.
The advantage of their approach lies on the fact that the second order condition of
the dynamics is automatically satisfied. This does not happen in the Lagrangian side
of the Gotay and Nester formulation, where the second-order condition problem has
to be considered after the implementation of the constraint algorithm (see [100, 101,
102]), besides other formalisms which include the second-order condition from the very
beginning (see [34, 36]).

For higher-order field theories, we start with a Lagrangian function defined on J*r.
We consider the fibration mya : W — M, where W = J*7 X i1, AT(J"!7) is a fibered
product, the velocity-momentum space. On W we construct a premultisymplectic form by
pulling back the canonical multisymplectic form of AZ*(J*~17), and we define a convenient
Hamiltonian from a natural canonical pairing and the given Lagrangian function. The
solutions of the field equations are viewed as integral sections of Ehresmann connections
in the fibration 7wy : W — M. In this space we obtain a global, intrinsic and unique
expression for a Cartan type equation for the Euler-Lagrange equations for higher-order
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field theories. Additionally, we obtain a resultant constraint algorithm. Our scheme is
applied to several examples to illustrate our method.

Apart from the lack of ambiguity inherent in our construction, it is worth to empha-
size that this formalism is easily extended to the case of higher-order field theories with
constraints and optimal control problems for partial differential equations. In this way,
we obtain a unified, geometric description of both types of systems, with possible future
applications in the theory of symmetry reduction and the construction of numerical meth-
ods preserving geometric structure (see [116]). Therefore, we introduce constraints in the
picture, which are geometrically defined as a submanifold C of J*¥m. In other words, we
impose the constraints on the space of sections where the action is defined. The formalism
introduced in [27] is adapted to the case of constrained field theories, deriving an intrinsic
framework of the constrained Euler-Lagrange equations. For the geometrical description,
we induce a submanifold W§ of W using the constraints given by C. Some examples are
given to illustrate the theory, which appears in [26]

Chapter §1 gathers the notation used along the monograph and the basic mathematical
background needed: distributions, the different symplectic geometries, the structure of
the tangent bundle, etc. There is also a sketch of the Gotay-Nester-Hinds algorithm.

Chapter §2 is a short review of Classical Mechanics. It depicts the main results of the
theory from the Lagrangian and the Hamiltonian side.

Chapter §3 is a brief introduction to Classical Field Theory. It develops the theory
(generally without proofs) within the different formalisms, Lagrangian and Hamiltonian,
and the different approaches, variational and geometrical. It also shows the relation
between them and introduces the Skinner-Rusk formalism for field theories.

Chapter §4 is devoted to the study of Higher-Order Classical Field Theory. The reader
will may find first a generalization of the main geometric objects of the first order theory,
pointing out the causes of the ambiguity inherent to the higher-order theory. Then the
chapter focuses on resolution of this ambiguity by means of the Skinner-Rusk formalism.
It also introduces constraints in the pictures. Finally there is a presentation of the partial
results on the reduction of the arbitrariness in the space of solutions of the theory.

Finally, Chapter §5 exposes a summary of the main results obtained along my studies,
together with some conclusions and the future work that starts with this treatise.



Chapter 1

Mathematical background

1.1 Distributions and connections

See [1, 122] for an introduction to the theory of connections.

Definition 1.1. A distribution D of dimension m on a manifold P is an assighment to
each p € P of a vector subspace D(p) C T,,P of dimension m.

1. A distribution D of dimension m is smooth if, for each py € P, there exist an
open neighborhood U, of py and local vector fields Y, ..., Y,, € ¥(U,,), such that
Yi(p), ..., Yn(p) span D(p) for every p € U,.

2. A submanifold S < P is said to be an integral manifold of a smooth distribution
D in TP it TS = D along the points of S. In such a case, D is said to be integrable.

3. A smooth distribution D is inwvolutive if it is stable under the Lie bracket, that is,
if [D, D] C D.

Theorem 1.2 (Frobenius’ Theorem). A smooth distribution D is integrable if and only
if it is involutive.

Definition 1.3. A connection I' in a fiber bundle 7py, : P — M is given by a mp -
horizontal distribution H in TP, i.e. a distribution H in T'P which is complementary to
the vertical one V 7p )y, that is

TP=D®V7rpum,
where V7p(p) ={V € T,P : Tympy (V) = 0}. This decomposition allow us to define:

1. The horizontal projector associated to the connection I' is the linear map h : TP —
D defined in the obvious manner.

2. The horizontal lift of a tangent vector X € TM is the unique vector X € D that
projects to X, Tmpy(X") = X.

3. If (2, y®) are fibered coordinates on P, then D is locally spanned by the local vector

fields .
B B B
) =% e )L
(55) =5+ THo) s

The coefficients I'¢ are the Christoffel symbols of the connection.

1
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Assume that mgay @ @ — M and 7py : P — M are two fibrations with the same
base manifold M, and that T : ) — P is a surjective submersion (in other words, a
fibration as well) preserving the fibrations, say, mpy 0 T = mg y (Diagram 1.1). Let IV
be a connection in mg s : ) — M with horizontal projector h'.

Q—>p

TP,M
TQ,M

M

Figure 1.1: Preserved fibration

Definition 1.4. I" is said to be projectable if the subspaces (1, 1)(D’(q)) are constant
along the fibers of T, i.e. (T,,7)(D'(q1)) = (T,,¥)(D'(g2)) for every qi1,q2 € T 1(p),
p e P.

If T is projectable, then we define a connection I' in the fibration wpy : P — M as
follows: The horizontal subspace at p € P is given by

Dy = (T,1)(D'(q)),

for an arbitrary ¢ in the fibre of T over p. It is routine to prove that D defines a horizontal
distribution in the fibration mpyr : P — M.

We can choose fibered coordinates (z,y% 2%*) on @ such that (z°,y*) are fibered
coordinates on P. The Christoffel components of I are obtained by computing the
horizontal lift

aN" o o 0
(axi) T O + 15 (x’y”z)a_ya + 15 (xaywz)@ .

A simple computation shows that I is projectable if and only if the Christoffel compo-
nents I'? are constant along the fibres of Y, say I'? = I'?(z, y). In this case, the horizontal
lift of 9/0x" with respect to I is just

o\" 0o )
) = = 4r¢ =
( axz) e+ T ) s

Conversely, given a connection I' in the fibration mpy, : P — M and a surjective sub-
mersion T : Q — P preserving the fibrations, one can construct connections I in the
fibration mg s : @ — M which project onto I' (first, locally and then globally by means
of a partition of the unity).

The notion of connection in a fibration admits a useful generalization to submanifolds
of the total space. Let mp; : P — M be a fibration and /N a submanifold of P.

Definition 1.5. A connection in wpyr : P — M along the submanifold N of P consists
of a family of linear mappings

h,:T,P — T,N
for all p € N, satisfying the following properties

hf) =h,, kerh,=V,7pum,

for all p € N. The connection is said to be smooth (flat) if the distribution imh C TN
is smooth (integrable).
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We have the following.

Proposition 1.6. Let h be a connection in wpy - P — M along a submanifold N of P.
Then:

1. mpa(N) is an open subset of M.
2. (mpm)|y 1 N = mpu(N) is a fibration.

3. There exists an induced true connection Iy in the fibration (WPM)|N : N — mpp(IN)
with the same horizontal subspaces.

4. U'n is flat of and only if h is flat.
Proof. See [55, 50]. O

1.2 Multivectors

Definition 1.7. Let P be a n-dimensional differentiable manifold. Sections of A™(T'P)
(with 1 < m < n) are called m-multivector fields in P. The set of m-multivector fields
in P is denoted by X" (P).

Given X € ¥™(P), for every p € P, there exists an open neighborhood U, C P and
Xi,..., X, € X(Up) such that

X= ) frimX, AL AKX

Pl<ii<. <im<r

with fa-m € C*°(U,) and m < r < n. Of particular interest are those multivector fields
whose decomposition may be reduced to a single term.

Definition 1.8. A multivector field X € x¥™(P) is locally decomposable if, for every
p € P, there exists an open neighborhood U, C P and Xj,...,X,, € ¥(U,) such that

X=X AN...\NXp.
U,

The set of locally decomposable m-multivector fields in P is denoted by X7'(P).

Let D C TP be an m-dimensional distribution. The sections of A™D are locally
decomposable m-multivector fields in P.

Definition 1.9. A locally decomposable m-multivector field X € ¥7J'(P) and an m-
dimensional distribution D C T'P are associated whenever X is a section of A™D.

If X, X" € x'(P) are non-vanishing multivector fields associated with the same dis-
tribution D, then there exists a non-vanishing function f € C*(P) such that X' = fX.
This fact defines an equivalence relation in the set of non-vanishing m-multivector fields
in P, whose equivalence classes will be denoted by D(X).

Theorem 1.10. There is a bijective correspondence between the set of m-dimensional
orientable distributions D in TP and the set of the equivalence classes D(X) of non-
vanishing, locally decomposable m-multivector fields X in P.
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By abuse of notation, D(X) will also denote the m-dimensional orientable distribution
D in TP with whom X is associated.

Definition 1.11. An m-dimensional submanifold S < P is said to be an integral mani-
fold of X € x™(P) if X spans A™T'S. In such a case, X is said to be integrable.

Note that integrable multivector fields are necessarily locally decomposable.

Definition 1.12. A non-vanishing, locally decomposable m-multivector X € X7'(P) is
involutive if its associated distribution D(X) is involutive.

If a non-vanishing multivector field X € XJ'(P) is involutive, so is every other in
its equivalence class D(X). Furthermore, by Frobenius’ theorem we have the following
result.

Corollary 1.13. A non-vanishing and locally decomposable multivector field is integrable
if, and only if, it is involutive.

Definition 1.14. Let mpy : P — M be a fiber bundle with dim M = m. A multivector
field X € x™(P) is said to be m-transverse if A™m,(X) does not vanish at any point of
M, hence M must be orientable.

Proposition 1.15. If X € x™(P) is integrable, then X is m-transverse if, and only if,
its integral manifolds are sections of m: P — M. In this case, if S is an integral manifold
of X, then there ezists a section ¢ € I'm shuch that S = Im(¢).

For more details on multivector fields and their relation with field theories, we refer
to |72, 73].

1.3 The geometry of the tangent bundle

Through this section, ) denotes an n-dimensional smooth manifold. Local coordinates
in @ are denoted (¢'), and the induced adapted coordinates of TQ and TTQ are denoted
(¢%,v") and (¢*, v*, ¢, 0"), respectively. According to this, vectors v € T,Q and V € T,,(T'Q)
are respectively of the form

9
aq’

L0
+

) A
v=v'—| and V =¢' V' —
v 8UZ

g lq

v
If g :veT,Q v~ g€ @ denotes the natural projection of T'Q) onto () then, given a

tangent vector V' € T,(7T'Q)), we have that 77o(V') = v. Besides, we also have the following
coordinate expressions (see Diagram 1.2)

To(q',v") = (¢'), Tro(d’,v',¢",v") = (¢',v") and T1o(q’, 0", ¢", ") = (¢, ¢").

Definition 1.16. Let v € T,() be a vector tangent to () at some point ¢ € ). The
vertical lift of v at a “point” w € T,() is the tangent vector v}, € T,,(7'Q)) given by

d
V() = P+ )|y VF € CXT,Q). (1)
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TTQ %10

lm lm

TQ—2-Q
Figure 1.2: The natural projections

Given a smooth function f € C*(Q),

(TwQ) () (f) = vu(foTq)
= %(forQ)(w—Ftv)‘t_o
d
- Ef(qﬂt:()

= 0.

Thus, the vertical lift takes values into the vertical fiber bundle V7o C TTQ. Indeed, for
each w € T,Q), the vertical lift at w,

() 2 TyQ — V1o C T,TQ,

is a linear isomorphism. It may also be seen as a morphism X € ¥(Q) — XV € xV(TQ),
where XV(7T'Q) is the module of vector fields over T'Q) that are vertical with respect to the

projection 7g. In local coordinates, if v = ”ia?f|q = (¢%,v") and w = wia?f‘|q = (¢*, w"),
then

v =v—| =(¢', w0,

v 81}’ w <q )

for the induced adapted local coordinates of TT'Q).

Definition 1.17. The vertical endomorphism is the linear map S : TTQ — TT(Q) that,
for any vector V € TT'Q, gives the value

S(V) = ((Tumq)(V))", (1.2)
where v = (V) € TQ.
In adapted coordinates (¢, v%) of TQ, the vertical endomorphism has the local expres-
sion
S=d¢® % or S(¢',v', ¢, ") = (¢, v, 0,4"). (1.3)
Definition 1.18. The Liouville or dilation vector field is the vector field A over T'Q)

defined by
Ay = (VY)y, (1.4)

for any v € TQ.
In adapted coordinates (¢*,v*') of TQ, A is given by

i 9 i i
_Uavi_(Q7v707v)' (15)

Another way to define the Liouville vector field is as the infinitesimal generator of the
1-parameter group of transformations ¢, : v € TQ — e'v € T'Q. This definition can
easily be translated to any vector bundle.

A
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Definition 1.19. A second order vector field or differential equation (usually abbreviated
SODE) is a vector field X € X(7T'Q) such that T'rg o X = Idrg.

In adapted coordinates (¢*,v') of TQ, a SODE is a vector field

X=X (9. +Yii such that X' ="
0q" ovt

Thus, neither the Liouville vector field nor the vertical lift of a vector field are second
order vector fields. Even though, SODEs are characterized by the equation

S(X) = A.

Definition 1.20. Given a smooth curve ¢ : I — @, its (first) lift to TQ is the smooth
curve ¢V : I — T'Q such that

(@) (1) = S(Fo0)

t:to.
In local adapted coordinates, ¢ = (¢, dc'/ dt).

Proposition 1.21. A wvector field X € X(TQ) is a SODE if and only if the integral
curves of X are lifts of their own projections to Q; that is, if ¢ is an integral curve of X,
then

é=(rgod&). (1.6)

The curve c = tgoc¢: I — () is called a base integral curve of X or a solution of the
SODE given by X.

If ¢: 1 — TQ is an integral curve of a SODE X € %(T'Q) locally given by X =
(¢*,v",v%,a’) and ¢ : I — @ denotes its base integral curve, then
dct d2c

¢ =c,v'=—and a' =

dt de?

Alternatively, the base integral curve c of ¢ satisfies the system of second order differential
equations

d?c'/ dt* = a'(c', dc'/ dt) (intrinsically ¢ (1) = X (W (1))).

1.4 Symplectic geometry

In some sense, symplectic geometry is complementary to Riemannian geometry. While
Riemannian geometry is based on the study of smooth manifolds that carry a non-
degenerate symmetric tensor, symplectic geometry covers the study of smooth manifolds
that are equipped with a non-degenerate skewsymmetric tensor. Although both have
several similarities, by their nature they also show to have strong differences.

Along this section, V' and M respectively denote a real vector space and a smooth
manifold. They do not necessarily have finite dimension.



1.4. SYMPLECTIC GEOMETRY 7

Definition 1.22. Let w : V x V — R be a bilinear map and define the morphism
WV — V* by
(W (v)|Jw) = w(v, w).

b

We say that w is weakly (resp. strongly) non-degenerate whenever w’ is a monomorphism

(resp. an isomorphism).

It turns out that, if V' is finite-dimensional, weak and strong non-degeneracy coincide.
Thus, in this case, we simply use the term non-degenerate.

Proposition 1.23. Let V be a finite-dimensional real vector space and let w € A>°V* be
a skew-symmetric bilinear map. The following holds,

1. w is non-degenerate if and only if V is even-dimensional (dimV = 2n) and the
exterior nth-power W" s a volume form on V;

2. if w is non-degenerate, then there erists a basis (€9)?", in V* such that

(wij) = (_O[ ([)) ,

where w = w;j e'@e?, 0 is the n-by-n null matriz and I is the n-dimensional identity
matriz. Equivalently, w = Y"1 e'Ae"T,

Definition 1.24. A weak (resp. strong) symplectic form on a real vector space V is a
weakly (resp. strongly) non-degenerate 2-form w on V. The pair (V,w) is called a weak
(resp. strong) symplectic vector space.

As before, we avoid the use of the terms weak and strong in the case of finite-
dimensional vector spaces.

Ezxample 1.25. Let V be a real vector space of dimension n. Let (e;); be a basis of
V and let ()i, be its dual counterpart (i.e. '(e;) = 6%). Then, with some abuse of
notation, w = Y €'Ae; is a non-degenerate 2-form in V x V*. Note that w does not
depend on the chosen basis (e;)?_; of V. In fact, w may be defined intrinsically by the
following expression,

w((v1, a1), (v2, 22)) = az(v1) — ax(v2).

Definition 1.26. Let M be a smooth manifold, a tensor field w € Q?(M) is weakly
(resp. strongly) non-degenerate if the bilinear map w, : T,M x T,M — R is weakly
(resp. strongly) non-degenerate, for each x € M.

Proposition 1.27. Given a tensor field w over M of type (0,2), let w® : (M) — Q(M)
be the mapping defined by the contraction w’(X) = ixw. We have that w’ is C®(M)-
linear. Moreover, if w is weakly (resp. strongly) non-degenerate, then W’ is injective
(resp. bijective).

Definition 1.28. Let M be a smooth manifold, a weak (resp. strong) symplectic form is
a weakly (resp. strongly) non-degenerate 2-form w € Q*(M) which is in addition closed.
The pair (M,w) is called a weak (resp. strong) symplectic manifold.
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Theorem 1.29 (Darboux). Let w be a 2-form over a finite-dimensional smooth manifold
M. Then, (M,w) is a symplectic manifold if and only if M has even dimension (dim M =
2n) and there exist local coordinates (¢*,...,q", p1,- - ., Pn) sSuch that w has locally the form

w= dq' A dp;.
Such coordinates are called Darboux or canonical coordinates.

Ezample 1.30 (T*Q as a symplectic manifold). Let @ be a smooth manifold of dimension
n and consider its cotangent bundle 7*Q. We define on 7*@Q a 1-form © € Q(7*Q) by

0u(X) = a((Tamo) (X)), X € To(T"Q), a € T*Q.

The 1-form © is known as the Liouville 1-form, or also as the canonical or tautological
I-form. In adapted coordinates (¢*, p;) of T*Q, © has the local expression

O = p;d¢'.
We now define on T*Q) the canonical 2-form:
Q= —do.
From the local expression of ©, we have that (2 is locally written as
Q= dg' A dp;

for the local coordinates (¢', p;) of T*@. We thus infer that €2 is symplectic and hence it
endows 77*() with a canonical symplectic structure, (7@, €2).

1.4.1 The Gotay-Nester-Hinds algorithm

By definition, if (M,w) is a strongly symplectic manifold (posibly of finite dimension),
then the equation
ixw =« (1.7)

has always a unique solution X € X(M), whatever the 1-form o € T*M is (Proposition
1.27). In the finite dimensional case and we suppose that dim M = 2n, the solution vector
field X € x(M) is locally given by

. 0
X =wia) = (W) Ha) = w" o — 1.8
()()()MZ:1 e (1.8)
where (z',...,2%") are arbitrary local coordinates on M, w% is the inverse coeficient
matrix of w, with w = 37, ., wijdz’ A da?, and a = 2311 ajda?. If we instead
choose Darboux coordinates (¢',...,q", pi,...,p,) for M and write
i 0 9 i i
X=X"—+X,— and a=ao;dq¢" + a'dp;,
oq' p;

then ‘ ‘
X'=a'" and X;=-—uw;. (1.9)
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This equations will appear again in later sections in slightly different ways.

The aim of the Gotay-Nester-Hinds (GNH) algorithm (see reference [100, 101, 102])
is to study the equation (1.7) whenever the closed 2-form w is weakly symplectic or
degenerate, that is, when w is presymplectic. It manages to circumvent the degeneracy
problems that often appear in mechanics, even though it is totally geometric and may
be studied appart of any physical meaning. Equation (1.7) could not be solvable for a
presymplectic form w over the whole manifold M, but it could be at some points of M.
The objective of the GNH algorithm is to find a submanifold N of M such that equation
(1.7) has solutions in N, more precisely, to find the biggest submanifold N of M such
that there exists a vector field X € ¥(NV) that satisfies

ij*Xw|N:oz|N (110)
for a prescribed 1-form a € Q(M), where j is the inclusion j : N < M. The manifold N

will, of course, depend on the 1-form a.

Remark 1.31. Even though they are quite similar, Equation (1.10) should not be confused
with the following one

ix(j'w) = j*a.

While the latter must be satisfied for any vector field Y “over” N, that is
(Jw)(X,Y) = (7a)(Y), VY € x(N),

the former is more restrictive and must be satisfied for any vector field Y “along” N, that
is

WX, Y) =aY), VY ex(j)

Given a presymplectic 2-form w over a manifold M, let a € Q(M) be any 1-form. We
start defining the subset M; of points 2 of M such that a(x) is in the range of w’(z),
that is,

My:={z €M : a(r) €’ (TM)}.

The subset M, needs not to be a manifold, fact that is imposed, being j; : My — M the
inclusion. The equation (1.7) restricted to My,

ixwlan = ala,

is solvable, but this does not imply that X is a solution in the sense of equation (1.10).
It could be possible that, at some point x € M, the vector X (z) dont be tangent to M,
what will happen when a(x) dont be in the range of w’(z) restricted to j,.(T'M;). We
are then obliged to define a new “submanifold” js : My — M, by

My :={z € M; : a(z) € W (j1.(TM))}.
As before, the solutions of the equation (1.7) restricted to M,
ixwlr, = o,

may not be tangent to My, therefore we require that oy, be in the range of W’ restricted
to (j2 0 j1)«(T'Ma).
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We thus continue this process, defining a chain of further constraint submanifolds

Ji Ji
oo M S My — ... M S M

as follows
My ={zeM :ax)€w’((jio-o)(TM))}. (1.11)

At each step, we must assume that the constraint set M is a smooth manifold (an
alternate algorithm for the case when the constraint sets are not smooth submanifolds
may be found in [114]). In the end, the algorithm will stop when, for some k& > 0,
M1 = My. We then take N := M and j := jp o--- 0 7;. Mainly, two different cases
may happen:

— dim N =0 : The Hamiltonian system (M,w,«) has no dynamics. Furthermore, if
N = (), there are no solutions at all and (M, w, @) does not accurately describe the
dynamics of any system. On the contrary, if N # (), then N consists of (steady)
isolated points.

—dimN #0 : (M,w,«a) describes a dynamical system restricted to N and we have
completely consistent equations at motion on N of the form

(in —Oé)|N = 0.

1.5 Cosymplectic geometry

While symplectic geometry deals with even- dimensional spaces, cosymplectic geometry
is the natural extension to study analog structures in odd-dimensional spaces. Through
this section, V' and M respectively denote a real vector space and a smooth manifold of
dimension 2n + 1.

Definition 1.32. A cosymplectic vector space is a triple (V,w,n) where V is an odd-
dimensional real vector space (dimV = 2n + 1), w is a 2-form on V' and 7 is a 1-form on
V' such that the exterior product w™ A 7 is not null.

Proposition 1.33. Let V' be an odd-dimensional real vector space (dimV = 2n + 1).
Given a 2-form w and a 1-form n on V', define the morphism b : V — V* by

b(v) = iyw + n(v)n.

If (V,w,n) is cosymplectic, then b is an isomorphism. In that case, the vector R =b~1(n)
is called the Reeb vector of the cosymplectic space (V,w,n).

Note that the Reeb vector is characterized by the equations
iRw = 0, ZRT] = 1.

Ezample 1.34. Let V be a real vector space of dimension n. Let (e;)!; be a basis of V and
let (¢)%, be its dual counterpart. Define w = >""" | £'A ¢;, the canonical non-degenerate
2-form in V' x V* (see example 1.25). Let n be a non-zero covector in R. Then, with
some abuse of notation, (V' x V* x R w,n) is a cosymplectic vector space.
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Definition 1.35. A cosymplectic manifold is a triple (M,w,n) where M is an odd-
dimensional smooth manifold (dim M = 2n + 1), w is a closed 2-form on M and n be
a closed 1-form on M such that (T,M,w,,n,) is a cosymplectic vector space for each
x € M.

Proposition 1.36. Let M be an odd-dimensional smooth manifold. Given a 2-form w
and a 1-form n on M, define the map b : X(M) — Q(M) by

H(X) = ixw + n(X)n.

If (M,Q,n) is cosymplectic then b is an isomorphism of C*°(M)-modules. In that case,
R =b"Y(n) is known as the Reeb vector field of the cosymplectic manifold (M,w,n).

Again, note that the Reeb vector field is characterized by the equations
iRw = O, 2377 =1.

Proposition 1.37. Let M be an odd-dimensional smooth manifold (dim M = 2n + 1).
Given a 2-form w and a I-form n on M, the triple (M,Q,n) is a cosymplectic manifold
if and only if there exist local coordinates (¢*,...,q" p1,...,Pn,t) such that w and n have
locally the expression

Q=d¢' Adp;, n=dt

Such coordinates are called Darboux or canonical coordinates.

Ezxample 1.38 (T*Q x R as a cosymplectic manifold). Let @ be a smooth manifold of
dimension n and consider its cotangent bundle T*(). Let €2 be the canonical 2-form on
T*Q (see example 1.30) and let n a volume form on R, for instance, n = dt. Then,
(T*Q x R,Q,n) is a cosymplectic manifold.

1.6 Multisymplectic geometry

For an introduction to multisymplectic geometry and its use within classical field theory,
the reader is refereed to [31, 32]. See also [124, 132].

Through this section, V and M respectively denote a real vector space and a smooth
manifold, both of finite dimension.

Definition 1.39. A multisymplectic k-form on a real vector space V is a k-form w € AFV*
with trival kernel, kerw = 0, where the kernel is kerw := {v € V : {,w = 0}. The pair
(V,w) is said to be a multisymplectic vector space.

A necessary condition to be satisfied by a multisymplectic k-form w is that 1 < k <
dim V. The non-degeneracy condition ker w = 0 is sometimes written as

low=0&sv=0.
Note also that a multisymplectic 2-form is a symplectic one.
Definition 1.40. Given a k-form w € A*V*, we define the mappings
w; NV — ATV
VvV o= W

forany 1 <5 < k.
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If any of the linear maps w’ is null, then w must be the zero k-form (and conversely).
Thus, w,bgfl is surjective whenever w is not zero. If w is multisymplectic, then «’ is
injective.

Example 1.41. Given any real vector space V' of dimension n, consider the product Vy =
V x A*V* with 1 < k < n. We define the (k + 1)-form Qy in Vy by

fe+1
Qv ((v1,w1), .-+, (Vk+1, Wit1)) 1= Z(_l)zwi(vh ey Diy ey Uky1)

=1

where (v;,w;) € Vy for i = 1,...,k + 1 and where the hat symbol “ *” means that the
underlying vector is ommited. If (e;) is a basis for V, (¢%) is the corresponding dual basis
for V* and (ej,..;, = €, A+ Ae;,) is the basis for AFV, where 1 < i; < -+ < i <k,
then
Qu=" > e, A" A AE™
1<iy <<y <k

It is easly seen from here that, when k = 1, we recover the symplectic 2-form given in
the example 1.25.

If E is a proper vector subspace of V', we denote by A*V* the collection of k-forms in
V that are anihilated when r vectors of E are applied to it,

APV = {ozEAffV* D,y =0, Vor, . v GE}‘

We then have that VI, = V x A*V* equiped with the restriction of Qy to it is a multi-
symplectic space. Note that, if £ = {0}, we then recover the whole Vy .

Definition 1.42. A multisymplectic k-form on a smooth manifold M is a closed k-form
w € QOF(M) such that (T, M,w,) is a multisymplectic vector space for each & € M. The
pair (M, w) is said to be a multisymplectic manifold.

Ezample 1.43. Given a smooth manifold of dimension n, consider the fiber bundle A¥M
of k-forms. We define on A*M the k-form © € QF(A*M) by

@a(Xh s an) = O‘((Taﬂ-%)(‘xl)v SR (Toaﬁ]]if)(Xk»’ X € Ta(AkM)v Q€ Aka

where 7%, : A¥KM — M is the canonical projection. The k-form © is known as the
Liouville k-form, or also as the canonical or tautological k-form. In adapted coordinates
(¢*, piy...i,,) of A¥M, © has the local expression

1<ii<-<ip<k
We now define on A*M the canonical (k + 1)-form:
1=-do.

From the local expression of ©, we have that (2 is locally written as

Q= > —dpiyq Adgt A A dgt

1<iy <<, <k
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for the local coordinates (¢, pi,...;, ) of A¥M. We thus infer that Q is multisymplectic and
hence it endows A¥M with a canonical multisymplectic structure, (A*M, Q). Tt is easily
seen from here that, when k = 1, we recover the canonical symplectic 2-form given in the
example 1.30.

If M fibers over a manifold N, 7 : M — N, we denote by A¥M the collection of
k-forms over M that are anihilated when r m-vertical vectors are applied to it,

Al,fM: {ozEAkM Dy, by =0, Yup, ..o, 0, GVW}.

We then have that A¥M equiped with the restriction of Q to it is a multisymplectic space.
Nota that, if N = M, we then recover the whole A*M.
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Chapter 2

Classical Mechanics

2.1 The Lagrangian formalism for autonomous systems

The Lagrangian formulation of mechanics is set (for simplicity) in a finite dimensional
manifold @ (the infinite dimensional case is depicted in [122]), the configuration space,
whose tangent, T'(), describes the states —position plus velocity— of the system under
study. Local coordinates (¢') on @ induce fiber coordinates (¢°,v") on TQ, such that a
tangent vector v € T,() at some point g € () is written as

% 9 1 n
v:vaqi =v 6—ql+---+v 8_q”
One introduces the Lagrangian of the system, a smooth function L : T'() — R, which
is in some sense the density cost of a motion in the system. Typically, the Lagrangian is

the kinetic energy minus the potential energy of the system,

o 1 o . o 1
L(g'v') = 3mgio's’ = Ulq') (Llg',v') = 5mg(uy,v) = U (@)

where g;; = g;;(¢) is a given metric tensor and m the mass of the particle in motion.

We seek for curves that describe the motion of a particle in our system. It is well
known that the trajectories of the system are obtained from a variational procedure. We
will thus consider twice differentiable curves ¢ : [tg,t;] — @ joining two fixed points ¢
and ¢, in ). The set of such curves is

CQ([t(]?tl]? Q7QO7q1) = {C € C2({t07t1]7 Q) : C(tl) = i, L= 07 1} )
or C*(qo,q1) for short. Given ¢ € C*(qo,q1), denote by ¢(t) its lift to T'Q, that is, the

curve in T'() that describes the position and velocity of a particle following the original
curve (see Definition 1.20). Formally, ¢ is the vector field over ¢ such that

. d
1)) = (o)),
for any smooth function f € C*(Q). If (¢',v") are adapted coordinates in T'Q, then
&(t) = (¢'(t),v' (1)),

where one regards v' = dqg‘/ dt as the velocity of a particle moving along c(t).
If (¢*,v") are adapted coordinates on T'Q, locally

ct) = (c'(t), (1)),
where ¢'(t) = (¢ 0 ¢)(t) = (¢" o ¢)(t) and ¢'(t) = v' 0 &)(t) = (dc'/ dt)(t) .

15
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2.1.1 Variational approach

Definition 2.1. Given a Lagrangian function L : T() — R, two fixed points qo,q; € Q
and a fixed time interval [to, t1], the associated integral action is the real valued map A
defined on C%([to,t1], @, qo, q1) given by

t1 t1
Au(e) = / L)) dt = / L(gi (1), vi(t)) dt. 2.1)
to to
Since we look for a variational approach of the problem, we must describe how the
integral action Ay changes under small perturbations of ¢ and what these perturbations
are. One shows that C?(qo,q;) may be endowed with an infinite-dimensional smooth
manifold structure, see [21]. In fact,

TCC2(qO,(]1) = {50 € Cl([to,tl],TQ) L TQ© oc = C, 6C(tl> = O, 1= O, 1} .

Definition 2.2. Let ¢ € C*([to, t1], Q, qo, q1), a variation of ¢ is a curve ¢, in C*(qo, q1),
defined for a small interval [—¢, €], such that co = c¢. An infinitesimal variation of c is a
vector field dc over ¢ that vanishes at the end points, dc(t;) = 0, for i = 0, 1.

With this definition, the tangent space T,C*(qo, q1) at a curve ¢ € C*(qo, q1) is the set
of infinitesimal variations dc of ¢, which are induced by variations ¢, of ¢. More precisely,
deg(t
sety = 0|

ds s=0

where t € [tg, ;] is fixed.

Definition 2.3. Let F : C*(qp,q1) — R be a functional of class C'. A critical point of
F is a point ¢ € C*(qo, q1) such that

d(F ocy)
dS s=0

for any variation ¢, of c.

Equivalently, one could say that c is a critical point of a functional F € C'(C*(qo, q1))
if and only if

d0F(c)-dc=0,
for any infinitesimal variation dc of ¢, which is classically written as
dF(c)
0F(c) =0 =0.
(c) or —

We are now in position to formulate one of the main results in Classical Mechanics, the
variational principle of Hamilton, which states that the dynamics of our physical system
is determined from the variational problem related to the integral action Aj.

Statement 2.4 (Hamilton’s principle). The motion of a particle in the Lagrangian sys-
tem (Q, L) is a critical point of the action functional Ay, that is, a curve ¢ € C?(qo, ¢1)
such that § AL(c) = 0.
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An easy calculation help us to write this statement in terms of the Lagrangian, ob-
taining the well known Euler-Lagrange equations.

Theorem 2.5 (The Euler-Lagrange equations). Consider a given Lagrangian system
(Q, L), where L € C*(TQ). A twice differentiable curve ¢ : [to,t1] — Q joining two
points qo,q1 € Q is a motion of (Q, L) if and only if the lift ¢ of ¢ to T'Q satisfies the

differential equations:
oL d /0L
- 0C — — ~oc| =0 2.2
8q’oc dt ((%Zoc) ’ (22)

where (q',v") are adapted coordinates in a neighborhood of ¢.

Proof. Given a curve ¢ € C*(qo, q1), let dc be an infinitesimal variation of ¢ tangent to a
variation ¢, of c. By definition and differentiating under the integral sign, we have that

~ d(Apoc)
dAL(c) - dc = 4 |

_ % Utt LG (t)) dt]

- /: % [L(c(t), ¢.(1))] L: dt
- /: [qui '5Ci(t)+%~5c'i(t)} dt,

provided that € is small enough such that the image of ¢ : [—¢,¢] X [y, t1] — TQ
is covered by a single chart with adapted coordinates (¢*,v%). Integrating by parts the
second term and taking into account that dc vanishes at ¢y and ¢;, we obtain

BTOL  d (0L i
(5AL(C)-(5c:/tO {8(]1'_&(81%)} -oct(t) dt.

Now, let us suppose that ¢ is a motion of the system. Then, §.A.(c) - ¢ = 0 for every
infinitesimal variation dc, which holds if and only if

s=0

oL dIL
o dtowt

2.1.2 Geometric formulation

Definition 2.6. The Poincaré-Cartan 1-form is the pull-back of the differential of the
Lagrangian function by the vertical endomorphism S, that is, the form

O =S8*(dL). (2.3)
The Poincaré-Cartan 2-form is then given by
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In adapted coordinates, the Poincaré-Cartan 1-form reads

oL .
= —dq¢* 2.
Or i q (2.5)
and the Poincaré-Cartan 2-form
0%L A A 2L _ _
Q= ———dg¢* N d¢? —— dg* A do?. 2.6
L= Guiag YN YT Guige (4N (26)

By definition, the Poincaré-Cartan 2-form is exact, and hence closed, but in general needs
not to be non-degenerate.

Proposition 2.7. The Poincaré-Cartan 2-form is non-degenerate if and only if the La-
grangian function is regular, that is when the Hessian matriz

()

Definition 2.8. The Lagrangian energy is the smooth function F; € C®(T'Q) defined
by

1s inwvertible.

E,=AL—-L, (2.8)
where A denotes the Liouville vector field given in Definition 1.18.

Definition 2.9. Any vector field X € X¥(7T'Q) that satisfies the equation of motion
ix$lp, = dEy, (2.9)
is called a Lagrangian vector field.

Theorem 2.10. If the Lagrangian function L is reqular, then there exists a unique vector
field X € x(TQ) which is solution of the equation of motion. The Lagrangian vector field
X is a second order differential equation and its base integral curves are solutions of the
Fuler-Lagrange equations (2.2).

Proof. The existence and uniqueness of a Lagrangian vector field comes out from the fact
that ()7 is non-degenerate when L is regular, hence €2 is symplectic and Proposition 1.27
applies. Let X be a generic vector field on T'Q) whose local expression is

o .0
+v

X =4 — :
e oq’ o’

for adapted coordinates (¢°, v*) of TQ and let suppose that X satisfies the equation (2.9).
The contraction of the Poincaré-Cartan 2-form 2 with X is

- 0L . 0°L . O°L - . O°L ;
ixQ =\ — 7 —V—— | ¢ + ¢ = AV’
L (q oviog 1 oviag " 31}381ﬂ> T T a0

and the differential of the Lagrangian energy FEj, is

- 0*L 0L . 0L
Ep=(V—+——— ) ———dv'.
dEg (v 9070 8ql) dg' +v R dv
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Equating coefficients, we have on the one hand that
0?L - 0%L

] )] )

T oviae — ¥ duigvi
Thus, if L is regular, ¢/ = v/, which proves that X is second order. On the other hand,
provided that L is regular, we have that

oL . 0°L . 0L
) — i —— =
oq ¢l Ov? Oviov*
Let ¢ : I — (Q be a base integral curve of the Lagrangian vector field X, then ¢* = ¢ =
de/ dt and ©° = ¢ = d?c/dt*. Substituting this in the previous equation and denoting

¢ = (c',¢') the lift of ¢ to TQ, we obtain

oL _ d¢ 9L . d¢ 9L . 9L _ d [(OL
0=—o0f—————0¢——————0(=——00— — -o¢ |,
oq dt 0¢? ov’ dt Jviovt oq dt \ ov’
which are precisely the Euler-Lagrange equations (2.2). O

2.2 The Hamiltoniam formalism for autonomous sys-
tems

For a more extended description of the Hamiltonian formalism, please refer to [1, 64, 122].

As for the Lagrangian formalism, the Hamiltonian formulation of mechanics is set
in a finite dimensional manifold @), the configuration space, but in contrast, the states
—position plus momentum— of the system under study are described by the cotangent
bundle T*Q of Q. Local coordinates (¢*) on @Q induce fiber coordinates (¢*, p;) on T*Q,
such that a 1-form o € T;Q) at some point ¢ € () is written as

a=p;d¢' =p dg* + -+ p,dg".

One introduces the Hamiltonian of the system, a smooth function H : T*(Q) — R, which
is in some sense the is the total energy density of the system being described. Typically,
the Hamiltonian is the kinetic energy plus the potential energy of the system,

H(q',pi) = K(p;) +U(q") (=T(p;) +V(d'))-
Definition 2.11. Given a Hamiltonian function H : T*Q) — R, the Hamiltonian vector
field with energy function H is the unique vector field X € X(M) such that
ix,$)= dH,
where () is the canonical symplectic form of T*@Q).

Theorem 2.12 (Hamilton’s equations). A differentiable curve ¢ : I — T*Q is an
integral curve of Xy if and only if the Hamilton’s equations hold:

_OH OH

and .i = =,
Op; P g’

3

q

where c(t) = (¢'(t), pi(t)).
Proposition 2.13. Given an integral curve c(t) of Xy, we have that H(c(t)) is constant.

Proposition 2.14. Let F, € Diff(M) be the flow of Xy, then Fjw = w, for each t, i.e.
{F;} is a family of symplectomorphisms.
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2.3 The Legendre transformation

The Legendre transformation is the master key that relates the Lagrangian and the Hamil-
tonian formalisms. Although the technique is usually used to go from the Lagrangian side
to the Hamiltonian one, it can be restated to pass from the latter to the former.

Definition 2.15. Given a Lagrangian function L : T() — R, the Legendre transforma-
tion associated to L is the fibered mapping leg; : T'Q) — T™() given by

fleg, (v), w) := L L(v-+ <)

If (¢*,v") and (q¢', p;) denote fiber coordinates on T'Q and T*Q respectively, we then
have

e=0

o . oL
egr(q',v") (q P W)
Proposition 2.16. If L is regular, then leg; : TCQ)Q — T7(Q) s a local diffeomorphism.

Definition 2.17. A Lagrangian function L : T'()Q — R is said to be hyper-regular
whenever leg; is a global diffeomorphism.

Theorem 2.18. Given a Lagrangian function L : T(Q) — R, we have that
O =1leg; © and Qp =leg; Q.
Moreover, if L is hyper-reqular and we define the Hamiltonian
i oL
o'

then the Lagrangian vector field X1 and the Hamiltonian vector field Xy are leg; -related,
Le. Xy = (legy)«XpL.

H:=FEpo legg1 =

_L’

2.4 The Tulczyjew’s triple

In [147, 148], W. Tulczyjew introduced a purely geometric construction based on a triple
of tangent and cotangent bundles in which the theory of classical mechanics fits perfectly.
While its extension to higher-order mechanics has been completely achieved (see [30, 45,
48]), there have been some attempts to reproduce it for field theory but with only partial
success (for instance, [52, 109]).

Before we give the full picture, we start with two basic definitions.

The canonical involution of TT'Q) is the smooth map kg : TTQ — TT() given by

(b (el )LL) = (el

where x : R? — @Q and X(s,t) := x(t, s). Note that Sx(s,t)|,—0 : R — TQ.
The tangent pairing between TT*(Q) and TT(Q is the fibered map (-, ->T TT*Q xq
TT( — R given by

(5] 500] ) = 5 80"

where v : R — 77(@ and ¢ : R — T'Q) are such that mg oy = 7 0 4.

)
s=0

d
t=o0 dt

Y

t=0
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Definition 2.19. The Tulczyjew’s isomorphism is the map a : TT*Q) — T*T(Q) given
by
(a(V), W) = (V,kgW)", VeTTQ, W eTTQ.

In coordinates, S -
alg,p',q".p") = (¢, 4" p" p).
Definition 2.20. Define the map g : TT*Q — T*T*Q by
V) :=iyQ, VeTT*Q,
where () is the canonical symplectic form of T*@Q).

In coordinates,

Bla'sp'd'p") = (¢' 4" ' p').

By means of o and 3, TT*Q may be endowed with two (a priori) different symplectic
structures: Let Qpg and (r-g be the canonical symplectic forms of T*T'Q) and T*T™(Q)
(as cotangent bundles), respectively. Then, both of 2, = o*Qpg and Qs = *Qr« define
symplectic structures on 77 which turn out to be the same; more precisely, 2, = —Q3.
Moreover, there is a third canonical symplectic structure on 7T7*() which comes from the
complete lift of the canonical symplectic form g of @) to T7T™(Q), which we denote QS),

and which coincides with the previous ones; more precisely, Q(Ql) = ,. In coordinates,
O, = a"Opg =pdg+pd¢ and Oy = O = —pdg+ ¢dp,
where O7¢g and O7p-¢ are the Liouville 1-forms on T'Q) and 7™, respectively.

Theorem 2.21. Given a Hamiltonian function H : T*(Q) — R, consider the associated
Hamiltonian vector field Xy € X(T*Q). The following holds,

1. The image of Xy is a Lagrangian submanifold Sx, of (TT*Q, Q).
2. The image of dH is a Lagrangian submanifold Sap of (T*T*Q, QUr+q).
3. The isomorphism [ maps one into another, i.e. 5(Sx,) = Sanu-

Lemma 2.22. Given a Lagrangian function L : TQ) — R, then the image of dL is a
Lagrangian submanifold Sar of (T*TQ,rq)-

Proposition 2.23. Given an hyper-regular Lagrangian function L : TQ — R, consider
the associated Hamiltonian H = Eyp oleg;'. We have that a=*(Sqz) = Sx,, = B (San)

7@ TT*Q )

AT

legy,
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Chapter 3

Classical Field Theory

The main reference for this chapter is the book by Saunders [139], although it does not
cover all the sections (references will be provided when necessary). Besides, other basic
references are |21, 91, 97, 109, 61, 136].

3.1 Jet bundles

Through this section, (F,m, M) denotes a fiber bundle whose base space M is a smooth
manifold of dimension m, and whose fibers have dimension n, thus E is (m + n)-
dimensional. Adapted coordinate systems in E will be of the form (z°,u®), where (z°) is
a local coordinate system in M and (u®) denotes fiber coordinates.

Definition 3.1. Given a point x € M, two local sections ¢, € ', are I-equivalent at
x if their value coincide at x, ¢(z) = ¥(z), as well as their tangent maps, T,¢ = T,1).
This defines an equivalence relation in I',w. The equivalence class containing ¢ is called
the first order jet of ¢ at x and is denoted jl¢.

An alternative definition of the previous equivalence relation would be in terms of
partial derivatives. Let (2%, u®) be a system of adapted local coordinates around ¢(z), v
will be 1-equivalent to ¢ at x if and only if

0™
oxt

_ e

¢%(z) = ¢*(x) and (3.1)

Definition 3.2. The first order jet manifold of 7, denoted J'm, is the whole collection
of first order jets of arbitrary local sections of 7, that is,

Jin={ji¢p:x €M ¢pel,nm}.

The functions given by

mJr — M
ji6 — (3.2)
and )
Mo:Jnm — E
’ . 3.3
6 — o) (33)

are called the source projection and the target projection respectively, and are smooth
surjective submersions.

23
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Proposition 3.3. The first jet manifold of m, J'm, may be endowed with a structure
of smooth manifold. A system of adapted coordinates (z°,u®) on E induces a system
of coordinates (%, u®,u®) on J'm such that 2'(jl¢) = z'(x), u*(jl¢) = u*(d(x)) and
af ;1 __ O¢~
In the induced local coordinates (2, u®, u%), the source and the target projections are
written

"

(o u® uf) = (2) and  mpo(at,u®,uf) = (', u®). (3.4)
From here, it is clear that 7 and m o are certainly projections (surjective submersions)
over M and E, respectively. Therefore, (J'm, 7, M) and (J'7, 71, F) are fiber bundles.
If we consider a change of coordinates (z¢,u®) w (y/(2%),v? (2%, u®)) in E, it induces
a change of coordinates (z°,u® u$) (yj(xi),vﬁ(xi,u“),vf(xi,ua,uf‘)) in J'7. In this
case, the “velocities” transform by the following rule:
o o oz’
B a
J (8xz e oyJ (3:5)

Note that the change of coordinates is not linear, like in the tangent bundle, but affine.

Proposition 3.4. The first jet manifold of w, J'm, together with the target projection,
10, 18 an affine bundle over E. The fiber in J'm over a point u € E,, Jim, is diffeomor-
phic to the affine space

{A e Lin(T,M,T,E) : T,mo A=1dr,\}.
The underlying vector bundle has typical fiber
{A € Lin(T,M,T,FE) : TymoA=0} = Lin(T, M, V, 7).

Moreover, the induced coordinate systems (x',u®,u®) are adapled to the affine bundle
structure.

Formally, the associated vector bundle to J'7 is the bundle over E whose total space
is the tensor product T*M ®pg V m, that is, the bundle

(T"M ®@g V7, (TE|yx) 0 PTy, E).

Let ji¢ € J'm and consider a typical element A € TXM ® Vg, 7, the action of A on
Jlo is the 1-jet jl¢p = jlé + A such that (z) = ¢(z) and Tpp = T,é + A. In adapted
coordinates,

uf (7,0 + A) = u (,0) + A7,

where

A=Afdz'® %

Despite (J'7, 710, E) is affine, if we consider a preferred global section and see it as
“the zero section”, one could thought of J'm as a vector bundle. Obviously, in general,
there is no such preferred global section. But, when F is trivial, there it is. Suppose that

E =M x F. For each u € E we define the constant section ¢, € ['r by
Pu() = (z, pry(u)).

We then define the zero section z € I'm o by

2(u) := iy = (2',u®, u = 0).

T

In the particular case where 7 is the bundle (R x F, pr;,R), J'7 turns to be isomorphic
to R x T'F.
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3.1.1 Prolongations, lifts and contact

Definition 3.5. Let ¢ € I'm be a (local) section, its first prolongation is the (local)
section of 7 o given by

(770)(x) = jz0,

for every x € M. An arbitrary (local) section o of 7 is said to be holonomic if it is the
first prolongation of a (local) section ¢ € I'r, that is, if o = jl¢.

Definition 3.6. Let f : E — F be a morphism between two fiber bundles (£, 7, M) and
(F, p,N), such that the induced function on the base, f : M — N, is a diffeomorphism.
The first prolongation of f is the map j'f : J'm — J'p given by

(]1f)(];¢) = j}(m)ﬁbf, Vjigb € J17r,

where ¢; == fogo [

J17T4>jf Jip
1,0 P1,0
’ f
M[ E F e
-. / \ |
@l | p| | é;
M—! N

Note that the first prolongation j'f of a morphism f is both, a morphism between
(Jlm, 7m0, E) and (J'p, p1o, F), and a morphism between (J'm,m, M) and (J'p, p1, N).
In each case, the induced functions between the base spaces are f and f, respectively.

If (z%, u®, u®) and (y7, v7, vf) denote adapted coordinates in J'm and J!p, respectively,
then we have

e (oo of
PG =, VG =f and vf(flf):<axi+“i8ua)' o

The expression between brackets in the last equation is called the total derivative of 7

with respect to x'. We will come back to it later.

Definition 3.7. Let ¢ : M — E be a section of 7, x € M and u = ¢(x). The vertical
differential of the section ¢ at the point v € F is the map

dvo: T, E — VY, 7
v — v—=T,(pom)(v)

Namely, d¥¢ :=1d, —T,(¢ o 7).
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Notice that the image of d)¢ is certainly in V), 7 since T}, o d} = 0 and that, in fact,
dY¢ depends only on jl¢. In adapted local coordinates (z%, u®) of F,

dyo = <dua— aidyzzz) ® 0 .
ou

. 3.6
e (3.6)
Definition 3.8. The canonical structure form of J'r is the 1-form 6 on J'm with values
in Y 7 defined by

016(V) = (&) 8)(Tom (V). V € Typod'm, (3.7)

where ¢ is any representative of jl¢ € J'w. The contraction of the covectors in V* 7 with
0 defines a “distribution” in 7% J'7r. This distribution is called the contact module or the
Cartan codistribution (of order 1) and it is denoted C'. Its elements are contact forms.
The annihilator of C! is the Cartan distribution (of order 1).

This is the approach taken by Echevaria-Enriquez et al. in [71]. In Saunders’ ter-
minology (see [139], pages 136-137), 6 is one of the elements that conform the “contact
structure” of 7, which is given by a natural decomposition in 7} ;(7), what is out of our
scope.

Note that the expression (3.7) does not depend on the representative ¢ of jl¢, hence
it is well defined. In adapted local coordinates (z°,u®,u$) of J'm,

0= (du®—ufda') ® (3.8)

du®’
In fact, the contact forms du® — u®* dz* € C' are a base of the contact module.

Proposition 3.9. Let (z%,u®,u?) be adapted coordinates on J'x, a basis of the Cartan
codistribution is given by the coordinate or local contact forms

0 = du® — uf dz’. (3.9)

Proposition 3.10. The canonical structure form 6 € T(T*J'r @ . V 70) and the contact
forms w € Ct are pulled back to zero by the first prolongation j*¢ of any section ¢ of .
Moreover, this characterizes the module of contact forms, i.e.

wel & (j'o)'w=0, Vo € I'm. (3.10)
A complementary or dual result to the previous one is the following.

Proposition 3.11. Let o € I'm; be a (local) section. The following statements are equiv-
alent:

1. o is holonomic.
2. o pulls back to zero any contact form, that is

o*'w =0, Yw e C". (3.11)

3. o pulls back to zero the canonical structure form, that is

o0 = 0. (3.12)
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Notice that the contact forms are m; o-basic, which is clear from the coordinate ex-
pression (3.9). Though, therefore they may be thought as forms along 7 ¢ rather than
on J'z. In this sense are defined total derivatives.

Definition 3.12. A total derivative is a vector field £ along 7 ( which is annihilated
by the Cartan codistribution (considered now as forms along m ). Given a system of
adapted coordinates (z*,u®, u®) in J'm, the local vector fields defined along 7 by

d ) 0

- = — x —— 1
dzt Ozt T ou® (3.13)

are called coordinate total derivalives.

It is immediate to check that coordinate total derivatives are total derivatives, in
fact they define a basis of such vector fields. Under a change of coordinates, (z*, u®, ug)

to (y/,v° ,vf ), a coordinate total derivative transforms linearly by the Jacobian of the
underlying change of coordinates:

d 92" d

dyi Oy dat’

If £ € ¥(m1p) is a total derivative with the coordinate representations

d - d

:gj_w

£=¢ dxt dy?

where the coefficients £ and & are functions on J', then

ox’

51 — 5] ay] .

Definition 3.13. The total lift of a vector field £ = 8@ on M is the unique total
derivative that projects on ¢ itself, that is, the vector field £ € x(J'7) locally given by

d
datljte

£(jz0) = €'(x) (3.14)
Note that the total lift of the coordinate partial derivatives in M are precisely the
coordinate total derivatives.
Now, consider the action of total derivatives on smooth functions over E. If f &
C>®(E), the action of d/dz’ on it yields a function df/dz’ € C*(J'x). In particular,
the action of d/dx’ on the coordinate function u® € C*(E), gives as expected

du®

daz?

— % € C®(J'w).

Another interesting fact is how total derivatives and jets are related. Let f € C*(FE),
¢ € 'mand £ € X(M), we have

E(foo)=E(f)os'e, (3.15)

and in coordinates 5 q
(foo) _ df o jlo. (3.16)

ori  dat
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Finally, note that coordinate total derivatives and ordinary partial derivates do not nece-
sarilly conmute:

odf _dof odf_dof o 0df_ddf of
dridri  dad Ox Ouedad | dwd due outdri  dad Ou® T Ou’

where f € C®(E).

Definition 3.14. Given a vector field £ on E, its first lift (or first jet) is the unique vector

field £ on J'7 that is projectable to & by 7o and preserves the Cartan codistribution
with respect to the Lie derivative, i.e. £,yw € C! for any w € C'.

Proposition 3.15. Let & be a vector field on E. If € has the local expression

7 a « a
et (3.17)

in adapted coordinates (z*,u®) on E, then its first lift &) has the form

0 . 0 d¢> dg\ 0
Oxt ¢ Ju® * ( ) ou

§=¢

& =¢

dat J dxt

(3.18)

for the induced coordinates (x%, u®, u®) on J'r.

Originally, the first lift is defined for m-projectable vector fields on E. The first lift of
such vector field £ is the infinitesimal generator of the first lift of the flow of £&. Definition

3.14 is a characterization of this property and it is generalized for any kind of vector fields
on E (see [71]).

Proposition 3.16. Let . be the flow of a given m-projectable vector field & over E.
Then, the flow of €N is the first prolongation of V., j ..

3.1.2 The vertical endomorphisms

Definition 3.17. Given a l-jet j;¢ € J'm, let A € T M ® Vy(z) 7. The vertical lift of A
at j,¢ is the tangent vector A%y, € Tji4(J'm) given by

d
Ao(f) = T f b+ tA)| L, VF € C(Jjym). (3.19)

By the very definition of vertical lift, given a smooth function f € C*(FE),
(Tjiqﬁﬁl,o)(Ajv';qs)(f) = A}]%¢<f o)
d .
= EU omi0)(jrd + tA)],_,

d
= ST,
= 0.

Thus, the vertical lift takes values into the vertical fiber bundle Y o C T'J 7. Indeed,
it is a morphism of vector bundles over the identity of J'm,

(')V T*M ®J17r VT —> V?TL().
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Note that, this time, the tensor product is taken over J'm and not over E. Note also that
for each jl¢ € J'm, the vertical lift at jlo,

(')av'}cas t Ty M @ Vo) ™ — Vizg T1,0 C Tj;w]lﬂa

is a linear isomorphism. In adapted local coordinates (z*,u® u?), if A = A¥da'|, ®
8/8u0‘|¢,(x), then

v « a
Aj,w:A'_

L oug

0 0
d ()Y = du® - R —.
" and () U ®8x1®8u§‘

(3.20)

Definition 3.18. Let n € A™M be an arbitrary m-form on M. The vertical endomor-
phism associated to 7 is the vector valued m-form S, : (T'J'm)™ — T'J'w that gives

Sy(Vi Vi) i= 3 {0 @ [(Taem o) (Vi) = (Tyzg(d 0 m)) (VA)]} (3.21)
i=1
for any m tangent vectors Vi,...,V,, € Tj%qulﬂ', and where 7' is the contraction

n' = (—1)m_inI(V1, . ,‘71-, ey Vi)
with the hatted factor omitted.

Definition 3.19. The (canonical) vertical endomorphism S arises from the natural con-
traction between the factors in V7 of the structure canonical form 6 and the factors in
V* 7 of the vertical lift (-)¥; that is

S=0,))el(T*J'n @y TM @, Vi) (3.22)

In adapted coordinates (2%, u®, u¢) of Jm, the vertical endomorphisms have the local
expressions

0

&ZQW—@@@AWH%®&#=WAWH%®%? (3.23)

and 5 p p
= (du® — u? da? - Q) — =0 . .24
§=(du uﬂdx)@@aﬂ@@u? ®axl®6u§“ (3:24)

where 6§ = du® — u$ dz/ are the local contact forms and d™ 'a; = g9, d™ .

3.1.3 Partial Differential Equations
Lemma 3.20. If N is an open submanifold of M, then J'(nxn) ~ 7 (N), where Ty :=

W‘ﬂ_l—l(N)

Definition 3.21. A first-order differential equation on m is a closed embedded subman-
ifold P of the first jet manifold Jlw. A solution of P is a local section ¢ € 'y, where
N is an open submanifold of M, which satisfies jl¢ € P for every x € N. A first-order
differential equation P is said to be integrable at z € P if there is a solution ¢ of P
(around some neighborhood N of m1(z)) such that z = j}rl(z)gb. A first-order differential
equation P is said to be integrable in a subset P’ C P if it is integrable at each z € P'. A
first-order differential equation P is said to be integrable if it is integrable at each z € P.
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If [ is the codimension of P (dim J'm — dim P), there locally exist submersions ¥ :
J'r — R for whom P is the zero level set. Written in local coordinates, P is given by
the set of points that satisfy

Uzt u®u®) =0, p=1,...,1

Thus, first-order differential equations are a geometric interpretation of the usual first-
order partial differential equations. Under certain conditions, one could solve the previous
equation for some of the velocities u{ making them to depend on the other variables
(then m g|lp : P — E would be a submersion). For simplicity, if n =1 and 1 < [ < m,
rearranging conveniently the base variables, the previous equation could be equivalent to
the following expression

Um—ip = Pu(@' w01, o Up—y), p=1,...,L

In the general case, if one projects P to £ by m o, he would obtain a subset P 0.0
of E, let us assume it is a smooth submanifold, which is not necessarily the whole of E.
In such a case, it means that we are dealing with some constraint on the total space E
itself. An integral holonomic section j'¢ of P will be such that the image of ¢ belongs to
PO and the image of j'¢ belongs to PV .= J1POO 0P The submanifold PM4Y of
J'7 introduces new constraints that a solution of P must satisfy, moreover it represents
the first step of the extension to jet bundles of the algorithm to extract the integral part
of a differential equation in a tangent bundle, which was presented by Mendella et al. in
[127] (see also [126, 128]). The general algorithm will be given in Section §4.1.3.

Ezample 3.22. Given the fiber bundle pr; : R? — R? x R? with global coordinates
(z,y,u,v,w), consider the constraint submanifold of J! pr,

P = {(l’7y:u7vvw7um7uyvvxavy7wwva> € Jl p/rl :
u=0, v=w, uy =0y, U, =—w,}. (3.25)

Then,
P(O,O) = {(x,y,u,v,w) S R2 X R3 U= 0’ v :w}’

and
P = PO AP = L(2,y,0,v,v,0,0,0,0,0,0) € J' pry }

is the integral part of P. Thus, holonomic integral sections of P are of the form
o(z,y) = (2,9,0,¢,0),

where ¢ is any real number.

3.1.4 The Dual Jet Bundle
Definition 3.23. The dual jet bundle of 7, denoted J'xT, is the reunion of the affine
maps from J!7 to AZ‘(u)M , where u is an arbitrary point of E. Namely,

J'rt= ) Aff(Tym, AL, M), (3.26)

m(w)
uel
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The functions given by
ﬂ It — M

we Jirt — 7w(u) (3:27)

and
7TLO cJint — B

2
we Jirt — u (3:28)

where JlnT = Aff(J!T, A?(U)M), are called the dual source projection and the dual target
projection respectively.

The duality nature of J'zT gives rise to a natural pairing between its elements and
those of J'7. The pairing will be denoted by the usual angular brackets, (,) : J'7' ®p
Jim — A™M.

Proposition 3.24. The dual jet bundle of =, J'w', may be endowed with a structure
of smooth manifold. A system of adapted coordinates (z*,u®) in E induces a system of
coordinates (z*,u® p,p') in J'w' such that, for any jl¢ € J'm and any w € J;(I)WT,
v'(w) = 2'(2), u(w) = u(¢(z)) and (w, j;¢) = (p + Pouf) d"a.

In the induced local coordinates (z%,u®, p,p!), the dual source and the dual target
projections are written

WI([EZ‘,UO‘,]L]?;) = (ZEZ) and WI,O(Iivuaapypﬁx) = (Iivua>' (329)

From here, it is clear that 7T]1L and 7T]1L’0 are certainly projections over M and FE respectively.
Therefore, (J'at, 7], M) and (J'x, ﬂyo, E) are fiber bundles. If we consider a change of
coordinates (2%, u®) — (3’,v”) in E, it induces a change of coordinates (z%,u®,p,pl)
(v, v°, q, qjﬁ) in J'7'. In this case, the “momenta” transform by the following rule:

_ ou™ ; Oyl i _ ou” ; Oy’
q= JaC($<y>) (p + a—yjpa 8ZEZ) and q5 — Jac(x(y)> (avgpa 81’) ;

(3.30)

where Jac(z(y)) is the Jacobian determinant of the transformation (y’) — (2°). Note that
the local volume form and its contraction transforms under the change of coordinates by

ox’

d™y = Jac(y(gj)) d™x and dmflyj = Jac(y(:c))a—yj

d™ta;. (3.31)

Proposition 3.25. The dual jet bundle of ©, J'wt, together with the dual target projec-

tion, ﬂ 0, 18 a vector bundle over E. Moreover, the induced coordinate systems (z*, u®, p, p.,)

are adapted to the vector bundle structure.

Definition 3.26. The reduced dual jet bundle of 7, denoted J'7°, is the quotient of J 7'
by constant affine transformations along the fibers of 7. The quotient map will be
poo Jrath — Jire.

Proposition 3.27. We have that:
1. J'7° may be endowed with a structure of smooth manifold;

2. (J'wt, p, J'7°) is a smooth vector bundle of rank 1;
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3. Adapted coordinates (z*,u®) on E induce coordinates (x',u®, p.) on J'w° such that
(' u®, p,pl) = (', u, pl)), where (z',u® p,p.) are the induced coordinates on
Jnt.

The extended and the reduced dual jet bundles of m may also be realized by means
of basic and semi-basic forms. Recall that 7-basic (resp. m-semi-basic) forms are forms
over E annihilated by the contraction with at least one (resp. two) m-vertical vector.

Proposition 3.28. The extended dual jet bundle, J'7', and the set of m-semi-basic m-
forms over E, A'E, with canonical projection AkwE\AéE : AXE — E are isomorphic.

Proof. Given a semi-basic m-form w € AJ'E, let u = Afrp(w) € E and consider the
function that sends any 1-jet jl¢ € Jlm to the pullback of w by ¢ at x. This does not
depend on the representative ¢ € I',m of jlé. Moreover, this function is affine with
respect to jl¢ thus, this defines a morphism Y from AJ'E to J'x as follows

YT:APE — Jixf
w — Y(w):Jlx — A™M
B — Pw

where u = WI’O(UJ). It is easy to check that ® is a smooth isomorphism of vector bundles.

O
Semi-basic m-forms w € AJ'E are locally written
w=pd™z +p, du* A d™ a;.

Thus, adapted coordinates (z’,u®) on E induce adapted coordinates on (z*,u®, p,p’,) on
AT'E. The isomorphism defined in the previous proof takes then the local expression

T(z',u®,p, ph) = (2, u, p,ph) : (z',u®,uft) € Jom = P+ pous € R.

Consider now the set of m-basic forms, AT"E. An arbitrary basic form w is locally
written
w=pd"z.
Notice that AT"E coincides with the pullback to E of A™M or with the set of constant
affine transformations on the fibers of m .

Corollary 3.29. The reduced dual jet bundle J'w° is canonically isomorphic to the quo-
tient of semi-basic m-forms AJ'E by the basic m-forms AT'E, that is J'm° = AT'E/AT'E.

Proof. Let U : A'E — J'z' be the canonical isomorphism given in Proposition 3.28.
Since the set of constant affine transformations on the fibers of 7y coincides with the
set of basic m-forms over E, u o W is constant along the fibers of i1 as well as ¥ o 1
along the fibers of u. Hence U passes smoothly to the quotient to an isomorphism
v:APE/NPE — J're. O

While J'7T is naturally paired with J'm, remember that AJ'E has a canonical mul-
tisymplectic structure (see Example 1.43). Consider the Liouville m-form © on AY'E,
which is locally given by the expression

O =pd™r + ¢, du® A d" ay, (3.32)
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for adapted coordinates (z%,u®,p,p’) on AJ'E. Then, the canonical multi-symplectic
(m 4+ 1)-form on AJ'E is

Q=—-dO =—dpA d"z — dp}, A du® A d™ ta. (3.33)

Thanks to the identification between Jln" and AJ'E (and their respective quotients),

any structure carried by one of them can be translated to the other. In particular, the

multi-symplectic form. From now on, no distintion will be made between J'7! and AJ'E

(or between J'7° and AY'E/AT'E). Although the “dual” notation will be used for sets,
coordinates, structures, etc.

3.2 Classical Field Theory

3.2.1 The Lagrangian Formalism

This section is devoted to the first order Lagrangian formalism in jet manifolds. The
main ingredients are the following: the Lagrangian density, the Poincaré-Cartan form,
the premultisymplectic structure defined from the multimomentum Liouville form and
the Legendre transformation. We shall use the same notations as in the previous section.

The variational approach

Definition 3.30. A Lagrangian density is a fibered mapping £ : J'm — A™M.

Since we assume that M is an oriented manifold, with volume form 7, we can write
L = Ln, where L : J'm — R is the Lagrangian function. The manifold J'm plays the role
of the finite-dimensional configuration space of fields.

Definition 3.31. Given a Lagrangian density £ : J'm — A™M, the associated integral
action is the map A, : I'm x  — R given by

ActoB) = [ (orc. (334)

R
where K is the collection of smooth compact regions of M.

Definition 3.32. Let ¢ be a section of m. A (vertical) variation of ¢ is a curve € € I —
¢. € I'm (for some interval I C R containing the 0) such that ¢. = . o po (p.)~!, where
@, is the flow of a (vertical) m-projectable vector field £ on E.

Definition 3.33. We say that ¢ € I'm is a critical or stationary point of the Lagrangian

action A, if and only if
d 1
= — ] e *E
| o]

for any variation ¢. of ¢ whose associated vector field vanishes outside of 7= (R).

=0, (3.35)

e=0

d
= Ael6., R

Lemma 3.34. Let ¢. = p. 0 po (¢p.)"! be a variation of a section ¢ € I'w. If & denotes
the infinitesimal generator of ¢., then

d

d_e’:f [((jl(bE) © @6)2“}

for any differential form w € Q(J').

= (7'9)5 (L w), (3.36)

e=0
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Proof. From Proposition 3.16, we have that £ is the infinitesimal generator of jl¢.. We
then obtain by a direct computation,
e—O)

500 Seo) = (o) (31 (0700

d
— = [0 50)iu] |

de
; (5 ¢ 0 5" e )iw]

e=0

]

Theorem 3.35 (The Euler-Lagrange equations). Given a fiber section ¢ € T'm, let us
consider an infinitesimal variation ¢. of it such that the support R of the associated
vector field ¢ € X(E) is contained in a coordinate chart (x') of M. We then have that the
variation of the Lagrangian action Ay at ¢ is given by

d B 24\ | (co _ yoei oL d JL m

_A£<¢€7R)
<11\ * % o ¢l oL m—1
- [ o) [£L+<§ —uis)@] d"

(3.37)

where (', u®, ug ,uu) are adapted coordinates on J*w. Moreover, ¢ is a critical point of

the Lagrangian action Az if and only if it satisfies the Euler-Lagrange equations

oL d oL
(77¢) ( S Ao aug) 0 (3.38)

on the interior of M, plus the boundary conditions

oL
=0
ouy 7

(7'¢)"L = (j'¢)" (3.39)

on the boundary OM of M.

Proof. Let us denote by £ the vector field associated to the variation ¢.. By Proposition
3.34 and Cartan’s formula £ = do¢+ i o d, we have that

d
— [ L [Gheopa
= /R(]'lcb)*(ﬁg(l)ﬁ)
= [0y dieo) + [ (G1)ign ac
R R
= / (j'¢) ie £ + / (') (€W(L)d™x — dL A iey d™ ).
OR R

d
d_5A£(¢67 Rs)

e=0 e=0

So as to develop the last three terms, we shall use the coordinate expression of £V given
in Proposition 3.15. Therefore, the first boundary integral is

/(jlqb)*zgmﬁ:/ (ro)* (L& d™ tay) .
OR OR
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For the second term, taking into account Equation (3.16) and using integration by parts,
we obtain

/(m)[f (L)d™a] =

Lo [.OL 8L [de* _d¢l\ OL
_ 1 1\* 7 a e m
- /R(j 2 f oxt +< ou™ + (dmi 4 dxl) 0u°‘} "
[ . OL 0L d 8L - OL
_ 22\ % i o' RS @ cJ m
/R(] 2 §8i+§ 3u°‘+d90"(5 5) Ui 316?](1 !
, OL d 81) - 0L
— -2\ k a uled Qa ¢) m
/Ru o e - (6 - 58) e G g | d

|: _ OLS] :|dml

And the third term is

/R(jlqb)*(dL/\z‘g(l) dmz) =
8L oL oL . -
/(1¢) [( e 3adui)/\£d 1%}

(0L 0L aL -
- for [f(z T )|

Adding the three developments that we have computed, some terms cancel out and,
rearranging properly the remaining ones, we obtain the first statement of the theorem.

If we now suppose that R is contained in the interior of M, as ¢ is null outside of R,
so it is €1 outside of R and, by smoothness, on its boundary OR. Thus, if ¢ is a critical
point of A,, we then must have that

. * « ¢l 8L d aL m,., __
o= o e e (- g )| e =0,

for any vertical field £ whose compact support is contained in 7= (R). We thus infer that
¢ shall satisfy the higher-order Euler-Lagrange equations (3.38) on the interior of M.

Finally, if R has common boundary with M and ¢ is a critical point of A, from the
above results, we have that

d
d_gAﬁ((bEu R)

d , . OL
—A 57R’ :_/ <1\ * i, o _ oty T dm—lizo'
de E(¢ ) R RO (] ¢) § + (§ U, E )8U? z
Since this is true for any vector field & whose compact support is contained in 7~ 1(R),
then the boundary conditions (3.39) follows. O

Remark 3.36. In the definition 3.33 of critical point of the Lagrangian action A., we have
considered the widest range of variations, with the consequent decrement of the set of
possible solutions. There, two different requirements on the variations could have been
made, deriving in a broader set of solutions. First, we could have imposed verticality to
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the variations, resulting in a substantial simplification of the proof, and we would still
have obtained the Euler-Lagrange equations (3.38) but, this time, without the restriction
(j'¢)*L = 0 on OM. The same set of solution would have been obtained with verticality
only along the boundary 0M. Secondly, we could have imposed null variations along OM,
which would have implied no restrictions of the solutions of the Euler-Lagrange equations
along OM, neither (j'¢)*L = 0 nor (j'¢)*dL/ous = 0.

If we have avoided these assumptions and followed this more general procedure is to
stress out the strong relation with the geometric structure of jet bundles, in particular
with the so-called Poincaré-Cartan form, which will appear clear in the next section.

The geometric approach

Definition 3.37. The Poincaré-Cartan m-form associated with the Lagrangian density
L:Jlm — A™M is defined by

Or =L+ (S, dL), (3.40)

where S is the canonical vertical endomorphism of J'7 and (S, d£) is the contraction
between the factors in ) 71 of S and those in T*J'7 of dL. The Poincaré-Cartan (m+1)-
form associated with £ is defined by

QL = —d@g. (341)
In local coordinates, if £L = Ld™z, we get:
oL oL
= (L—ur=—) d™ A dm g, 42
O, ( U auf‘) d™z + 8u§‘du A d" (3.42)
L
= E + a 004 A dmilIi?
ou?
oL oL
Q = —d (L - uf‘—) A d"x— d (—) A du® A d™ (3.43)
oug oug
«@ aL m 8L m—1
—0 A(@d .T—d(a—u?)/\d ZZ'Z).
If we conveniently denote p!, := aaTLa and p := L — p'u?, then the local expression of the

Poincaré-Cartan forms are now
Oy = pd™x+p, du* A d"
Qrf = —dpAd™z— dp', A du® A A"y
which are formally the expression of the Liouville forms of J'7T (compare with equations

(3.32) and (3.33)). This is not a mere coincidence but, as we will see, an evidence of the
strong relation between the Lagrangian and the Hamiltonian formalisms.

Remark 3.38. Instead of using the canonical vertical endomorphism S in the definition
3.37 of the Poincaré-Cartan m-form ©j, we could have used the vertical endomorphism
S, associated to a volume form 7 on M. If we define

O =L +(S,, dL), (3.44)

where £ = Ln and (S, dL) is the contraction between the factors in T.J'7 of S, and
those in T*J'w of dL, it turns out that this definition does not depend on the chosen
volume form 7 and coincides with the previous definition.
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Remark 3.39. The Poincaré-Cartan m-form Oy is also called DeDonder form by Binz,
Sniatycki and Fisher [21], since this was the name used by Cartan (who attributed its
construction to DeDonder) to distinguish it from the Poincaré-Cartan form in Mechanics.
In the quoted book by Binz et al. the reader can find interesting historical remarks
concerning Field theories.

Proposition 3.40. The Poincaré-Cartan forms satisfy the following properties:

1. The Poincaré-Cartan m-form O is m o-semi-basic, i.e. it is annihilated by any
1, 0-vertical vector X € Vg,
ixO, =0. (3.45)

2. The Poincaré-Cartan m-form O, is annihilated by any pair of mi-vertical vectors
X, Y S 1,
ixiy©, = 0. (3.46)

3. The Poincaré-Cartan (m + 1)-form Q is annihilated by any pair of m g-vertical
vectors X,Y € YV,
ixtyizQe = 0. (3.47)

4. The Poincaré-Cartan (m + 1)-form Qg is annihilated by any triple of m -vertical
vectors X,Y, Z € Yy,
ixiyizQp = 0. (3.48)

5. Let & be a vector field on E, we then have that

(7'0) L £ = (j'¢) Ly O (3.49)

Theorem 3.41. A section ¢ € I'rm is a critical point of the Lagrangian action Az if and
only if its first prolongation satisfies

(7'¢)" (1e22) = 0, (3.50)
for any vector field € € J'x.

Lemma 3.42. Given a section o € I'my o and a vector field £ € X(J'w) tangent to im o,
we have that
o” (ZgQﬁ) =0.

Proof. Along the image of o, £ shall have the form ¢ = To(v) for some vector field
v € ¥(M). Then,
U*<i§Q£) = U*(Z'TO'(’U)QL> = iva*(Q[;) = 0,

since 0*(€2z) is an (m + 1)-form on M which has dimension m. O

Lemma 3.43. Given a section ¢ € I'm and a m g-vertical vector field & € x(J'w), we
have that

(5°¢)" (i) = 0.
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Proof. Let £ = £80/0u$ be the local expression of the m g-vertical vector field {. Then,
thanks to the local expression (3.43) of Q. we get

0*L
POy = —go 0 A d™a),
§3EL 51 au?au5< ])
which is annihilated by j'¢ since 6° is contact. O

Proof of Theorem 3./1. Let ¢. be a vertical variation with compact support R C M of a
section ¢ € I'm and let £ be its infinitesimal generator. By Proposition 3.40 and Cartan’s
formula, we have

d
&Aﬁ(gbaa R)

z/R(jlcb)*(ngﬁ)
= /R (7'0)" (LenO)
= - /R(jlqzﬁ)*(ingg) + /aR(jICb)*(i&(l)@ﬁ)'

e=0

Thus, using the Euler-Lagrange equations, Theorem 3.35, and the local expression
(3.42) of the Poincaré-Cartan form O, we deduce that

1Nk _ 2 4\ * a et a_L_daL ™
[ty ene = - [ Gor e - we) (g - foae )| ae

Therefore, ¢ satisfies the Euler-Lagrange equations (3.38) if and only if

(j1¢>*(ig(1) QL) =0,

for any compactly supported m-projectable vector field ¢ € X(FE). Using partitions of the
unity, we may generalize this to any m-projectable vector field £ € X(FE).

Finally, any vector field ¢ € x(J'7) may be split into the sum of a vector field on
J'm tangent to the image of j'¢, the first lift to J'm of a vector field on E and a 7 o-
projectable vector field on J'w. The assertion of the theorem follows from the previous
lemmas. O

Definition 3.44. The DeDonder equation is the following equation in terms of sections
ocof m :J'n = M:
o* (i) = 0, V&€ € x(J'7). (3.51)

Using Lemma 3.42, we have that a section o € I'my still satisfies the DeDonder equation
if we only consider 7 -vertical vector fields € € x(J'7). Taking this into account, an easy
computation using the local expression (3.43) of {2, shows that the DeDonder equation
is locally written

2 B 2 OaP 2 B 2
3L_ 8.L _80. 0°L _ U]‘ 0°L . aa.—uf 0°L ~ 0,(3.52)
ou™ 5’xlau? oxt 3u58u§‘ oxt 81658@6? oxt 8ufau0¢
30’3 B 82[/
— — = 0.(3.53
((%’J E ) O Oug (3:53)
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Definition 3.45. A Lagrangian density £ : J'm — A™M is regular whenever its Hessian

with respect to the velocities
O0?L
6uf ou?

Proposition 3.46. Let £ : J'm — A™M be a reqular Lagrangian density. A section
o € I'my satisfies the DeDonder equation if and only if o is holonomic, i.e. o = j'¢ for
some ¢ € I'm, and ¢ satisfies the Euler-Lagrange equations.

is non-degenerate.

Proposition 3.47. The Poincaré-Cartan (m + 1)-form Q  is multisymplectic, whenever
m > 1, and cosymplectic (together with the volume form n), whenever m = 1, if and only
if the Lagrangian density L is reqular.

Proof. Provided that m > 1, let (z°,u®, u$) be adapted coordinates on J'm. A straight-
forward computation shows that

. 82L ¥ a m—2
Z%QE = (...)—8uzau?duk/\du A d"
0L
0 Q0 = (... du® Ad™ g
e = L)t g e N

0L
io Qp = (...)— du® A d™ g,
ﬁ £ () Gufau?

where the indicated terms are the only ones with the corresponding m-form. Thus, assume
that v € T'J 7 is such that icQz = 0 and it is locally written in the given coordinates

0
oxI

: 0 0
§= o+ 4]

J B
8uj

If £ is regular, then all coefficients of £ must be zero and (), is multisymplectic. Re-
ciprocally, if Q. is multisymplectic, then the “Hessian” of L has trivial kernel, ¢.e. £ is
regular.

For the case m = 1, consider coordinates (¢, ¢%, v*) on J'm. In these coordinates, after
Equation (3.43), the Poincaré-Cartan (m + 1)-form has the form

Q=—d oL A dg® +v*d oL /\dt—a—qua/\dt.
ov® ov® 0q”

A straightforward computation shows

2

Qﬁ/\ dt = det (W

)dql/\dvl/\n-/\ dg™ A dv™ A dt,

which is a volume form if and only if £ is regular. O
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Connections and multivector fields

Let I' be a a connection in the fibration 7, : J'm — M with horizontal projector h. So h
is locally expressed as follows:

. (0 L 0 .0
h_dx®<a—+Ala +Aﬁau§y>. (3.54)

Univocally associated to this connection, there is a class of locally decomposable multi-
vector fields D(X) C x7(J ') locally expressed as follows (see Section §1.2):

X = f/\X f/\(az 166Q+Aa£?). (3.55)

Proposition 3.48. Conszder the dynamical equations
inle = (m—1)Q, (3.56)
in terms of horizontal projectors h of connections I' in the fibration 7 : J'm — M, and
ixQe=0 (3.57)

in terms of locally decomposable m-multivector fields X € x7'(J'w). We have that both
equation are locally written

oL 0%’L 3 0%L O*L 2L
- —AY AP P — .
ue  dridu® T ouPous ”auf@uf‘ * < ‘ 1) dul oo 0, (3.58)
0*L
B B _
(Aj - uj) =0, (3.59)

where (z',u®, u$) are adapted coordinates on J'm and the A’s are the coefficients of h and
X given in (3.54) and (3.55), respectively. It turns out that, if h and X are associated,
then h satisfies (3.56) if and only if X satisfies (3.57).

Moreover, if T' and/or X are integrable, then they satisfy the previous equations if and
only if its integral sections o € I'my satisfy the DeDonder equation.

Proof. Using the local expression (3.43), we obtain on the one hand

(Aﬁ — U > 0L ] dui A d™x

ihQL = (m — 1)@[; +

au oug

2 2 2
[aL L 5 L 5 2L +<5_u5> o°L

_ 7 _ Af _ AP = du“ANd™x.
ou®  Ox'ou t ouPou J’aufﬁu;?‘ 8u§ 8u°‘] ! )

On the other hand, a caumbersome computation® yields

_ op.,  Op opi,  Onp 5 Op;
)M Q= S A Pa | gye
(=1)"ix 2 [(83:1 8ua) i <8u5 gue | T o’ du

J
Op | .8 p,jé’
u® & AJ ou

-~

/\i

[0}

~~

Aa

duf — (AgAa — AGN,] da*

(.
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where pi, = 2% and p = L — uf'pl,, and where we have assumed that f = 1.

We deduce form here that, if h or X satisfy the corresponding equations (3.56) and
(3.57), then their coefficients must satisfy equations (3.58) and (3.59). The first assertion
of the theorem is now clear.

For the second statement, suppose that h and/or X are integrable and let o € I'm

@

be an integral section of any of them. Then, we have that %% = A and Z‘;ﬂ = A%,
what yields to the local expressions (3.52) and (3.52) for o of the DeDonder equation

(3.51). O

Notice that o being an integral section of h or X does not mean that ¢ is holonomic,
which is the case when L is regular as Proposition 3.46 assures.

Proposition 3.49. Let £ : J'm — A™M be a reqular Lagrangian density. Then there
exists a semi-holonomic connection I' in m, : J'm — M satisfying

ihQL = (m - 1)9/;, (360)

where h s the horizontal projector of I'. Such a connection I" will be called an Euler-
Lagrange connection for L.

Proof. Given a locally finite open covering {Uj },ea be of J'm with fibered coordinates,
let {ay}rea be a partition of the unity subordinate to {U; }xea. For each A € A, we define
a horizontal projector hy on U} as follows: Assuming that hy must be described as in the
local expression (3.54), we take AS = u$ and we determine Af; by means of the equation
(3.58).

Denote by v\ = Idp 1, —h, the vertical projector and extend it by zero

a() = ax(u)vy(u) if u € supp(a,)
0 if u ¢ supp(ay)

for any u € J'w. Now, we put

v(u) =Y Vi(u).

AEA

A direct computation shows that

im (s (1) = im(vy(u)) if u € supp(ay)
(Va(u)) {0 if u ¢ supp(ay)

I Here, we have used the formulae

(—D)™ix(a A d™z) = a—a(X;)da?,
(—D)™ix(BAQA d™ ) = B(X))ad (X;)da' — B(X;)a'(X;)da? — B(X;)a + o?(X;)B,

where o, o’ and 3 are 1-forms and where X is the m-vector X = A", X;.
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from which one deduces that im(v(u)) € > ., im(va(u)) € V, m1. Furthermore, we have

VWlm = D @

A€A

= Z ax(u)va(u)ly, n

A€A

= oW ldryig |y, m
AEA

= Idpjix v, m-

So we deduce that v is a globally well defined vertical projector over J'm, thus it induces
a semi-holonomic connection T in 7y : J'm — M (by construction) satisfying (3.60). [

Corollary 3.50. Let £ : J'm — A™M be a regular Lagrangian density. Then there exists
a semi-holonomic multivector field X € ¥7'(J') satisfying

ixQp = 0. (3.61)

Such a connection multivector field X will be called an Euler-Lagrange multivector for

L.

Remark 3.51. In order to discuss the uniqueness, suppose that ['; and I'; are two solutions
of (3.60). If we denote by T" the tensor field T' = h; — hy, difference of the two horizontal
projectors then, using that I'y and I'y are semi-holonomic, we deduce that 7" is locally

given by T'=T%

® da’. Moreover, ip Q0 = 0 implies that

Y oud
K3
2
o L
Y 8u§‘8uf ’
for all 8 € {1,...,n}. Since we have n equations and nm? unknowns, the solutions at

each point form a vector space of dimension nm? — n, taking into account the regularity

assumption on L. Therefore, the solutions of 3.60 are given by h + T, where h is the
horizontal projector of a particular solution, 7' is a tensor field of type (1,1) on J'x
such that it takes values in the vertical bundle V'm o, it vanishes when it is applied to
m-vertical vector fields and ip €2, = 0. In fact, the space 7 of all tensor fields T is
a C*°(J'm)-module with local dimension n(m? — 1). If dim M = 1, then there exists a
unique solution 'z of (3.60).

3.2.2 The Hamiltonian Formalism
See [31, 68, 69, 73, 75, 77, 91, 92, 115, 133, 134, 136, 137].
Definition 3.52. A Hamiltonian section is a section h : J'7° — Jiatof p: J'xt — Jixe.

Definition 3.53. A Hamiltonian density is a smooth function H : J'zT — A™M such
that 7¢ dH = 1) for any p-vertical vector field £ € V .
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In coordinates (z*,u®, p,p’,), a Hamiltonian section h € Tp is locally described by
h(z',u®,pl) = (2',u®, p=—H(z",u*,p.),p.), (3.62)

where the smooth function H, which is locally defined, is called the Hamiltonian function.

Given a Hamiltonian density H, let & € YV pu be a p-vertical vector field. In local
coordinates (z%,u®,p,p’,), & shall has the form ¢ = &0/dp, for some locally defined
function & on J'z'. In order to satisfy the definition, we must have

_ H
ie dH = ie(dH A d™z) = goaa—p A"z = —&d™x = i,

where H = Hr. Since this shall be true for any ¢ € V pu, we have that Hamiltonian
density H is in turn locally described by

ﬁ(mi,uo‘,p,pg) :p—I—H(xi,ua,pfl). (3.63)

The smooth function H coincides with the previous Hamilton function in the following
sense.

Proposition 3.54. The space of Hamiltonian sections and the family of Hamiltonian
densities are in bijective correspondence. In fact, a Hamiltonian section h and a Hamil-
tonian density H are univocally related by the condition im h = H~(0). In this case, we
say that they are associated.

By means of this relation, we may relate also section of 7} and ﬂ.

Corollary 3.55. Let h: J'n° — J'nt be a Hamiltonian section associated with a Hamil-
tonian density H € Qm(ﬂ'T). A section o € I'nj, defines a section 6 = hoo € FWI
such that c*H = 0. Reciprocally, a section ¢ € FWI with 0*H = 0 defines a section
o=poc € I'n] such that ¢ = hoo. In both cases, we say that o and o are associated.

Definition 3.56. Let h € I'u be a Hamiltonian section. The Cartan m-form associated
to h is defined by
O = h"0. (3.64)

The Cartan (m + 1)-form associated to h is defined by
Qh = — d@h = h*Q. (365)
It is worth to recall that the Liouville form and the canonical one are locally given by

© = pdTz+p, du® A d™ (3.66)
Q = —dpA d™z— dp’, A du® A A"y (3.67)

in adapted local coordinates (x%, u®, p,p!) on J'z'. Thus, in the corresponding induced
coordinates (z*,u®,p’,) on J'7°, we have that the Cartan forms are given by

O, = —Hd™z+p du* A d" ay, (3.68)
Q, = dH A d"z — dp’, A du® A d™ . (3.69)
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Proposition 3.57. Let H : J'n' — A™M be a Hamiltonian density associated with a
Hamiltonian section h € I'u. We have that

O=pO,+H and Q=p"Q,— dH. (3.70)

Proof. The second equation follows from the first, which is immediate from the previous
local expressions. O

Definition 3.58. Let H : J'7t — A™M be a Hamiltonian density. The Cartan m-form
associated to H is defined by
@H =0 — H. (371)

The Cartan (m + 1)-form associated to H is defined by

Oy = — dOy = Q + dH. (3.72)

The Hamilton equations

Definition 3.59. Given a Hamiltonian section h € T, the associated (reduced) Hamilto-
nian action is the map Ay, : I'ny x K — R given by

Au(0, R) = / O, (3.73)

R

where I is the collection of smooth compact regions of M.

Let h: J'7° — J'z7' be a Hamiltonian section associated with a Hamiltonian density
H e Q™(xl). Given a section o : M — J'7° of 7l : J'zt — M, the composition
o =hoo: M — J'z' defines a section of ﬂ . Jizt — M. Note that, in general, a section
S Fﬂ does not define a section o € I'n{ such that & = h o o, which is only true when
d*H = 0 (from Proposition 3.54). Besides, for this particular section o € I'r}, we have
that

00, = 6*(,u*@h) = 0"Oy.

Thus, the extremals of A, coincide through h with the extremals restricted to 6*H = 0
of the following integral action.

Definition 3.60. Given a Hamiltonian density H : JxT — A™M, the associated (ez-
tended) Hamiltonian action is the map Ay : Fﬂ']{ x K — R given by

Ao, R) / O, (3.74)

R

where I is the collection of smooth compact regions of M.

Theorem 3.61 (Hamilton’s equations). Let H : J'nT — A™M be a Hamiltonian density
associated with a Hamiltonian section h € U'p. Critical points of each integral action are
characterized by the Hamilton equations plus boundary conditions, which are

o (i) =0 and o*(icO) =onr 0, VE € x(J'7°), (3.75)
for a critical point o € I'ny of Ay, and

5'*(Z§QH) =0 and 5'*(2597.[) oM O, Vf S :{(JIWT), (376)
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for a critical point o € Fﬂ of Ay. Moreover, in both cases, the Hamilton equations have
the “common” local expression

OH da?, 0H  9do°
ue O and opi. Ozt (3.77)

and the boundary conditions are
0"H =50, 0 and o' =5y 0, (3.78)

where (:Ei, ua,p,pg) and (xi,'uo‘,pg) are adapted coordinates on J 't and J'7° respectively,
o= (z',0%0.) and ¢ = (2*,0%, 09, 0.,).

Proof. We begin by determining the variation of the reduced Hamiltonian action A.
Given a section o of 7} : J'w° — M, let R be a compact region of M and 0. = . o
oo (¢.)~! a variation of o where the infinitesimal generator £ € X(J'7°) of . has its
support contained in (77)'(R). Applying a result similar to Lemma 3.34 and Cartan’s

formula, we obtain
d
_ = _00)'0

_ /R o (£:0)
- _/Rg*(z'EQh)Jr/aRa*(ig@h)-

Thus, o is a critical point of A, if an only if

/R o (i) — /8 0" (i) = 0

for any compact region R C M and any vector field £ € x(J'7°) whose support is
contained in (7))~ *(R).

Now, assume that o is a critical point of A,. If R is a compact region contained in the
interior of M, then any vector field £ € ¥(.J'7°) whose support is contained in (7))~ !(R)
must be null along the fibers over the boundary of R. Indeed, for such R and o, we have

/R o* (i) = 0.

Varying R and &, and using partitions of the unity, we deduce that

d
e [An (o2, Re)]

e=0

O'* (ZéQh) =0

for every vector field & € x(J'7°).
In a similar way, we deduce the boundary condition

0'* (ig@h) =M O

for every vector field £ € x(J17°).
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Finally, let us compute the local expression of o*(i¢(2). Given adapted coordinates
(z%,u®, pt,) on Jin°, if we denote o = (2%, 0%, ¢’,), we then have

H ,0H H H ,

ou® opt
— & du* A d™ iy + €2 dpl, A d™ T ey — dpl, A du® A ¢ dm—%ij}

«

_ [ do™ OH N do’, OH N da;, Do Oa}, doy,
B Oxd Qu> ~ OxJ Opt,  Ox' Ox/  Ox' Ox)

L go 8_H+8Jfl e oH  Jdo° 4
ou® Oz “\op;, O v

where we have used the relation

dl’k VAN dmiQI'Z'j = (S;C dmflxl- — 55 dmilfﬂj.

Provided o is a critical point of Ay, since o*(i¢§2),) must be null for any £ € x(J'7°), we
therefore shall have that

OH 0o, and OH _ Jo*
ou®  Oxt t opi, Oz’

which are precisely the local expression of the Hamilton equations.
For the boundary condition o*(i¢0}) = 0 over M, we proceed in the same way, and
we get that locally

0"(i¢O) = 0" (—HE' — puuf ¢ — pluf€’ — po&®) d" ', = 0,

which implies that

oc*H =o' =0,
along OM.
The proof of the theorem for the case of the extended Hamiltonian action Ay is
completely analogous. O

Remark 3.62. Even though the proof seems to be valid only for the multidimensional
case (m > 1), because of the fact that the (m — 2)-form d™ 2x;; appears explicitly in the
development of 0*(i¢€;,), it remains valid when m = 1. In fact, in this case, the terms
with d”2z;; would disappear and d™ 'z; = 1.

Remark 3.63. It follows from the derivation of the local expression of the Hamilton’s
equations and the boundary conditions that the considerations made in Remark 3.36 are
still valid here. If we had restricted the variations to 7j-vertical or ﬂ—vertical ones over
the whole of M or only over OM, then only the boundary condition ¢*H = 0 along OM
would have remained. Moreover, if we had considered null variations at the border OM,

then any boundary condition would had remained and we would be free to fix them.

The main difference between the reduced and the extended formalism is that, in the
extended one, there are a wider number of critical sections since there are no restrictions
on the component oy = p o of a critical section . Nonetheless, critical sections of the
reduced Hamiltonian action A, “are always” critical sections of the extended Hamiltonian
action Ay.
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Corollary 3.64. A section o € I'rny is a critical point of the reduced Hamiltonian action
Ay, if and only if the associated section @ = hoo € Fﬂ s a critical point of the extended
Hamiltonian action Ay (and vice versa).

Proof. The proof is trivial using the coordinate expression (3.77) of the Hamilton equa-
tions (3.75) and (3.76), or taking into account the relation (3.70) between the Cartan
forms and that ©4 and )y are both p-basic. O

Let I be a a connection in the fibration 7T1 : J'zt — M with horizontal projector h.
So h is locally expressed as follows:

, 0 0 0 0
— J _ [ 1
h = dx ®(8J+Aﬂaa+Bafaz+Ofap) (3.79)
Univocally associated to this connection, there is a class of locally decomposable multi-
vector fields D(X) C x7(J'nT) locally expressed as follows (see Section §1.2):

" . . 0 .0 5,
X:f/\Xj:f/\($+AjaT Ba]al +Cja—p). (3.80)
j=1 j=1

Let H : J'7T — A™M be a Hamiltonian density and h : J'7° — J'zT the associated
Hamiltonian section. A connection T in 7§ : J'7° — M (and any associated multi-
vector field X € x7(J'7°)) induces a connecuon Tin 7l : J'nt = M (and associated
multivector fields X € x7(J'x')) along im(h) such that

OH 4o oH ., oH
OxJ I Que I opt

Proposition 3.65. Let H : J'nt — A™M be a Hamiltonian density and h : J'7° — J'xnf
the associated Hamiltonian section.

1. The (extended) dynamical equations

in terms of the horizontal projectors h of connections T’ in 7r s Jhat - M and
locally decomposable multivector fields X € xm(Jixt) are equwalent whenever h
and X are associated. Moreover, the integral sections & of solutions h or X of the
extended dynamical equations (3.81) are solutions of the extended Hamilton equation

(3.76).
2. The (reduced) dynamical equations
ith = (m — 1)Qh and ith =0 (382)

in terms of the horizontal projectors h of connections T in 7y : J'm° — M and
locally decomposable multivector fields X € x7(J'w°) are equivalent whenever h
and X are associated. Moreover, the integral sections o of solutions h or X of the

reduced dynamical equations (3.82) are solutions of the reduced Hamilton equation
(3.75).



48 CHAPTER 3. CLASSICAL FIELD THEORY

Proof. We prove only the extended case, since the reduced one is completely analogous.
Under the given assumptions, we have on the one hand that

im0 = (m — 1)Qy + (dH + B} du® — A%dpl) A d"z.
On the other hand, we have that
_ OH ; o OH N ;
(—1)mZXQH = (% +Bm~) du + (% — Az) dpa

«

a 7 a A aaH zaH j
-+ (Az Baj —Aij- —Aj% +Bajapi ) dx].

Therefore, the dynamical equations (3.81) are written in terms of the coefficients of h

and X SH 9H
= A%,

due op,

We deduce from here that the dynamical equations (3.81) are equivalent whenever h and
X are associated. B B

If  is an integral section of h or X, then B,); = do},/027 and A} = do® /0", and we

recover the local Hamilton equations (3.77). O

=B and

3.2.3 The Legendre transformation

Definition 3.66. Given a Lagrangian density £ : J'm — A™M, the extended Legendre
transformation is the map Leg, : J'm — Jln' defined as follows: let jl¢ € Jim, for any
m tangent vectors &, ..., &y € Ty E, then Leg,(ji¢) gives

Leg,(720) (&1 - -+ &m) = (Or)j10(&1s - -, Em), (3.83)

where ¢ is any tangent vector to J'm at jl¢ that projects to &.
The reduced Legendre transformation is the map leg, : J'r — J'7° defined by leg, :=

o Leg,.

Recall that the Poincaré-Cartan form O is m g-basic and 7 -semi-basic (see Proposi-
tion 3.40). We thus have that, in one hand, the Legendre transformation does not depend
on the chosen vectors £i,..., &, and, in the other hand, the image of Leg, are m-semi-
basic m-forms over E. Henceforth, the Legendre transformation Leg, is well defined and
gives values in J'mf. Furthermore, from the definition, both Legendre transformations
are clearly morphisms of fiber bundles over the identity of E, which is also clear from
their local expressions

, : oL . oL
L 7 « a — ? o — L oy P— 384
egﬁ(ac U 7uz) (l’ -, p Uy augwpa au?) ’ ( )
‘ ‘ , oL
1 Lo, — o ot = ) 3.85
egﬁ(x U >uz) (I y U™ Doy au?> ( )

Proposition 3.67. Let £ : J'm — A™M be a Lagrangian density. The following state-
ment are equivalent:

1. L is regular;
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2. Leg, : Jtm — Jinl is an immersion;
3. leg, : J'm — J'7° is a local diffeomorphism.

Definition 3.68. A Lagrangian density £ : J'm — A™M is hiper-reqular whenever leg,
is a global diffeomorphism.

In such a case, we have that J'7, im(Leg ) and J'7° are diffeomorphic. Moreover, h :=
Leg, oleg,' is a Hamiltonian section and im(Leg,) is the 0-level set of the Hamiltonian
density associated to h.

Proposition 3.69. Let £ : J'm — A™M be any Lagrangian density. Then, we have
Leg; © =0, and Leg;Q = Q. (3.86)

Furthermore, if L is hiper-reqular, we may define the Hamiltonian section h := Leg, o legz1
and consider the Hamiltonian density H associated to h. We then have

Legr Oy =0, and Legl Qy = Qp, (3.87)
legz @h = @5 and legz Qh = Qﬁ. (388)

Proof. The first equation derives easily from the local expressions (3.42) of O, (3.66) of
© and (3.84) of Leg,. The others follows directly. O

Theorem 3.70 (The equivalence theorem). Given a hiper-regular Lagrangian density
L:Jn — A™M, let h = Legl;OIeng be the induced Hamiltonian section and H the
Hamiltonian density associated to h. If a section o1 € I'my satisfies the DeDonder equation
(3.51),

01(i¢Qc) =0, V€€ x(J'n),

then the sections o9 = leg, 00y € I'n] and 69 = Leg, 00, € FWI satisfies the correspond-
ing Hamilton equations (3.75) and (3.76),

U;(ngh) == O, \V/f € %(Jlﬂ'o),

and

73(ieQy) =0, V€€ x(J'nh).

Reciprocally, if o, € Tnd (resp. , € Il with 53H = 0) satisfy the corresponding
Hamilton equation, then oy = legz1 ooy € I'my (resp. o1 = legz1 o o gy € I'my) satisfies
the DeDonder equation.

Remark 3.71. Observe that the Lagrangian boundary conditions (3.39) are transformed
by the Legendre map to the Hamiltonian boundary conditions (3.78). Therefore, the
variations considered within the theory must be correspond properly in the Lagrangian
and the Hamiltonian side as stated in Remark 3.36 and Remark 3.63.
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3.2.4 The Skinner and Rusk formalism
What follows may be found in here [70, 50].
Definition 3.72. The fibered product

W= J'w xg J'n'  (resp. W° := J'nw xp J'7°) (3.89)

is called the mized space of velocities and extended (resp. reduced) momenta. The canon-
ical projections are denoted pr; : W — Jiz and pr, : W — JizT (resp. with abuse of
notation pr; : W° — Jlz and pry : W° — J'2°). The projections as a fiber bundle
over E' and M are my.p = m 9o pry and myg = m o pry (resp. mye g = w9 o pry and
Two. g = 1 o pry). We still denote the canonical projection by p: W — We.

We deduce from Propositions 3.3 and 3.24 that adapted coordinates (z%,u®) in E
induce adapted coordinates (z°,u®, u$,p,p’) on W, where (u®) and (p,p’,) are fibered
coordinates on J'v — E and J'n' — E. respectively. Accordingly, we have adapted

(2
coordinates (z*,u®, u$, p.,) on We°.

W —t=we

p?”/ yi %{
I

Jir we  Jlpt —— Jlg©

™0 /

E

™

M

The Liouville form © and the canonical multisymplectic form Q of J'z' are pulled
back to W by pr,, which we continue denoting by the same letters. It should be noticed
that (W, ) is no longer multisymplectic, but pre-multisymplectic. We also have to our
disposal the natural pairing natural pairing (,) : J'n! xp Jizx. Therefore, we have the
fibered map

P

W =Jn xgJnt A" M

™

E M

where ® := (pry, pry). If we realize J'¢' as the space of semi-basic m-forms over E (see
3.28), then ® takes the form

(w) = ¢ (w), (3.90)

where w = (jl¢,w) € W and gb}o(w) = ¢(z). In the local coordinates (z*,u®, u,p,p’,) of
W, the “internal” pairing ® is given by

(', u®,ul,p,pl) = (p+ phus) d"z. (3.91)

Observe that we have used the map in the proof of the identification between J'zT and
ATE.
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Together with the pairing ® and the pre-multisymplectic (m + 1)-form €2, we intro-
duce a Lagrangian density to define a Hamiltonian density on W and, let us say, the
corresponding Cartan forms.

Definition 3.73. Assume that £ : J'7r — A™M is a Lagrangian density.

1. The Hamiltonian density (or the generated energy density following [151]) associated
to L on W is the map H : W — A™M defined by

H=b—Lopr,. (3.92)

2. The Hamiltonian section associated to £ on W is the unique section h : W° — W
of u : W — W?° whose image coincides with the O-level set of H, i.e. such that
im h = H(0).

3. The Hamiltonian submanifold of W, let say Wy, is identified with the 0-level set of
the associated Hamiltonian density H or the image of the associated Hamiltonian
section h, that is,

Wy :={weW : H(w) =0} =im(h). (3.93)

In fibered coordinates (u&,p,p.,) of W and (u2,p’) of W°, the Hamiltonian density,
section and submanifold are respectively given by

H(z' u® ul,p,pl,) = (p+pyuf — L)d™; (3.94)
h(z', u® uf,pl) = (2", u*u,p=L—p.u®,p.); (3.95)
Wo = {(" uul,p,p,) €W : p=L—pLul}. (3.96)

From here, we may observe that H corresponds precisely to a Hamiltonian density in
the sense of Definition 3.53: For any vertical p-vector field £, we do have 1) = i dH.
Even if it is obvious, it is worth to note that W° and W, are diffeomorphic, being h the
diffeomorphism between them.

Definition 3.74. Given a Lagrangian density £ : J'mr — A™M. Let H be the associated
Hamiltonian density and h € 'y the associated Hamiltonian section.

1. The Cartan m-form and (m + 1)-form associated to H are

Oy =0 —H and Q= —dOy =Q— dH. (3.97)

2. The Cartan m-form and (m + 1)-form associated to h are
©n,:=h"© and Q) :=—-dO, =h"Q. (3.98)
Following Proposition 3.57, one could check that
Oy = p'O, and Oy = p* Q. (3.99)
In fibered coordinates (u&, p,p.,) of W and (u&, p’,) of W°, the Cartan forms are given by

On =(L — p'uf) d™x + p', du® A d" (3.100)

ou® ou®

2

oL oL , , .
Qy = (— du® + dui — ug dpl, + pi, duf‘) A d™z — dpl, A du® A d™ ey, (3.101)



52 CHAPTER 3. CLASSICAL FIELD THEORY

where £ = L d™xz. Hence ©), and €2;, have formally the same developments.

As we have already stated, while (J'z', Q) was multisymplectic, (W, ) is only pre-
multisymplectic and so are (W, Qy), (Wo, Qulrw,) and (W° Q).

We are now in position to introduce the equation that establishes the field dynamics
within the Skinner-Rusk formalism. As in the previous sections §3.2.1 and §3.2.2, we
could do it by means of horizontal projectors of a given connection or using the associated
multivector field. In this case, we will restrict to the method of horizontal projectors, but
the reader may check that the same equations will follow considering multivector fields.

Definition 3.75. The dynamical equation is the following equation in terms of horizontal
projectors h of the corresponding connections I' in 7wy : W — M:

As we are going to see, the previous equation is only solvable in a subset W] of
W. If we require that W] be a smooth submanifold of W and that the solutions be
horizontal projectors of connections along W/, we will end up with further restrictions on
the projectors and, whenever £ is not regular, with further constraints on the manifold
along which the connections are defined. This chain of consequences is known as the
Gotay-Nester-Hinds algorithm, although it was originally defined for classical mechanics.
The submanifold W/ is called the first constraint manifold and it is obtained at the first
step of the algorithm. The final constraint manifold WJQ along which the solutions lie is
obtained as a “fix point” and final step of the algorithm.

Theorem 3.76. The solutions of the dynamical equation (3.102) restricted to Wy are,
in the best case, horizontal projectors of connections along a submanifold Wy of Wy. In
particular, if h is such a solution, which is assumed to be written in the form

: 0 0 0 -0 0
h = da’ — + A%, A B!— +C;— 3.103
v ®(8x9+ igan T ”8u?+ “Jangr jﬁp)’ ( )
then it must satisfy the equation of holonomy
A% =, (3.104)
the equations of dynamics
; oL
BJ = — 3.105
aj aua ’ ( )
‘ oL
L= = 3.106
plus the equations of tangency
, 0?L 0?L 0?L
Bt = : p b~ 3.107
“ Oxd Qug o ouPoug Tk oul ue’ ( )
oL o OL .
C; = 5 + U pwl B jus. (3.108)
The submanifold W is contained in the submanifold of Wy defined by
i, % i, Q % aL
Wy = (2%, u®,us, p,p,) €W p:L—paui,pa:ﬁ , (3.109)
U;

and coincides with it when L s regular.
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Proof. We begin by defining W; as the subset of W where point-wise solutions of the
dynamical equation (3.102) exist, that is

W/ :={weWw /3h,: T,W — T,W linear such that h? = h,,,
kerhw = Vw TW,M » ithH(w) = (m — 1)97.[(11))}

For a given point w € W, we fix a chart around it with coordinates (z*,u®,u$, p, p’,) and
consider an arbitrary horizontal projector h,, in Ty W. Then, h,, must certainly have the
form (3.103). We therefore compute

i, Q — (m —1)Qy =

, oL . oL .
B _ a i a a_ Ax i m
[( N 8ua> du® + (pa 8uq) dug + (ug 2) dpy, | d"x,

]

equating to zero, we deduce that, in order to be a solution of the dynamical equation
(3.102), h,, must be defined over a point w that satisfies Equation (3.106) and its coeffi-
cients the equations (3.104) and (3.105).

By a reasoning in terms of partitions of the unity similar to the one given in the proof
of Proposition 3.49, we obtain a horizontal projector h : Ty, W — Ty, W defined over
W/ which satisfies the dynamical equation (3.102). We now restrict h to be defined over
Wy := W, N W], hence obtaining a horizontal projector h : Ty, W — Ty, W defined over
W, which satisfies the dynamical equation (3.102). But we still have to ensure that h is
a horizontal projector along W7, that is h takes values in T'W;: Therefore, we impose the
tangency condition h,,(7,,W) C T,,W;, Yw € W;. This latter condition is equivalent to

having
9, i OLY\ 9 i oL _
h(@) (pa‘ aw) -0 h(%) (pa‘ éw) -0

which in turn is equivalent (using the previous relations) to equations (3.107) and (3.108).
By combining the first equation of dynamics (3.105) with the first equation of tangency
(3.107), we get

oL 0*’L 5 O’L s O0°L
_ T T A}
Ju®  dxtoul L OuPou ﬂ@uf ou?

If £ is regular, nothing else can be stated than that W; coincides with W; and that
h defines a connection along it. Otherwise, depending on the non-regularity of £, the
last equation could derive restrictions in W to obtain the first constraint manifold (see
remark 3.77 below). Nevertheless, it is contained in the submanifold W; given above. [

Remark 3.77. 1t shall be said that Theorem 3.76 remains true when the dynamical equa-
tion (3.102) is considered on the whole of W (instead of restricted to W), but then W
should be changed by W7, so the tangency condition (3.108) is no longer available.

We may note in the Theorem’s proof that, while the coefficients A% and C; of h are
completely determined (equations (3.104) and (3.108)), the coefficients B,; are overdeter-
mined (equations (3.105) and (3.107)), what gives an extra restriction on the coeflicients
Ag: for each o

OL &L 5 PL 5 PL

P~ Gwow " =0. (3.110)

OuPoug a 8u§ ous B
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Although, the latter coefficients cannot be completely determined in general.

When the base manifold M has dimension m = 1, further restrictions could be ob-
tained on the manifold along which h is defined, depending on if the Lagrangian density
is regular or not. In this case, W; would include these restrictions and they will give
further tangency conditions to determine the coefficients of h. Assume that M = 1 and
let (t,q%, v*, p, po) denote adapted coordinates on W. By Theorem 3.76, a solution h of
the dynamical equation (3.102) would satisfy in particular the equations

- Ot DqPove OvP v’

where

0 0 0 0 0
h = —~ A° B, — = .
dt®<at+v aqa+ s T aapza‘f‘cap)

9L

Therefore, if £ is not regular and we consider an element (V) in the kernel of 5%5,

then oL 0?L 0*L
— —f Ve=0
(8q°‘ otov™ 8(]5(%0‘) ’
which is a new restriction that determines the submanifold where h is defined.
Analogously, if the base manifold is multidimensional (m > 1) then, a possible way
to obtain constraints derived from Equation (3.110) is to find an non-trivial element V¢
such that

0*L
B
ou; dug!
but this is no an easy task. The new constraint would then be

oL 0*L 5 O’L N
(EMO‘ C Oriouy B 8u58u§‘) =0

Va:O? VZ-7(].7/87

Unfortunately, this method cannot be used in the general case (m > 1 and n > 1).

However, in both cases (m = 1 or m > 1), a remarkable fact is that the “semi-
holonomy” of h yields immediately (Equation (3.104)) whether the Lagrangian density
is regular or not, which differs from the Lagrangian formalism (see Proposition 3.49 or
Corollary 3.50). Taking this into account, there is a clear analogy between Equation
(3.110) and the equations derived in the proof of Proposition 3.48.

Ezample 3.78. Consider the fiber bundle pr, : R* — R? with global adapted coordinates
(x,y,u,v) and base volume form dz A dy. We consider the Lagrangian function L :
Jtpr; = R

L =uv + (uy + vy)(uy + vy).

In this case, Equation (3.110) reads

v AL AT - AL AL, =0,
w— Al AL - AN - AV = 0.

From where we deduce that u = v, hence the first constraint submanifold is

Wi={weW : py=uv—p°¢, p =uy+v,=¢", p =u, +v, =¢", u=0v}.
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Requiring that h be defined along, we obtain the second and final constraint submanifold
Wf:I/VQ:{wGWl:ux:uy}
with the corresponding tangency conditions on h.

Proposition 3.79. Let Q; denote the pullback of Qy to Wi by the natural inclusion
i: Wy — W, that is Q; = i*(Qy). Suppose that dim M > 1 (resp. dim M = 1). The
(m 4+ 1)-form Qq is multisymplectic (resp. cosymplectic together with n) if and only if L
15 reqular.

Proof. First of all, assume that m > 1 and let us make some considerations. By definition,
Q) is multisymplectic whenever €2, has trivial kernel, that is,

ifUGTWl, 1,1 =0 <= v=0.
This is equivalent to say that

if v e i, (TWY), i,

iwwy) =0 <= v=0.

Let v € TW be a tangent vector whose coefficients in an adapted basis are given by

Y R B BN )
U—78$Z+A %—FAlau?—i‘Baapla‘{'Cap

Using the local expression (3.101), we may compute the contraction of Qy by v,

iyQy = — BL du® A A"ty + AYdpl, A A7y — A7 dpl, A du® A d™ 2y

a, b i, Q e} oL « oL m
+ (Ai Po+ Bouit — A% — A a_ula> d"e (3.111)
e . oL oL
= (Pl duf +uf dpl, — o du® — o duf | A A"
ou au?

In addition to this, let us consider a vector v € TW tangent to Wy, that is v € i, (TW}),
we then have that

oL :
d(pg_ﬁ)(v):() and d(p+puui — L) (v) =0,

7

which leads us to the following relations for the coefficients of v:

. 2L 92L 2L
Bl = ~i—— p A 3.112
« R oug + Oubou® 4 8uf@u? ( )
0L oL 4
C = 122 L A2 Biyo 3.113
Vo T A 5 — Bali (3.113)

It is important to note that, even though the coefficient A$* explicitly appears in the pre-
vious equations (3.111) and (3.112), for such a vector v € i,(TW;), the terms associated
to these AY cancel out in the development of i,£)3, Equation (3.111). Thus, a tangent
vector v € i, (TW7) is in the kernel of Q4 if and only if its coefficients satisfy the following
relations

O?L
——

7=0, A»=0, A
! ]8uj8u§‘

=0, B.=0, C=0.
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These considerations being made, the assertion is now clear for the multidimensional
case.

Now, let suppose m = 1 and consider coordinates (¢, ¢%, v*, p, po) on W, which induce
coordinates (t,q%, v*) on Wj. In these coordinates, the Cartan (m + 1)-form is written

Qy = —dpa A dg® + 0 dv* A dt + po dv® A dt — dL A dt
and its pull back to W;
oL oL oL
W=—d|=— | ANdg"+v*d | =— | A dt — —dg“ A dt.
: ((%a) R (W) a9~ !
A straightforward computation shows that

2

Ql A\ dt = det (W

>dq1/\dvl/\'--/\ dg™ A dv™ A dt,

which is a volume form if and only if £ is regular. 0

Corollary 3.80. Under the same assumptions, we have: (J'm, Qz), (J'7° Q) and
(W1, Q) are (globally) locally multisymplecticomorphic (resp. cosymplecticomorphic to-
gether with n when m = 1) if and only if L is (hyper)reqular. Indeed, W1 = graph(Leg,)
and the corresponding multisymplecticomorphisms (resp. cosymplecticomorphisms) are

Wi (3.114)

pﬁy \%le =legs o pry |wy

Jir Jir0

leg,

In the following proposition, W} denotes the final constraint submanifold, which co-
incides with W; whenever L is regular.

Proposition 3.81. Let o be a section of mw, »r : Wy — M and denote 6 = i00 and
¢ = mw, g o o, where i : Wy < W s the canonical inclusion. If o is an integral section
of h, then the Lagrangian part oy = pr, oo of o is holonomic, i.e. o1 = j'¢, and satisfies
the Euler-Lagrange equations:

fw(aL daL):Q (3.115)

s dad Ot

Proof. If 0 = (z',0%,0%,00,0") is an integral section of h, then

Jo“ o Oof . 00l ., dog
a7 ~ A G = A gy~ Bayand 5 =G

where the A’s, B’s and C’s are the coefficients given in (3.103). From Equation (3.104),
we have that o, is holonomic, since 0 = 9o®/dx'. On the other hand, using the equations
(3.105) and (3.106), we obtain:

oL do?
0 = 5°7 % 5
oL
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We then have

oL d OL
O prm— '1 *_ h— ‘2 * .
5o s - o (55 au?) ,
which is precisely the Euler-Lagrange equations. O

W = Jr xg Jint

x S

Definition 3.82. Let H be the Hamiltonian density associated to a given Lagrangian
density £ : J'm — A™M. The associated (extended) Hamiltonian action is the map
Ay Ty x K — R given by

An(o, R) = / o (Or), (3.116)

R
where I is the collection of smooth compact regions of M.

It is called Hamilton-Pontryagin principle for field theories in [151].

Theorem 3.83. A section o : M — W of mwy : W — M is a critical point of the
Hamiltonian action Ay if and only if it satisfies the local equations

do“  Jo! oL , oL
7T 9 Pai guer T O dug ( )
on M, and
L(z',0%0%) =0 and o oL 0 (3.118)
’ T o 8uf‘ o(z)

on the boundary OM of M, where (z',u®,u&, p,p’,) denotes adapted coordinates on W
and o = (z',0%, 0%, 00,0.).

Proof. As usual, given a section o € Fﬂ and a compact region R C M, let 0. =
¢- 0 0o (p.)"! be a variation of o such that the infinitesimal generator £ of (. vanishes
outside of (71)~'(R). The variation of the Hamiltonian action Ay is then given by

d = /R ig-0 00nd

—[An(o-, R.)]
= /RO'*(SEG'H)

de
= —/0*(73§QH)+/ 0" (i¢O).
R ORNOM

e=0
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We deduce from here that o is a critical point of Ay if and only if
U*(ZggH) =0 and O*(Z§@H) 67/[ 0, VS S %(W)

Using local coordinates (2%, u®, u$, p,p’,) on W and denoting o = (z*,0%, 02,09, 0"), we
compute on the one hand

. (00t OL ol + OL i o Oo®
0" (ieSh) = {5 (ax’ aua) & ( T Guo )*5 ( azi) +
¢ dol, do* 0ol 0o ;o Jo, N OL do® 8L olors 4
0 0z 0w 0w 00w ' 0w | 0w 0nd | due 0w o

and on the other hand

.- , ; N Jdo® ; 00|
Jug@m:[éﬂ(L—oam%frw&ﬂaaj— aaj}d”xj.
From here, we conclude that, in order to be a critical point of Ay, o must satisfy the
equations (3.117) and (3.118). O

Note that equations in (3.117) are equivalent to equations (3.104-3.106) when we
consider an integral section of a solution h of the dynamical equation (3.102). They also
correspond to the Euler-Lagrange equations (3.38) (combine the second and the third
one), to the Hamilton’s equations (3.77) (define H = u®p!, — L and consider the first two
equations) and the Legendre transform (3.84) (take the third equation). In the same way,
the boundary conditions (3.118) are equivalent to those the Lagrangian side, Equation
(3.39), and those of the Hamiltonian side, Equation (3.78) (see remarks 3.36 and 3.63).

Definition 3.84. Let £ : J'r — A™M be a Lagrangian density. The associated
(extended) Hamiltonian-Pontryagin action is the map Az : T'myr x K — R given by

Ar(o,R) := /R (ﬁ ooy + <aI,jlao> — <O’I,O’1>) (3.119)

where K is the collection of smooth compact regions of M.

In fact, the Hamiltonian-Pontryagin action 3.84 coincides with the Hamiltonian action
3.82 as stated by the next result.

Theorem 3.85. A section 0 : M — W of mwy : W — M s a critical point of the
Hamiltonian-Pontryagin action Az if and only if it satisfies the local equations

do® Ot oL oL
X = , = d = 12
i ori’ or ou " % 8u (3.120)
on M, and
. oL
v =0 3.121
Oa 8u‘?‘ U‘ :v ( )

on the boundary OM of M, where (z',u® ul,p,p.,) denotes adapted coordinates on W
and o = (x%,0%, 02, 00,0°).
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Proof. Given a section o € Fﬂ and a compact region R C M, we have that the variation
of the Hamiltonian-Pontryagin action A, with respect to a variation do of o is given by
-dod™x

0A. .5(,:/ 9 {L(Ii’o_a’gg)_l_ag (ag‘f _0?)}
50- (O',R) R 50— aflﬂ'z o
aL « aL « % ao.a [ % a « fe m
_/R {%50 + aug&’i + 0o, (8xi ai) + o, (%50 do; )] d™z

OL 95\ . 0 (0L N.ewa (90" . Neilom
L[5 (3 e+ (3 )]

—I—/ ol o™ d" .
OR

where (2%, u®, u®, p,p.,) denotes adapted coordinates on W and o = (z*, 0%, 0%, 09, 0’,).

We thus deduce that o is a critical point of A, i.e. 0.Az/60 = 0, if and only if the
relations (3.120) and (3.121) are satisfied. O

Here, the boundary conditions (3.121) differ from the boundary conditions (3.118),
since in the proof we have considered vertical variations.
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Chapter 4

Higher Order Classical Field Theory

In this chapter, we will find the main original contributions of this memory. For it, we will
first extend the notions of jets to an arbitrary order, that is, higher-order jets. We will
find, as an important result, an unambiguous and intrinsic formalism for the higher-order
calculus of variations. The case of constrained calculus will be also analyzed. The main
results appear in [24, 25, 26, 27] and in a forthcoming paper. As a basic reference in what
follows, the reader is refereed to the book by Saunders [139].

Through this section, (F,m, M) denotes a fiber bundle whose base space M is a
smooth manifold of dimension m, and whose fibers have dimension n, thus F is (m + n)-
dimensional. Adapted coordinate systems in E will be of the form (z°,u®), where (z%) is
a local coordinate system in M and (u®) denotes fiber coordinates.

Lower case Latin (resp. Greek) letters will usually denote indexes that range between
1 and m (resp. 1 and n). Capital Latin letters will usually denote multi-indexes whose
length ranges between 0 and k (see Appendix §A). In particular and if nothing else it is
stated, I and J will usually denote multi-indexes whose length goes from 0 to k£ — 1 and
0 to k, respectively; and K (and sometimes R) will denote multi-indexes whose length is
equal to k. The Einstein notation for repeated indexes and multi-indexes is understood
but, for clarity, in some cases the summation for multi-indexes will be indicated.

4.1 Higher Order Jet bundles

Definition 4.1. Given a point x € M, two local sections ¢,y € I',m are k-equivalent at
x if their value coincide at x, as well as their partial derivatives up to order k

ak¢a akwa

forall 1 <a<n,1<1i <m,1<j <k This defines an equivalence relation in I',7.
The equivalence class containing ¢ is called the kth jet of ¢ at x and is denoted j*¢.

The notion of k-equivalency is independent of the chosen coordinate system (adapted
or not), thus so is the equivalence relation that it defines (see [61, 64, 139]|, for more
details).

Definition 4.2. The kth jet manifold of m, denoted J*r, is the whole collection of kth
jets of arbitrary local sections of 7, that is,

Jhr = {j;fgzﬁ:xEM,gbGwa}.

61
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The functions given by

T JEr — M
6 — (4.1)
and i
Mo J'm — K
’ . 4.2
b6 — o) 42)

are called the kth source projection and the kth target projection respectively.

From the definitions, it is trivial to see that j2¢ = ¢(z), J°7 = E, my = 7 and
To,0 = IdE

Proposition 4.3. The kth jet manifold of =, J*n, may be endowed with a structure of
smooth manifold. A system of adapted coordinates (x%,u®) on E induces a system of
coordinates (z',u¢) (with 0 < |I| < k) on J'w such that
] o
P o) =) end wjiio) = 50|
T T
In the induced local coordinates (z°,u), the source and the target projections are
written
(2’ uy) = (2*) and weo(a’,uf) = (2',u). (4.3)
From here, it is clear that m; and 7o are certainly projections (surjective submersions)
over M and E, respectively. Therefore, (J*7, m, M) and (J*7, 710, E) are fiber bundles.
If we consider a change of coordinates (z%,u®) + (y7,v") in E, it induces a change
of coordinates (zf,u$) — (y7,v7) in J'm. In this case, the “velocities” transform by the
following rule:

o’ o\ oz
B _ a
UJJrlj o (81’{ + Uiy, au;é) ayj (4‘4)

o’ Ox on? oxi
= J A + U/CIX/ _J =y
ozt Oy’ Z oug Oy
[+1¢=I’

from where we deduce that coordinates of a particular order depend only on coordinates
of equal or lower order, that is

o = it ug) |11 < ).
Even more, the changes have a polynomial expansion and it is affine from order to order
(cf. [139]).
Proposition 4.4. For each 0 <[ < k, define the map
T Jkr — Jn
Jad > Jud.
We have that (J¥m, 7, J'nt) are smooth fiber bundles to which the induced coordinates

(z',u$) are adapted. Moreover, for the particular case | = k — 1, (J*7, mp g1, J¥ 1) is
an affine bundle, being its associated vector bundle

Tho1 (SkT*M> @ gh—17 771:71,00} ),

where S¥T*M is the space of symmetric covariant tensors of order k over M and V) m the
vertical bundle of m.

(4.5)
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Tk, k—1 3,2 2,1 1,0
e J27T Jl’ﬂ' ——F

JEr

i*e M
Figure 4.1: Chain of jets

In the induced local coordinates (%, u$) of J*r, with 0 < |I| < k, and (2%, u%) of J'm,
with 0 < |J| <1 <k, we have the obvious local expression

ijl(xi, u}) = (', ug).

4.1.1 Prolongations, lifts and contact

Definition 4.5. Let ¢ € I'm be a (local) section, its kth prolongation is the (local) section
of m given by

(7°0)(2) == jr o,
for every € M. An arbitrary (local) section o of 7y, is said to be holonomic if it is the
kth prolongation of a (local) section ¢ € I'm, that is, if 0 = j*¢.

Definition 4.6. Let f : £ — F be a bundle morphism between two fiber bundles
(E,7m,M) and (F,p,N), such that the induced function on the base, f : M — N, is a
diffeomorphism. The kth prolongation of f is the map j*f : J*m — J¥p given by

(]kf)<]§¢) = j];(x)¢fa Vj§¢ € Jkﬂa

where ¢f:= fogo f~terpy.

JkT(]—> Jkp

Tk,0 Pk,0 \\
‘.
l
|
by

Figure 4.2: The kth prolongation of a morphism

Note that the kth prolongation j*f of a morphism f is not only a morphism between
(J*7, T30, E) and (J*p, pro, F'), and a morphism between (J*m, 7y, M) and (J*p, p, N),
but also a morphism between the intermediate [th jet bundles (J*m, 7, Ji7) and (J*p,
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pris Jp), for 0 < I < k. In each case, the induced functions between the corresponding
base spaces are f, f and j'f, respectively.
If (2°,u¥) and (yj,vﬂ,vg) denote adapted coordinates in J*7 and J*p, respectively,

then we have ; ; v
4 af of ofi

B P kyp o
Frey, = vy, 0d7f = (8; +“I+1i8_ugv> oy

The expression between brackets is called the total derivative of fﬁ with respect to z°.
We will come back to it later.

Definition 4.7. Let ¢ : M — E be a section of 7, x € M and u = j*~1¢. The vertical
differential of the section ¢ at the point u € J*~!7 is the map

¢ T,J'n — Vymey
v o— U—Tu(jk_1¢OWk_1)(U>

Namely, d¥¢ :=Id, —T,(j*1¢ o mp_1).

Notice that the image of d)¢ is certainly in V), m;_; since T, 7,1 o d} ¢ = 0 and that,
in fact, d¥¢ depends only on j*¢. In adapted local coordinates (z%, u$) of J* m,

a|1|+l¢a 1 Z> 9
T

O+ © ous” (4.6)

&g = (du? -

Definition 4.8. The canonical structure form of J*r is the 1-form 6 on J*7 with values
in Y m_1 defined by

Oito(V) = (L1, 8) (Titgmag—1(V), V€ Tppd m, (4.7)
where ¢ is any representative of j¥¢ € J¥w. The contraction of the covectors in V* m;_4
with 6 defines a “distribution” in T*J*r. This distribution is called the contact module

or the Cartan codistribution (of order k) and it is denoted C*. Tts elements are contact
forms. The annihilator of C* is the Cartan distribution (of order k).

Note that the expression (4.7) does not depend on the representative ¢ of j¥¢, hence
it is well defined. In adapted local coordinates (%, u$, u.) of J*r, where 0 < |I] <k —1
and |K| =k,

0 = (duj — uf,,, dz') (4.8)

R —.
oug
In fact, the contact forms duf —u¢,; da’ € C* are a base of the contact module.

Proposition 4.9. Let (2%, u$,u$) be adapted coordinates on J*r, where 0 < |I| <k —1
and |K| =k, a basis of the Cartan codistribution is given by the coordinate contact forms

07 = duf —uf,, dz’. (4.9)

Proposition 4.10. The canonical structure form 6 € T'(T*J*7 @ jr. V 7) and the contact
forms w € C* are pulled back to zero by the kth prolongation j*¢ of any section ¢ of .
Moreover, this characterizes the module of contact forms, i.e.

wel & (j*¢)w=0, Vo € I'm. (4.10)
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Proof. Let w € Q(J*r) be an arbitrary form. We can write w as the linear combination
w=wde' +w! dug, 0<|J| <k,
where the w’s are unknown functions on J*7. Given any section ¢ of 7, we have that

a\[|+1¢o¢
8$I+1¢

. ak+1¢a ;
+ (W o jFg) - &L'K“i) dz' = 0.

(70)w = (wi 0 %6 + (e 0 j"0)

Since two k-equivalent sections at a point x € M coincide on their partial derivatives at
x up to order k, we deduce that

wE =0 and w; +wéu?+1i =0.
Substituting w; and wX in the initial expression of w, we obtain
_ I « 7 J [ | a o N\ . Jp«a
W= —wuupyy, dz' 4wy duf = w,(duf —uf,,, da') = w, 07,

which proofs the sufficiency by Proposition 4.9.
The necessity is immediate. O

A complementary or dual result to the previous one is the following.

Proposition 4.11. Let 0 € I'my be a (local) section. The following statements are
equivalent:

1. o is holonomic.

2. o pulls back to zero any contact form, that is

o*w =0, Yw € C~. (4.11)

Notice that the contact forms are my;_1-basic, which is clear from the coordinate
expression (4.9). Though, therefore they may be thought as forms along 1 rather
than on J*r. In this sense are defined total derivatives.

Definition 4.12. A total derivative is a vector field £ along 7y, ;1 which is annihilated by
the Cartan codistribution (as forms along 7 ;—1). Given a system of adapted coordinates
(2%, u®, u$,u) in J*r, where 0 < |I| < k — 1 and | K| = k, the local vector fields defined
along 7 ¢ by

d o . 0
G~ o T g (412)

are called coordinate total derivatives.

It is immediate to check that coordinate total derivatives are total derivatives, in fact
they define a basis of such vector fields. Under a change of coordinates, (z¢, u®) to (y?, v”),
a coordinate total derivative transforms linearly by the Jacobian of the underlying change
of coordinates: .

d o2 d
dyi Oy dait’
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If £ € X(my,—1) has the different coordinate representations

d d
= £ =&

where the coefficients &% and &/ are functions on J*m. Then,

ox’
oyi”

g=¢

Definition 4.13. The total lift of a vector field £ = £'0; on M is the unique total
derivative that projects on & itself, that is, the vector field fk along mj, ;1 locally given
by

d

datljke’

& (jhg) = €'(x)

Note that the total lift of the coordinate partial derivatives in M are precisely the
coordinate total derivatives.

Now, consider the action of total derivatives on smooth functions over J*~'z. If
f € C>®(J*m), the action of d/dz® on it yields a function df/dz’ € C>®(J*7r). In
particular, the action of d/dz on the coordinate function u® € C*(FE), gives as expected

d [e}%
% —uf,, €C¥(J*r), VO<I|I|<k-1.

Another interesting fact is how total derivatives and jets are related. Let f € C®(J'x),
| <k, ¢ecl'rand & € X(M), we have

E(fojlo)=E(f)oj e,

in coordinates o(f o) ;
o ¢ d "
———F = ——075"¢. 4.13
o AL (4.13)
Finally, note that coordinate total derivatives and ordinary partial derivates do not nece-
sarilly conmute:

odf _dof odf _dof . 9df dof . of

brde A or dwde  dwow " Gwde - dwow O g

where f € C*(FE). Nevertheless, coordinate total derivatives do commute, what allow us
to use the multi-index notation with iterated coordinate total derivatives.

Proposition 4.14. Let f € C>®(J!r), then i{i € C(J"r) and %% € C>(J!*2r).
Moreover, we have thatl

d df d df

deddzt daidad’
Definition 4.15. Given a vector field € on F, its kth lift (or kth jet) is the unique vector

field ) on J*r that is projectable to & by 74 and preserves the Cartan codistribution
with respect to the Lie derivative.
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Proposition 4.16. Let & be a vector field on E. If & has the local expression

0
@ (4.14)
in adapted coordinates (x°,u®) on E, then its kth-lift £®) has the form
0
o _ i 0 4.15
5 § 81‘1 + gJ auJ ( )
for the induced coordinates (z*,u%) on J¥m, where
(6% (6% (6% dé-a o dg‘j
§ =& and &7y, = d_ajll — Urgy dzi” (4.16)
In particular, if € is vertical with respect to w, then £§ = dVI¢/ da”.
Proof. Since £®) is Tk o-projectable to &, it must have the form
; 0
6 5 + 5]8 a
where £ = £* and where the remaining components £%, with |J| = 1,...,k, still have to

be determined.

Note that the preserving condition is equivalent to require that the Lie derivatives
by %) of the elements of any fixed base of the Cartan codistribution C* are still contact
forms. Thus, consider the base {0} given in Proposition (4.9) and let us compute the
Lie derivative of its elements by ¢*). Using the Cartan’s formula £ = doi+io d, we
obtain

25(1@)&? = 25(1@) ( du’}‘ — U’(Iy-l—li d:L’Z>
RI3% RI3% og! o . .
::£d+m? Ui, gy 40~ Ul s A7 = Ei, Ao

Adding and subtracting properly some terms, we have

51

o _ 51 %33 n fz o
86 o 851 o a£Z ] o %

As L 07 is required to be contact,

a I 85? o (08 508 43
5]—&-1 - a B +u I+lza U, % + u; 8 and 8U§< = 0.

From the first equation we deduce that £ depends only on u¢’s with |I| < |J|, which
agrees with the second one. Rewriting the former in terms of the coordinate total deriva-
tives (4.12), we finally obtain

dgp o d¢
ren = 7~ Uy g

The final statement is clear from here. O
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Corollary 4.17. Under the same assumptions, we have that the components of the kth
lift €% € x(J*7) of a vector field & € X(E) are explicitly given by

. dYlge Jro o dEle LAl

&= 2 T et T qgle — M T (4.17)
Lu+Ie=J
‘Iu|7u§|5£0

Proof. We proceed by induction on the length |J| of a multi-index J € N™. For J = 1;,
with 1 < 7 < m, we obtain

o der . d¢f
= aw ar

which agrees with the recursive formula (4.15) (and also with (3.18)). Let us assume that
the theorem is true for multi-indexes up to length £ — 1 > 1 and consider a multi-index
K € N™ of length k. For any decomposition K = J + 1, where J € N" and 1 < j < m,
we have

« l
o Ao
J+1; dai J+1; dxd
J+1l¢a Ie| ¢l Ie|+1gl
_ dI+1e B J! o dlfel¢ o dlfel+1e
Lu+Ig=J
|Iu‘v|I§|7éo
J| el JI+1gl !
e dll¢ B ad\ +1¢ e dé¢
L+l qpd U dgd+1 I+ Q3

where we have used the formula (4.15) and the induction hypothesis. We multiply each
member of the equality by K(j)/|K| and sum over all the decompositions of the type
K = J +1j, what gives us thanks to Lemma A.4

N diElge K(j) J! N dlelgt . dlfelrigd
o= g 2 K| 2 I,I! (uf““f“l dzle | e dxfé“f)

[l 1¢|#0
Y L ) SIL
J+1,=K K] RARIER T Qg LK
d/¥lg K(j) (L, + 1) [, dlifelgt o dlelttgl
= d K - Z K [ 'I'&- (ufu+1j+1l d T, +u}u+llm>
[Tul | Ie[#0
YO SIL
J4+1.=K ’K’ AR de Ttk dxj ! d.TK ’

We now need to rearrange properly the middle terms. For the first one, we substitute
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I, +1; by J, and I¢ by J¢, obtaining

K(5) (I, + 1. dlfelgl
Z (J) ( ¢)! §

I +1;+1; I
Li+lg+1=K (K] LU ' da’e

[Hul,1¢|#0

>y =
J— Oz
- K T | U, +1, dIJg
Jutde=K I,+1;=Jy ’ ’ Ju J

[Tu]>2,] J¢|#0

3 || KU dYee
_—u [
L et qgpde
Gt KT T dz
[1u|>2,|J¢|#0

where we have use the fact that K(j)(l, + I¢)! = K! and J,(j)I,! = J,! (Lemma A.1)
and again the identity (A.7). For the third middle term, we substitute I, + 1, by J, and
I¢ by J¢, obtaining

K(j) d\J\gl ’J| K o leglfl
> = D

(K|t g K] Tyl T et dg e

J+1,=K Jut+Je=K

where we have use the fact that K(j)J:! = K! and |J,| = J,! = 1. The second and forth
middle terms are rearranged accordingly. We thus arrive to

N dIKlga ad|K|§l
§K - . U K
dx dx
Z ’J | K! a d|J€|£l Z |Ju‘ K! a d|J§|€l
e KNI e = S K] JI da
u &= U £=
|1u|22,\Js\7é0 [Tu|=1,|J¢|#0
Z |Je| K! o, de¢ Z |Je] K " dlJelgt
—_— R u S — —_—
JutJe=K |K| Ju!J&l e dae JutJe=K | |J Jﬁ e da’
AN s e K At

daK K| J gl et e T M gk
Ju-‘rJg:K
|Jul,| Jg|#0
which is the desired formula since |J,| + |J¢| = |K]. O

Originally, the kth lift is defined for m-projectable vector fields on E. The kth lift of
such vector field ¢ is the infinitesimal generator of the kth lift of the flow of . Definition

4.15 is a characterization of this property and it is generalized for any kind of vector fields
on E (see |71]).

Proposition 4.18. Let 1. be the flow of a given m-projectable vector field & over E.
Then, the flow of €¥ is the kth prolongation of 1., j*i..
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4.1.2 On the definition of vertical endomorphisms

We are going to face one of the first problems in order to define a canonical geometric
Lagrangian formalism. There is no natural extension of the notions of vertical endomor-
phism for first order theories (see Section §3.1.2). However, an alternative approach was
developed by Saunders in [138].

Definition 4.19. Given a k-jet j*¢ € J*r, let A € S*TM Qjkp Vo(z) T- The vertical lift
of A at j*¢ is the tangent vector Ay, € T s(Jm) given by

d
Aol ) = T F (50 +1A)] gy VF € C2(Jhym). (4.18)

By the very definition of vertical lift, given a smooth function f € C>®(J*1x),
(7}§¢7Tk,k—1)(/4]v;1;¢)(f) = A;;;(;)(f O Thk—1)
d .
= @(f o mir—1)(jhe +tA)|,_,

d
= ST,
= 0.

Thus, the vertical lift takes values into the vertical fiber bundle V7 1 C T'J*7. Indeed,
it is a morphism of vector bundles over the identity of J*r,

() ST M ®ig VT — V Tt

Note that, this time, the tensor product is taken over J*m and not over E. Note also that
for each j*¢ € J*r, the vertical lift at j*¢,

(>;§¢ : SkT:M Q Vg(x) ™ — Vj‘;dn T k-1 C 7}§¢Jkﬁ,

is a linear isomorphism. In adapted local coordinates (z%,u%), if A = A% dz¥|, ®
0/0u®|s(z), where dz® is the symmetric tensor product of the local 1-forms da™,...,
dz™ with K =1;, +---+ 1;,, then

) 59
A%, = Af—— d ()= du® @ —
o = Ak g |y, 00 (V= dwt@ T o

, (4.19)

where §/5z% is the dual counterpart of dz¥.

Now, we would like to use this vertical lift in order to generalize the definitions of
the vertical endomorphisms of first order, definitions 3.18 and 3.19. Nevertheless, the
ideas that are behind these definitions seem to not work for this one. In the case of the
volume dependent vertical endomorphism 3.18, one would like to define a skewsymmetric
map S, : (I'J"r)™ — TJ"r using the volume form 7 and the vertical lift (-)¥, but
there is no chance to obtain an element in the domain of (-)¥ from a tangent vector
in TJ*r. In the case of the canonical vertical endomorphism 3.19, we look for a map
S:T"M @ TJr — Y T 0, but the contraction of the canonical form 7 with the vertical
lift (-)" simply does not give what one would expect.
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Therefore, we are forced to try to generalize these objects my means of their local
descriptions, equations (3.23) and (3.24). For instance, the obvious formula for a canonical
vertical endomorphism for higher-order jet bundles would be

k—1 a a
ke — @ : . 4.2
S Zef®amz®aua ‘ (4.20)
17]=0 I+1;

Unfortunately, this local definition does not behave as expected under a change of coor-
dinates. Let (2%, u%) and (37, vg) denote two systems of adapted coordinates in J*m then,
following the transformation rules (4.4), we have

8 8 dur oy v 8
0O @ae—= ), ué‘a—yi'aTJ'Q?@m@%v
z Uiy, riea<idi<k OV z Uriy, Y ov':

where we have omitted some of the summation symbols for clarity. For the second order
case, after further computations, this is translated to

o o . 8 0

e oxt — Ou® ozt~ Ouf, -

Pur oy Pu \ W, DD
v + (Y 7 * 3 ® N = .
Oyi'ovP T v ovP ) Que T T Oyl T g B
i’

Obviously, this is not invariant under a change of coordinates.

4.1.3 Partial differential equations

Lemma 4.20. If N is an open submanifold of M, then J*(ry) =~ m '(N).

Definition 4.21. A differential equation on 7w is a closed embedded submanifold P
of the jet manifold J*w. The order of P is the largest natural number r satisfying
ﬂ;}_l(ﬂ'kﬂ«_l) # T, P. A solution of P is a local section ¢ € I'ym, where N is an open
submanifold of M, which satisfies j¥¢ € P for every x € N. A differential equation P is
said to be integrable at z € P if there is a solution ¢ of P (around some neighborhood
N of m(2)) such that z = jT’fk(Z)qﬁ. A first-order differential equation P is said to be
integrable in a subset P’ C P if it is integrable at each z € S. A first-order differential

equation P is said to be integrable if it is integrable at each z € P.

If [ is the codimension of P (dim J*7 — dim P), there locally exist submersions ¥ :
JFm — R! for whom P is the zero level set. Written in local coordinates, P is given by
the set of points that satisfy

UH(z'ul) =0, p=1,...,1

Thus, differential equations are a geometric interpretation of the usual kth-order partial
differential equations. Under certain conditions (for instance, if 74 _1|p : P — J" '7 is
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a surjective submersion), one could solve the previous equation for some of the highest-
order velocities u% making them to depend on the other variables. For simplicity, if n =1
and we fix [ multi-indexes K of length k, which we denote with a hat K , the previous
equation could be equivalent to the following expression

U’f{ = ¢R($i7ubuf(>7

where the multi-index with check accent, K, is a multi-index of length k complementary
to those of K. For instance, in the equation

Ugy = Uy * Ugy T Uy * Uy

defined on J?m where m = pr, : R? x R — R? with global coordinates (z,y,u), the “hat”
multi-index would be zy = 1, + 1, and the “check” ones vz =1, + 1, and yy = 1, + 1,.
In what follows, constrained coordinates will be denoted generically with a hat accent

“~7” while free coordinates will be denoted with a check accent “ 7, i.e. u?‘( and u?‘{ Note

that in general, & and & or K and K may coincide, what do not are the pairs (&, K) and
(¢, K).

Remark 4.22. As our ultimate goal is to characterize holonomic jet sections that belong
to P, one could look for a submanifold P’ of P consisting of the image of such sections.
The submanifold P’ is given by the constraint functions of P plus their consequences up
to order k, that is, U¥, le;f, dC;—‘I{f, etc. Geometrically, P’ is obtained as the output of the
following recursive process:

~

P, s=0, r=k
plen) .= Tro(PETR) s >0, r=0; (4.21)
JPED A (PO s >0, 0<r <k

which stops when, for some step s > 0, P(+1:8) = PF) This algorithm is a generalization
to jet bundles of the method given in [127] by Mendella et al. to extract the integral part
of a differential equation in a tangent bundle. The reader is also refereed to the alternative
approach by Gasqui [90].

For instance, if one considers the null divergence restriction u, + v, = 0 in the 2nd-
order jet manifold of pr, : R? x R? — R3, then the resulting manifold P2 = P(1:2) jg
given by the restrictions u, + vy, = 0, Uy + vy = 0, Uy + Uy = 0 and uyy + vy, = 0 (see
Example 4.61). Note that in this particular example, the original equation is in essence
a lst-order differential equation while, after the recurrence algorithm, it 2nd-order one
since it has been considered in J2 pr.

4.1.4 Iterated jet bundles

In Section §3.1, we already saw that J'7 is a fiber bundle over M. We thus may consider
the first jet bundle J'7; of the first source projection 7, : J'm — M. Bearing this idea in
mind, we could even consider arbitrary iteration of jet bundles of any order. Of greater
importance are the jet bundles which are the first jet of a (k — 1)th source projections:
Jl’/Tk,l .

Definition 4.23. Let k,1 > 0, the (I, k)-iterated jet bundle of 7 is the Ith jet bundle J'm,
of the kth source projection 7, : J&r — M.
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If (2°,u®) are adapted coordinates on E and (z,u¢), 0 < |I| < k, are the correspond-
ing induced local coordinates on J*m, adapted coordinates on the iterated jet bundle J'm,
will have the form

(2',uf.,), where 0 < [I] <k, 0 < [J] <1,

such that, for any local section ¢ : M — J*r of m,
o aIJ\wa
u[;J(]}I}¢) = ale )

T

being ¢¢ = uf o 1.

Let ¢ : M — E be a local section of 7 around x € M, then its kth prolongation j*¢
is a local section of 7, and, hence, its Ith jet at z, j.(j*¢), is and element of the iterated
jet bundle J'm,. Besides, j**¢ is an element of the higher order jet bundle J**'z. In
fact, J*'r is naturally embedded in J'7y.

Definition 4.24. The map i, : J*"'7 — J'm;, is defined by
ik(is™0) = 7o (55 9).
The elements in the image of i, are called holonomic.

Do not confuse this concept with the one given in Definition 4.5, even though they are
related. A holonomic iterated jet j.o € J'm; (in the sense of 4.24), is the jet of a holonomic
jet o = j¥¢ (in the sense of 4.5) or, the iterated jet of a fixed section jlo = j.(j*¢).

In adapted coordinates (z',uf ;) on J'm, and (2f,uf) on J"'w, where 0 < |I| < Fk,
0<|J|<land 0 < |K| <k+1,

U?;J(il,k(j];+l¢)) = Ut

It follows that J**'7 may be seen as the submanifold of holonomic jets of J'm;, given by
the coordinate expression

Jr =Ll € J'me o ud L, (h) = uf.,, (7o) whenever I + Jy = I + Jo} .

Thk+1,k

™ Tk

Figure 4.3: Iterated jets
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Do not confuse this notion of holonomy with the one given in Definition 4.1.1. The
former refers to holonomy as an iterated jet, the latter as a jet section by itself.

In contrast to the elements of ;4 (J*"'7), that are called holonomic, the elements of
J'm;, are sometimes refereed as non-holonomic jets, even though the holonomic jets belong
to it. But there are still a set of particular interest between them when [ = 1 (see [139]).

Two different maps may be defined from J'm, to J'm,_;. First, the composition of the
target projection ()10 : J'mp — J¥m with the natural embedding 4y 5 : J*7 < Jlmp_;.
And secondly, the first prolongation jlmy . of T 1 : J*r — J* 17 as a morphism over
the identity on M. Finally, we recall that the vector bundle associated to the affine
bundle (mx_1)10 : Jimp_1 — J¥ I is

(Trr-tplypm_, ) 0 pry : T*M @ i1, Vg — J¥'m.
Definition 4.25. The k-jet Spencer operator is the map
Dk : J17Tk — T"M Qgh—1, V M1

such that Dy (jle) is the unique element of T*M ® jx-1, V mx_1 whose affine action on
J'm—1 maps (i1k—1 0 (Tk)1,0) (Ja®) to (5 Th 1) (20

In local coordinates, the k-jet Spencer operator has the expression

k—1
i, Q a « % a
Dy (2", uf, uf,;) = 1§|—o(um —ujyy,)de’ ® 8_u§‘ (4.22)

Definition 4.26. The semi-holonomic (k + 1)-jet manifold J**'7 is the submanifold
D 1(0) of Jimy.

From the local expression of the k-jet Spencer operator, it follows that
T = (G € J'me = ud (i) = ufi (jpw) when 0 < |1] < k} .

We now have the inclusions 7, ;(J*™) C J*'x C J'm,. In terms of coordinates, we may
say that the semi-holonomic manifold J¥H1 is the collection of elements of Jim, whose
coordinates are symmetric with respect to the multi-indexes up to order k, whereas the
holonomic manifold J*'7 is the collection of elements of J* 7 whose coordinates are
in addition symmetric with respect to the multi-indexes of order k + 1. We may take
(', uG, u%,;) as coordinates of J¥1r where 0 < |.J| < k and |K| = k.

4.1.5 The kth Dual Jet Bundle

There are mainly two possible choices to define the dual space of J*7. For our purposes,
one of them is not valid, while the other will introduce some problems in the formulation
of dynamics. In spite of it all, we shall show the reason of this election.
Recall that 7,5y : J*r — J*~!7 is an affine bundle (Proposition 4.4). Thus, we may
consider its affine dual
A= J Aff(Jfm A7 M)
ueJk—1x
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Note that, in this case, the affine nature of this space takes only in consideration the
highest order component of J*m, what is clearer when one considers local coordinates.
Let (z°,u%) denote adapted coordinates on J*m, where 0 < |J| < k, then they induce
coordinates (z°,u%, p*, pK) in A, where 0 < |I| < k — 1 and |K| = k. Note that there is
only one coordinate p”, with little k. The pairing will then be

p* -+ pEug.

Roughly speaking, this space has the nice property of having as many momenta (plus
one) as highest order velocities has J*w. Nonetheless, the lack of taking care of the lower
order velocities is too important to neglect it.

A workaround could be to consider fiber products of this space for each “level” J'm
from [ =1 to | = k. Then we would have a space whose coordinates will take the form
(2%, ug,pt, ..., p* pl), where 0 < |I| < k—1and 1 < |J| < k. The problem now is
that there are many affine components p', which would give a lack of unicity when the
Hamiltonian formalism would be introduced. Moreover, there is not a canonically define
pairing since there are pairings defined at each level but not globally.

The alternative to all of this is to consider the iterated jet J'm,_; and its dual space
as affine bundle over J*~!7. As already seen, J*7 is affinely embedded into J'mj,_;, thus
it makes sense to restrict the elements of J!(m;_1)" to J*7.

Definition 4.27. The kth dual jet bundle of 7, denoted J*7', is the reunion of the affine

maps from J!7,_; to Aﬂk N U)M where u is an arbitrary point of J*~'7. Namely,

Tl = TN mo)t = | AE(ime, A2 M), (4.23)

Th—1
ueJk-1x

The functions given by

T . 7kt
m St — M
4.24
we bt — mi(u) (424)
and -
S8 — KB
4.25
w G JErt — m10(u) (4:25)

where JErt = Aff(JEm AT

m(u)

M) , are called the kth dual source projection and the kth

dual target projection respectively. Finally, we denote 71';27,6_1 the map

7r;2 D Jhrt — I

wE JErt — (4.26)

and 7T};l = 77;27]{_1 o M1, for 0 <1 <k —1.

The duality nature of J*7T gives rise to a natural pairing between its elements and
those of J¥m. The pairing will be denoted by the usual angular brackets, (,) : J*7T® jk-1,
Jkn — A™M.

Proposition 4.28. The kth dual jet bundle of ©, J*xt, may be endowed with a structure
of smooth manifold. A system of adapted coordinates (z',u®) in E induces a system of
coordinates (%, u$, p, plt) in J*7t, where 0 < |I| < k—1, such that, for any j*¢ € J*r and
any w € T, 7t a(w) = 2 (2), uf(w) = wp(E6) and (w, 750) = (p + pirus,,) d™.
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In the induced local coordinates (z¢,ug, p, pl), the kth dual source and target projec-
tions are respectively written

(e’ uf,p.py) = (2') and wlg(atufp.py) = (o' u®), (4.27)
and for the intermediate projections
7T;;l(.ilfi, u?7pap(lxi) = ($i7 U?), (428)

where 1 < |J| <1 < k—1. From here, it is clear that 7r,1 and 7r170 are certainly projections
over M and E respectively. Therefore, (J*zt, x}, M) and (J*xT, W]Z,O, E) are fiber bundles.
If we consider a change of coordinates (z,u®) + (y7,v”) in E, it induces a change of
coordinates (%, u%, p, pli) = (y7, v} q, qgj) in J*7'. In this case, the “momenta” transform
by the following rule.

Proposition 4.29. Let (z¢,u®) and (y/,v?) be adapted coordinates on E and let (%, uf,
p,plt) and (yj,vg,q,qgj) be the corresponding induced coordinates on the space of semi-
basic forms A3 J* 11, where 0 < |I|,|J| < k. We have that the fiber coordinates (with
respect to J*~1m) transform according to the following rule:

ol . oxt
p = Jac(y(z)) (aqu;fj oyt q) : (4.29)
; o’ 0x
pt = Jac(y(z)) (a—uéqg]ayj>_ (4.30)

Proof. First of all, recall that J*7T = J'(m,_1)" is canonically isomorphic to the space
of semi-basic form w € AJ'J*7 (Proposition 3.28). We only have to write an arbitrary
semi-basic form w € AZ'J*rm in the two different systems of coordinates and use the
transformation rules (3.31) to get:

w = pd™z+plduf A d"
= qd™y+ qg] dv? A A"y,
Jj axZ av

_ m g k (%g e m—1
= Jac(y(z)) [¢d™z + g oy de +ﬁdu[ A d"
I

_ i av? Jja$i m av? Jjaxi o m—1
= Jac(y(z)) <Q+8a:iqﬁ By d™z + 8_u?qﬁ By duf A d™ x| .

If we now compare the coefficients of the first and last expressions, we obtain the desired
result. ]

While the kth jet bundle J*7 projects over the lower order jet bundles (Diagram 4.1),
the kth dual jet bundle is “embedded” into the (k + 1)th dual jet bundle by means of the
pullback of the affine projection w11, (Diagram 4.4).

Proposition 4.30. The kth dual jet bundle of ©, J*nt, together with the kth dual pro-
jection, 7T;L7k_1, is a vector bundle over J*~'n. Moreover, the induced coordinate systems
(2%, ug, p, pkt) are adapted to the vector bundle structure.
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k+1k> 21

Jk+17TT

Tk Tkl >J21 >yt

Jir =BT M

Jk+1

Figure 4.4: Chain of dual jets

Definition 4.31. The reduced kth dual jet bundle of 7 is J*7° := J(m_1)° (see Definition
3.26), which is isomorphic to A J* "tz /AT JE 17 (Corollary 3.29).

Proposition 4.32. We have that:
1. J*7° may be endowed with a structure of smooth manifold;
2. (JFrT, p, J*7°) is a smooth vector bundle of rank 1;

3. adapted coordinates (z',u®) on E induce coordinates (z',u$, plt) on J*r° such that
p(xt,ug, p,pkt) = (2%, ug, plt), where (2, u$,p,pkt) are the induced coordinates on
JErt.

Before we end this section, we summarize the important geometrical ingredients that
he dual jet bundle J*7' posses. In first place, it has a canonical multisymplectic structure
which is carried form the realization of J*r' as a semi-basic forms AJ*J*"17 over J* 7
(see equations (3.32) and (3.33) and Definition 4.27). Moreover, its elements are naturally
paired with those of J*m (see Proposition 4.28). We recall that a form € is multi-
symplectic if it is closed and if its contraction with a single tangent vector is injective,
that is, i1y = 0 if and only if V = 0.

Definition 4.33. The Liouville or tautological m-form on J*r' is the form given by

Ou(Vi, -, Vi) = (o) w) VA, .. Vi), w € o7l VA, Vi € TRt (4.31)

where 71';2,]671 is the natural projection from J*zt to J* '7. The Liouville or canonical
multi-symplectic (m + 1)-form on J*zT is

Q=—de. (4.32)

Definition 4.34. The natural pairing between J*7 and its dual J*7' is the fibered map
® : JEr X jror, JFt — A™M given by

O(j¢,w) = (1) w (4.33)

Let (2%, u$, u$) and (2%, u$,p,pl’) denote adapted coordinates on J*w and J*n' re-
spectively, where |I| = 0,...,k — 1 and |K| = k. Then, the tautological form and the
canonical one are locally written

O =pd"z+plduf A d™'z; and Q= —dpA d™z — dpi A duf A d™la, (4.34)
and the fibered pairing between the elements of J*7 and J*7' is locally written

(', uf, uf, p,pl) = (p+ piiug,,,) d"a. (4.35)
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4.2 Higher Order Classical Field Theory

4.2.1 Variational Calculus

The dynamics in classical field theory is specified giving a Lagrangian density: A La-
grangian density is a mapping £ : J¥7m — A™M. Fixed a volume form 1 on M, there is
a smooth function L : J¥7 — R such that £ = Ln.

Definition 4.35. Given a Lagrangian density £ : J*7 — A™M, the associated integral
action is the map A, : 't x K — R given by

Ap(6, R) = / (*6)°L. (436)

where K is the collection of smooth compact regions of M.

Definition 4.36. Let ¢ be a section of w. A (vertical) variation of ¢ is a curve ¢ € [ —
¢. € I'r (for some interval I C R) such that ¢. = p. o ¢ o ¢!, where . is the flow of a
(vertical) m-projectable vector field £ on E.

When ¢ is vertical, then its flow . is an automorphism of fiber bundles over the
identity for each ¢ € I.

Definition 4.37. We say that ¢ € I'r is a critical or stationary point of the Lagrangian

action A, if and only if
d &
—— )L
o faere

for any vertical variation ¢. of ¢ whose associated vertical field vanishes outside of 7! (R).

A[;(ng, R)]

=0, (4.37)

e=0

4
de

Lemma 4.38. Let ¢. = p. 0 po @' be a variation of a section ¢ € I'm. If & denotes the
infinitesimal generator of ., then

d

S [GMpoore] | = (GFo)(ganw), (4.38)

or any differential form w € Q(J*r).
[ y diff J (

Proof. From Proposition 4.18, we have that £ is the infinitesimal generator of j*¢.. We
then obtain by a direct computation,

(o) = () ( 5. [GH0e]

_ i -k o ko
€:O> = 1 [(Fpe 0 5°0)5u]

e=0

]

The following lemma will show to be useful in the variational derivation of the higher-
order Euler-Lagrange equations.
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Lemma 4.39 (Higher-order integration by parts). Let R C M be a smooth compact
region and let f,g : R — R be two smooth functions. Given any multi-index J € N™,
we have that

oMl f ollg oMrl f oHslg
m |J| m m—1
gd™r = ( /f d"z + ANy, 1, J) d i
/R Oz’ oz’ ., +IZ+11—J It ap Ozl Oxls
(4.39)
where \ is given by the expression
I |1, J!

Iy I, ) o= (il i Al . 4.40

Proof. In this proof, we will use the shorthand notation f; = %.

We proceed by induction on the length [ of the multi-index J. The case [ = |J| =0
is a trivial identity and the case [ = |J| = 1 is the well known formula of integration by

parts
/ fgdre = [ pgamia, - / foi ™.
R OR R

Thus, let us suppose that the result is true for any multi-index J € N™ up to length
[ > 1, in order to show that it is also true for any multi-index K € N™ of length [ + 1.
Let J and 1 < j < m such that J +1; = K. We then have,

/fJ+1jgdm$ = —/fJgjdmIJr frgd™
R R

OR

e / forn dmet [ frgdnia,
OR

Z ATy, Iy, / fry 1,41, A",

g+l +1=J

where we have used the first-order integration formula in first place, to then apply the
induction hypothesis. We now multiply each member by (J(j) +1)/(l+ 1) and sum over
J +1; = K. Using the multi-index identity (A.7), we have

dm — l+1/ dm dmfl )
/Rng x fgr d™x + Z l+1 8RfJg z;
J+1,;=
J(j)+1 -
- TS ) [ Sy,
J+1;=K Ip+Ig;+1,=J

It only remain to rearrange properly the last two terms to express them in the stated
form. Clearly,

J(j) +1 o
S AL pganie, =
J+1,=K OR
= (—1))5s . |- L) K Bl £ pllslg .
I+1g+1,=K |K! I 1) Jop Oxls Oxls
\Ig\:O
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The last term is a little bit more tricky,

J(j)+1 1 1l g ! J! / -1
A —1)H9j . I am =
2. T 2 (1 T 19 4

J+1=K Ip+Ig;+1=J

|Te|!- |1, ! K! _
= Z (_1)‘Igj|+1 . f K 'gj . T 1.1 fffglgj+1j dm 1.%'
Ip+lg+1i+1;=K K] frr 4950 JOR

LG) |- |LII K
- Z (—1)!%! Z 4(J) _ (5| |1 _ fr0, 4y,

| 1.7
Tptlg+1i=K Ig;+15=I4 |[g| ‘K| [f' [g' OR
|Tg|>1
_ ) gl ]! K' 1,
If+1g+1i=K
[1g|>1
where we have used the identity (A.7) again. The result is now clear. []

In the following version of the higher-order Euler-Lagrange equations, we restrict
ourselves to vertical variations for simplicity, although it is possible to use also non-
vertical variation like in Theorem 3.35.

Theorem 4.40 (The higher-order Euler-Lagrange equations). Given a fiber section ¢ €
I'w, let us consider an infinitesimal variation ¢. = p. o ¢ of it such that the support R
of the associated vertical vector field & is contained in a coordinate chart (z'). We then
have that the variation of the Lagrangian action Az at ¢ is given by

k

= 3 (_1)|J|/ all 8L)

2k 1\ * a
2 R(J o) (f a7 o

dlel oL
+ ) H@IL, / (7% )" (&deh S ) A"l |

Ie+Ip+1;=

4 Ac(6R)

(4.41)
where R. = ¢.(R). Moreover, ¢ is a critical point of the Lagrangian action A if and
only if it satisfies the higher-order Euler-Lagrange equations

k

oy [ Sy dl oL ) (142

dz’ oug
|J]=0

on the interior of M, plus the boundary conditions

a1 oL
— =0, 0<|I| < |J| <k 4.43
W ous O <[ <|J| <k, (4.43)

on the boundary OM of M.
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Proof. Let us denote by & the vertical field associated to the variation ¢.. By Proposition
4.38, Cartan’s formula £ = doi+ 7o d and Proposition 4.18, we have that

d
d_€A£(¢€7 R)

- / (746)" (Sew L)

e=0

= /(]kgb)* d(ig(k)ﬁ) + (]kgb *ig(lw dL
R R

)
= /(9R(jk¢)*’i€(k)£ + L(jk¢)*(£(k)(L) d™r — dL A ig(k) dmx)
dlge oL
— kg * oL m
— /R(] ¢) |Jz::0—d37J s d"z

If we now apply the higher-order integration by parts (4.39) and we take into account
that Equation (4.13), we obtain that

k

d’l oL
\J\ 2k 1\ * ad Y m
Z / 9) (6 dx/ 8uf}) ¢

dlfelge qiel oL
2 : 2k 1\ * m—1,.
+ )\ Ifajln / (] ¢) ( dx]5 dac[L 3u?> d ZTi|

Ie+Ip+1;=

d
(¢€7

which is the first statement of our theorem.

If we now suppose that R is contained in the interior of M, as £ is null outside of R,
so it is £ outside of R and, by smoothness, on its boundary OR. Thus, if ¢ is a critical
point of A,, we then must have that

k

dl! aL
o 2k 1\ * « |J\ m,.

- |J]=0

iAC(QSEa R)

for any vertical field £ whose compact support is contained in 7=!(R). We thus infer that
¢ shall satisfy the higher-order Euler-Lagrange equations (4.42) on the interior of M.
Finally, if R has common boundary with M, we then have that

d dizl g
o] =S X Mt [0 (G o) =0
|J‘ 0[5+IL+12—J NoM
(4.44)
As this is true for any vertical field £ whose compact support is contained in 771 (R), we
deduce the boundary conditions (4.43). O

4.2.2 Variational Calculus with Constraints

We consider a constraint submanifold i : C < J*m of codimension [, which is locally
annihilated by [ functionally independent constraint functions W*, where 1 < o < [. The
constraint submanifold C is supposed to fiber over the whole of M. Here one could use the
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algorithm given in 4.22 so as to use the consequence up to order k given by the constraint
submanifold C.

We now look for extremals of the Lagrangian action (4.36) restricted to those sections
¢ € I'm whose k-jet takes values in C (see [83, 121]). We will use the Lagrange multiplier
theorem that follows.

Theorem 4.41 (Abraham, Marsden & Ratiu [2]). Let M be a smooth manifold, f :
M — R beC", r > 1, F a Banach space, g : M — F a smooth submersion and
N =g 10). A point ¢ € N is a critical point of f|n if and only if there exists A € F*,
called o Lagrange multiplier, such that ¢ is a critical point of f — (A, g).

In order to apply the Lagrange multiplier theorem, we need to define constraints as
the 0-level set of some function g. We configure therefore the following setting: choose
the smooth manifold M to be the space of local sections 'gr = {¢p : RC M — E :
mo¢ = Idys}, for some compact region R C M. The Banach space F is the set of smooth
functions C*(R,R!), provided with the L:norm. The constraint function ¥ induces a
constraint function on the space of local sections I'rm by mapping each section ¢ to the
evaluation of its k-lift by the constraint, that is,

g: ¢ €Tpm = Vo j*p € C°(R,R.

Note that the 0-level set N = ¢g~1(0) is the set of sections whose k-lift takes values in the
constraint manifold C (over R).

We therefore obtain that a section ¢ : M — FEis a regular critical point of the integral
action A, restricted to C if and only if there exists a Lagrange multiplier A € (C*(R, R"))*
such that ¢ is a critical point of Az — (A, g). A priori, we cannot assure that the pairing
(X, g9(¢)) has an integral expression of the type [, \,U* o j*¢d™x for some functions
Ap it R — R. Henceforth, we shall suppose that it is the case.

Remark 4.42. In Theorem 4.41 appears some regularity conditions that exclude the so-
called abnormal solutions. In general, given a critical point ¢ € N = ¢g71(0) of fiv
, the classical Lagrange multiplier theorem claims that there exists a nonzero element
(Ao, A) € R x F* such that ¢ is a critical point of

Xof — (N g). (4.45)

Under the submersivity condition on g, that is ¢ is a regular critical point, it is possible
to guarantee that \g # 0 and dividing by A\ in (4.45) we obtain the characterization
of critical points given in Theorem 4.41. The critical points ¢ with vanishing Lagrange
multiplier, that is, Ay = 0 are called abnormal critical points.

In the sequel we will only study the regular critical points, but our developments
are easily adapted for the case of abnormality (adding the Lagrange multiplier Ay and
studying separately both cases, \g = 0 and Ay = 1).

Proposition 4.43 (Constrained higher-order Euler-Lagrange equations). Let ¢ € I'rm be
a critical point of the Lagrangian action A given in (4.36) restricted to those sections
of ™ whose kth lift take values in the constraint submanifold C C J*m. If the associated
Lagrange multiplier X is regular enough, then there must exist | smooth functions A\, :
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R C M — R that satisfy together with ¢ the constrained higher-order Euler-Lagrange

equations
k

a7 oL OvH
2k 4\ * ] ~ - —
E -1 A = 0. 4.46
(79) (=1) da’ <8u§ a 8u§) (4.46)
|7|=0
Proof. The proof is a direct application of Theorem 4.40 and Theorem 4.41. O

4.2.3 The Skinner-Rusk formalism

The generalization of the Skinner-Rusk formalism to higher order classical field theories
will take place in the fibered product

Wo = J*1 X jeag AT(JF 7). (4.47)

The results of this section constitute the main developments of our paper |27|. The first
order case is covered in [50, 70]; see also [143, 144] for the original treatment by Skinner
and Rusk. The projection on the i-th factor will be denoted pr; (with ¢ = 1,2) and the
projection as fiber bundle over J*~!7 will be Twy Jh—17 = Trk—10p7 (see Diagram 4.5). On

Wo, adapted coordinate systems are of the form (z%, u$, u%, p%¢, p), where |I| =0, ..., k—1
and |K| = k.

W

pry P
Jkﬂ' WWU,Jk_IW Agﬂ((]k—lﬂ.)
JE1r
Th—1
M

Figure 4.5: The Skinner-Rusk framework

Assume that L : J*7 — R is a Lagrangian function. Together with the pairing ®
(Proposition 4.28), we use this Lagrangian L to define a dynamical function H (corre-
sponding to the Hamiltonian) on Wj:

H=®— Lopr,. (4.48)
Consider the canonical multisymplectic (m + 1)-form ©Q on AZ(J* 'x) (Equation

(4.32)), whose pullback to Wy shall be denoted also by 2. We define on W, the (m + 1)-

form

Qp =Q+ dH A 1. (4.49)
In adapted coordinates
H = pylufy,, +p— L' uf, uf) (4.50)
) . . 0L
Qp = —dpli A du¢ A d™ ey + <pgf duf,,, + ufy, dph' — e du‘}) A d"£4.51)
Uy

where || =0,...,k—1and |J| =0,...,k.
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The dynamical equation

We search for an Ehresmann connection I' in the fiber bundle my, »s : Wy — M whose
horizontal projector be a solution of the dynamical equation (see Section §1.1):

We will show that such a solution does not exist on the whole Wy. Thus, we need to
restrict to the space on where such a solution exists, that is on

W, = {weW,/3h,:T,Wy — T,W, linear such that h? = h,,,

kerh, = (Vmwym)w, ih,Qu(w) = (m —1)Qg(w)}. (4.53)

Remark 4.44. Equation (4.52) is a generalization of equations that usually appear in first
order field theories. In this particular case, from a given Lagrangian function L : J'm — R
we may construct a unique (m + 1)-form Q, (the Poincaré-Cartan (m + 1)-form). Hence,
we have a geometrical characterization of the Euler-Lagrange equations for L as follows.
Let T be an Ehresmann connection in m o : J'm — M, with horizontal projector h.

Consider the equation

If h has locally the from

h () = g + At + Ay

ozt ox? b oue gt dus ’

then a direct computation shows that equation (4.54) holds if and only if

(A9 — o) < L ) —0,  (455)

Gu?(‘?uf
oL  O°L 0*L 0L 0L
ou®  Ox'ou? L ouPou Jzﬁuf ou Ay )Gu’l@uf (4.56)

(see [54]). If the lagrangian L is regular, then Eq. (4.55) implies that AY = u and
therefore Eq. (4.56) becomes

2 2 2
oL oL _ g oL _ %—fZEQ—::o. (4.57)
ou®  drioug ouPoug J 8u§8u§‘

Now, if o(z") = (z*,0%(z), 0%

e

(x)) is an integral section of h we would have

«
o Oo . Oo¥
uy = - and A = —,
oxt T Oxd

which proves that Eq. (4.57) is nothing but the Euler-Lagrange equations for L.
We may think Equation (4.52) as a generalization of equation 4.54 giving the Euler-
Lagrange equations for higher-order field theories in a univocal way, as we will see.

In alocal chart (2%, u%, pL?, p) of Wy, a horizontal projector h must have the expression:

0 0 -0 0 ,
h=(-—" 42 % +pi % o2 j 4
(mﬂ_“m{%wwy+q%)®m’ (4.58)
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where |[I| =0,...,k—1and |J| =0,...,k. We then obtain that

. OL
inQg — (m—1)Qy = (B” duf — Af dpl' + plt duf,, +ufy,, dpl — 2= du?;) Ad™a

oug
oL k—2
—|(Bi- ) e 3 (Bi - o) dus o+ Y pht
|I'|=1 U [7]=0
oL
— Z duK—i- Z példuprl
|K|= k; \I|=k—1
+ Z ug,,, — A7) dplt| A d™z.
[7|=0
Equating this to zero and using Lemma A.5, we have that
A = up,y,, I =0,... k=1, i=1,...,m; (4.59)
; oL
Bl = —. 4.60
aj aucU ( )
: I(i)+1 oL i : .
Li = — B Q) 11 =0,... k=2, i=1,...,m; (4.61
P = S (G =Bl ) =2 = 1 ()
. 1) +1 [ OL : ,
I I
= +Q' |, | Il=k—1,1=1,...,m; 4.62
= T (g @) (4.62)
where the ()’s are arbitrary functions such that
I(i)+1
3 W+ Lon _ 0 with |J]=1,... k. (4.63)

2, T
Remark 4.45. The ambiguity in the definition of the Legendre transform, and therefore
of the Cartan form, becomes apparent in the equations (4.61) and (4.62), as noted by
Crampin and Saunders (see [140]). There are too many momentum variables to be related
univocally with the velocity counterpart. To fix this, a choice of arbitrary functions @
satisfying (4.63) must be done. The choice may be encoded as an additional geometric
structure, like a connection.

Applying (4.63) to (4.61) and (4.62), and using the identity (A.7), we finally obtain
the equations

oL ,
0 = —— B 4.65
auoz ajr ( )
: oL
doopd = go By with [T =1 k-1 (4.66)
I+1,=J ug
oL
Yo ovh = 5, with [K| =k (4.67)
ous-
I+1,=K

Notice that equation (4.67) is the constraint that defines the space Wi; and that
(4.64), (4.65) an d(4.66) are conditions on coefficients of the horizontal projectors h.
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Note also that, for the time being, the A’s with greatest order index and the C’s remain
undetermined, as well as the most part of the B’s. From the definition of Wy, we know that
for each point w € W there exists a horizontal projector h,, : T,,W, — T,,W satisfying
equation (4.52). However, we cannot ensure that such h,, for each w € Wy, will take
values in T,,W;. Therefore, we impose the natural regularizing condition h,,(T,,Wy) C
T, W1, Yw € Wy. This latter condition is equivalent to having

) o 0L\
h(%)( 2. P —aug) -
I+1;=K

i=

which in turn is equivalent (using (4.58) and (4.64)) to

k—1

: 0L
Bl = _—~ AP 4.
Z a] 07 Qus: + Z Urt, ou ﬂauK + Z Jj 8u§8uK (4.68)

I+1;=K |1]=0 |7 |=k

with |K| = k. Thus, if the matrix of second order partial derivatives of L with respect to

the “velocities” of highest order
0?L
(ﬁ> (4.69)
ou;0us;

is non-degenerate, then the highest order A’s are completely determined in terms of the
highest order B’s. In the sequel, we will say that the Lagrangian L : J'r — R is regular
if, for any system of adapted coordinates the matrix, (4.69) is non-degenerate.

Up to now, no meaning has been assigned to the coordinate p. Consider the submani-
fold W5 of Wi defined by the restriction H = 0. In other words, W5 is locally characterized
by the equation

I, «

b= L — pa uIJrl
As before, we cannot ensure that a solution h of the dynamical equation (4.52) takes
values in TW;. We thus impose to h the regularizing condition h,,(7,,Wy) C T,,Ws,
Yw € Ws, or equivalently h(9/027)(H) = 0. Therefore, the coefficients of the linear
mapping h are governed by the equations (4.64), (4.65), (4.66), (4.68) and in addition
oL . OL N :
Cj = a0 ATiaa ous — Af st = Blug,. (4.70)
Note that, thanks to the Lemma A.5 and Equation (4.67), the terms with A’s with multi-
index of length k cancel out, and the A’s with lower multi-index are already determined.
So, in some sense, the C’s depend only on the B’s.

Description of the solutions

The relations (4.66) (with |J| = k& — 1) and (4.68) can be seen as a system of linear
equations with respect to the B’s. When k& = 1, equation (4.65) should be considered
instead of equation (4.66). In the following, we are going to suppose that n = 1, since the
dimension of the fibres is irrelevant for our purposes and we may ignore it. The number
of B’s with order k£ — 1 (with multi-index length k£ — 1) is given by

(m—l—l—k—l) )
-m
m—1
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and the number of equations with such B’s is

(m—l—l—k) (m—1+l€—1)
-m + .
m—1 m— 1

An easy computation shows that the system is overdetermined if and only if £ = 1 or
m = 1 (examples 4.51 and 4.52), and completely determined when k = m = 2. In all
other cases the system is underdetermined, but it still has maximal rank.

Proposition 4.46. Suppose that k > 2 and m > 2. Then, the system of linear equations
with respect to the B’s

> B = g—i— >t (4.71)

j=1 I+1;=J
, PL = 9L 9L
SoOBE = S S g+ S A (472)
J J J )
[Tk 8x98uK 1=0 6U]8UK Tk 8uJ8uK
where |J| =k —1, j=1,...,m and |K| = k, has mazimal rank.

Proof. In a first step, we are going to describe how to write the matrix of coefficients.
Then, we will select the proper columns of this matrix to obtain a new square matrix of
maximal size. We finally shall prove that this matrix has maximal rank.

The matrix of coefficients will be a rectangular matrix formed by 1’s and 0’s. The
columns will be indexed by the indexes of the B’s, and the rows by the indexes of the
first partial derivatives that appear in the equations (4.71) and (4.72). As B’/ has three
indexes, the columns of the matrix of coefficients will organized in a superior level by the
index 7, in a middle level by the index j and in an inferior level by the multi-index I. The
rows will be organized at the top by the index J for the first equation, (4.71), and at the
bottom by the index j and then by the multi-index K for the second equation, (4.72).

As the matrix of coefficients has more columns than rows, we shall build a second
matrix that has as many columns and rows as the matrix of coefficients has rows. To
do that, we select a column of the matrix of coefficients for each row index using the
following algorithm (for the sake of simplicity):

01  ForEach (j,K)

02 Define G={(I,i):I+1_i=K}

03 If Cardinal(G)=1

04 Select the column (i,j,I)
05 Elself

06 Select a column (i,j,I) such that (I,i) is in G and i\neq j
07 EndIf

08 EndFor

09 ForEach J

10 If J(1)=k-1

11 Select the column (m,m,J)
12 Elself

13 Select the column (1,1,7])
14 EndIf

15 EndFor
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Now, this matrix being defined and since it is full of 0’s and has only few 1’s, we are
going to develop its determinant by rows and columns. Notice that the columns selected
at line 6 have only one 1 each, thus we can cross out the rows an columns related to these
I’s. Now the rows at the bottom part of the remaining matrix (related to the second
equations) have only one 1 each, thus we can also cross out the rows an columns related
to these 1’s. Now, the remaining matrix has the property of having only one 1 per column
and row (there must be at least one 1 per row and column, and no two 1’s may be at the
same row or column), thus its determinant is not zero and the matrix of coefficients has
maximal rank. O

Ezample 4.47. If we consider the “simple” case of third order (k = 3) with two independent
variables (m = 2), then we will obtain a system of 11 equations with 12 unknowns. The
matrix of coefficients will take the form

10000O0O0O0OO0OT1TO0O0
01 0000O0O0O0OO0T1@O0
0010O00O0OO0OO0O0GO0OT1
10000O0O0OO0COGO0OO®O
010100O0O0O0O0O0O
001010O0O0O0O0O0O0
0000O0O1O0O0O0OO0OO0O0
0000O0OO0O1O0O0O0O0O0
0000O0OO0OO0O1O01QO0O0
0000O0OO0OO0OO0OT1TO0OT1®0
000O0O0OO0OO0OO0OO0OO0OO0T1

where the columns are labeled in order by: (1,1,1; + 17), (1,1,1; + 13), (1,1, 15 + 1),
(1,2,1; + 1q), (1,2,1; + 1o), (1,2,15 4+ 1), (2,1,11 + 1q), (2,1,1; + 13), (2,1,15 + 13),
(2,2,11+11), (2,2, 11413), (2,2, 15+15); and where the rows are ordered by: 1;+1;, 1;+15,
12 + 12, (1, 11 + 11 + 11), (1, 11 + 11 + 12), (1, 11 + 12 + 12), (1, 12 + 12 + 12), (2, 11 + 11 + 11),
(2,11 + 11 + 1), (2,11 + 15+ 15), (2,15 + 15 + 15). The previous algorithm would select
all the columns but the eleventh (which corresponds to the label (2,2,1; + 15)) in the
following order: (1,1,1; + 11), (2,1,1; + 11), (2,1,11 + 12), (2,1, 1o + 15), (1,2, 11 + 11),
(1,2,11 + 1g), (1,2,12 + 13), (2,2,15 4+ 1), (2,2,11 + 17), (1,1,1; + 1o), (1,1,15 + 13).
Note that the resulting matrix is regular.

The problem get worst with a little increment of the order or the number of indepen-
dent variables. For instance the case k = 5 and m = 6 gives a system of 1.638 equations
and 4.536 unknowns.

Another way to interpret the tangency condition (4.68) is the following one: Let us
suppose we are dealing with a first order Lagrangian (example 4.51, equation (4.89)). One
could apply the theory of connections to the Lagrangian setting and the Hamiltonian one
as separate frameworks. We know that they must be related by means of the Legendre
transform and so are the horizontal projectors induced by these connections. Thus,
equation (4.89) is nothing else than the relation between the coefficients of these horizontal
projectors.
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The reduced mixed space W,

In section §4.2.3 we reduced the space W; to W5 by considering the constraint H = 0,
which is a way of interpreting the coordinate p as the Hamiltonian function. But W,
is not a mere instrument to get rid off the coordinate p or the coefficients C;. As the
premultisymplectic form g, it encodes the dynamics of the system and, when L is
regular, it is a multisymplectic space. Indeed, when k = 1, W, is diffeomorphic to Jix
(cf. de Leon et al. [50]), which is not true for higher order cases.

Proposition 4.48. Let Wy = {w € Wy : H(w) =0} and define the (m + 1)-form Qq
as the pullback of Qg to Wy by the natural inclusion i : Wy — Wy, that is Qo = i*(Qp).
Suppose that dim M > 1, then, the (m+ 1)-form Qqy is multisymplectic if and only if L is
reqular.

Proof. First of all, let us make some considerations. By definition, 25 is multisymplectic
whenever (25 has trivial kernel, that is,

ifUGTWQ,iUQQZO <— v=0.
This is equivalent to say that
ifUEi*(TWQ),inH‘i*(TWQ) =0 <= v=0.

Let v € TW, be a tangent vector whose coefficients in an adapted basis are given by

0 -0 0
=N—+A5—+ Bl — +C—.
! oxt + T ouy + Ba opli + Op

Using the expression (4.51), we may compute the contraction of Qg by v,
Wy = —BEdu¢ A d™ e + AYdpli A d™ e — M dpli A dug A A2y
+ (Ampif + Byufyy, — Ai‘?a%) ™z (4.73)
N (p{j duf,y, +uf, dpli — 2 dug) A dm .

On the other hand, if we now suppose that v is tangent to Wy in Wy, that is v € i, (T'W3),
we then have that

d < Z pl oL ) (v)=0 and dH(v)=0, (4.74)

uOé
I+1;=K Oug

which leads us to the following relations for the coefficients of v,

. 0L 0L
> Bi=XN———+Al——— and (4.75)
I+1;=K Ox'Ouig Qu;Ous
Afypa + Bifugyy +C = Ngk — A55% = 0. (4.76)

It is important to note that thanks to Lemma A.2 and the equation (4.67) which defines
Wi (and hence Ws), the terms in (4.73) and (4.76) involving A’s with multi-index of
length k cancel each other out.
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These considerations being made, suppose that €25 is multisymplectic and, by reductio
ad absurdum, suppose in addition that L is not regular, which means that the matrix

&L
Oilyes Oust

has non-trivial kernel. Let v € TW, be a tangent vector such that all its coefficients are
null except the A’s of highest order which are in such a way they are mapped to zero by
the “hessian” of L. Such a vector v fulfills the restrictions (4.75) and (4.76), thus it must
be tangent to Wy in Wy, v € i, (TW5). But, as 1,025 has no A’s of highest order, it must
be zero, i,y = 0, which is a contradiction.

Conversely, let us suppose that L is regular, then equation (4.67) defines implicitly
the coordinates u% as functions of the other coordinates. That is, locally there exist
functions f(x%, ug, pl') such that u$ = f& on Z(WQ) Furthermore, given a system of
adapted coordinates (2%, u%, u$, pLt, p) on Wy, (2%, ug, pl) defines a coordinate system on
Wy and the inclusion is given by:

(Iiau?7p£;i) € W2 — (xi7u?7fK7pa 7L Zpilu?Jrl Z pi’ifIaJrh) S WO'

|7]=0 \I|=k—1

From equation (4.51), we can compute an explicit expression of the (m + 1)-form Q5 in
this coordinate system,

= =) dpli A duf A d™ ey

|1]1=0
= 1 oor
1, «a « 1, « m
+ |IZ_:O (pa duIJrli + Uiy, dpa ) - IIZ_:O a_u? du[ AN

+ Z (pi’idf;’;lijtfﬁlidp Z Z phidfe| A d™,

|T|=k—1 |K|=k [+1;=K

where we have used equation (4.67) in the last term. Note that, by Lemma A.2, the first
and last terms of the last bracket cancel each other out. Now,

i19)00iSde = dpht A dug A d™ Pz — L] A dm_lx]
io/oucfls = dpi’i Ad™ Z p 8 d"z

J+1;=I uy
igropifle = duj A A" e 4 ufy,, dMe,

where 0 < |I| < k—1. We deduce from here that the kernel of 5 is trivial, ker Qy = {O}
and €2y is multisymplectic.

Note 4.49. In the particular case when dim M = 1, the Lagrangian function L : J¥7r — R
is regular if and only if the pair (s, T‘)},Q’Mdt) is a cosymplectic structure on Wsy. We recall
that a cosymplectic structure on a manifold N of odd dimension 27 + 1 is a pair which
consists of a closed 2-form  and a closed 1-form 7 such that n A Q" is a volume form.
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We remark that, if the Lagrangian L is regular or (from Proposition 4.46) if k,m > 1,
then there locally exist solutions h of the dynamical equations (4.52) on W; that give
rise to connections I' in the fibration my,a : Wy — M along the submanifold Wy (see
Section §1.1). In such a case, a global solution is obtained using partitions of the unity,
and we obtain by restriction a connection I', with horizontal projector h, in the fibre
bundle my,n : Wo — M, which is a solution of equation (4.52) when it is restricted to
Wy (in fact, we have a family of such solutions).

In some cases, but only when dim M =1 or k = 1, it would be necessary to consider
a subset W3 defined in order to satisfy the tangency conditions (4.68) and (4.70):

W; = {weW,/ 3h,:T,Wy, — T,W, linear such that hfu = h,,
kerhy, = (V7w m)w, ih,Qu(w) = (m —1)Qu(w)}.

We will assume that Ws is a submanifold of Wy. If h,, (7, W,) is not contained in T, W3,
we go to the third step, and so on. At the end, and if the system has solutions, we
will find a final constraint submanifold Wy, fibered over M (or over some open subset
of M) and a connection I'; in this fibration such that I'; is a solution of equation (4.52)
restricted to W.

In any case, one obtains the Euler-Lagrange equations. In the following result, Wy
denotes the final constraint manifold, which is W5 when k,m > 1, and h the horizontal
projector of a connection in my, ar : Wy — M along Wy, which is solution of the
dynamical equation.

Proposition 4.50. Let ¢ be a section of 7w, @ Wy — M and denote 0 = i 0 d,
where i : Wy — W, is the canonical inclusion. If ¢ is an integral section of h, then & is
holonomic, n the sense that

pry o0 = j*(mw, 5 00), (4.77)
and satisfies the higher-order Euler-Lagrange equations:

k

7w moa) | Y (

|J|=0

dVl oL
=1 =o. 4.78
da’ oug 0 ( )

Proof. If 0 = (2',0%,0l%,5) is an integral section of h, then

80-3‘ a aaéz Ii da
oai i Gpr = P 545
where the A’s, B’s and C’s are the coeflicients given in (4.58). From equation (4.64), we
have that o is holonomic, in the sense that ¢f,, = dof/dx'. On the other hand, using

the equations (4.65), (4.66) and (4.67), we obtain the relations (where ¢ = pry o 0):

= C]’

0L doJ
0 = op- 5, (4.79)
. oL 0o’
Ii _ a 1 — — 1:
3 ookt = _&Gw o with 7] =1,k -1 (4.80)
I+1;,=J
, L
S ool = aau% o ¢, with |K| = k. (4.81)
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From the equations (4.79) and (4.80) for |J| = 1 we get
oL doJ

0 = auao¢_

1. (A oL oMl 9ol
= (%)’ @—Zfﬁﬁ) (537> ZZW s

Applying now Lemma A.2 on the last term and repeating this process until |I| = k& — 1
we reach

0 a9 ol
00 g - 0 (G )+ 5 X o

17)=1 1= 2 1+1—
oL d" oL d oL oMl ool
(50 Nk Y 1 Nx [ M 2 Nk [ _ - «a
= (79) ou® |;::1(] ¢) (d:vl 8u}1> i ;::2(‘7 ¢) <dx1 8u?> ;:221: Ozl Ozt
k—
df oL oMl 00”
_ II\ \II _(—
D L (e B D OF & i
[1]=0 [I|l=k—1
k-1
d1 oL BILY
= B N UIF PN e k 1
(=1)(5"g) (dxfau?) D gk 2
7|=0 |K|= k 1+1—

where by abuse of notation j'¢ = j*(my, g o 7). Finally, it only rest to use equation
(4.81) to prove the desired result. O

Examples

First, we are going to study the particular cases when k£ = 1 and m = 1, which correspond
to the First Order Classical Field Theory and to the Higher Order Mechanical Systems,
respectively. Theoretic results for these cases are very well known [15, 50, 70, 103] and
we are only going to recover these results from our general setting. In addition, these
particular cases will clarify the general procedure.

Ezample 4.51 (First order Lagrangians (k = 1)). Let us suppose that k£ = 1, which corre-
sponds to the case of first order Lagrangians. In that case the velocity-momentum space is
Wy = Jir @ AT'E, with adapted coordinates (z°,u®, u$, p, p’,). The premultisymplectic
(m + 1)-form would be

; oL oL
Qp = —dp’, A du® A d" ay + (pa duf + uf dp’, — e du® — NG du;’ > A d™z, (4.82)
u’L
and horizontal projectors on TW, would have locally the form:
0 0 0 0 0 :
h = A2 A B, C; da?. 4.83
(mf*faa+zma+'waz+ a)® v (4.83)
Solutions of the dynamical equation would satisfy the relations
S OL
285 = (4.84)
, oL
Py = et fori=1,...,m; (4.85)

7

AY = u fori=1,...,m; (4.86)
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from which we deduce the Euler-Lagrange equations

OL < d 0L
)
_ : =0 4.87
J (w0 0)° <8u0‘ — da’ 8u?> 7 ( )
where W5 is defined by
w. (z",u® ul,p,p) € W i oL L i (4.88)
2 ) y Wi s Py Po 1 Pa aulau p o p
We then obtain the tangency conditions:
, O*L B 0L
B! = : “ AP 4.89
aj axjgu? +u J 8uﬁau ; lj auf@uf" ( )
oL . OL i 0
Cj = % + Uj aua — Ba] i (490)

Note that (4.89) is the relation that would appear between the coefficients of a Lagrangian
and a Hamiltonian setting through the Legendre transform. For simplicity, suppose that
n = 1 and ignore the a’s and (’s that appear above. Consider the linear system of
equations with respect to the B’s formed by equations (4.84) and (4.89). This system is
overdetermined since it has m* + 1 equations and only m? variables (B}).

Ezample 4.52 (Higher order mechanical systems (m = 1)). Let us suppose that m = 1,
which corresponds to the case of mechanical systems. In that case the velocity-momentum
space is Wy = J*7 x je—1, AJ(J¥ 7). Since here a multi-index J is of the form (I) with
1 <1 <k, we change the usual notation for coordinates to

@ @ 1,1 [1]4+1
Uy u|J| and Pao Pao )

and we adapt the remaining objects to this notation. So adapted coordinates on W, are
of the form (z,u® u®,p,p.), where | = 1,... k. The premultisymplectic (m + 1)-form
would be

k k
Z dpirt A dup + ) (Pl duf + uf dpl) A dz =) % dw' A da, (4.91)
1=0 !

and horizontal projectors on T'W, would have locally the form:

h:<%+§Alaa+ZBga—l+Oa>®dx. (4.92)
Solutions of the dynamical equation would satisfy the relations
Bl = %- (4.93)
P = aau[; B forl=1,....k—1; (4.94)
Do = %; (4.95)

Al = oy, forl=0,... k-1 (4.96)
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which we use to get the Euler-Lagrange equations

k
d" oL
2k * I R —
J (ﬂ-Wz,M © U) (;( 1) da! aula> 0, (497)
where W5 is defined by
i, Qo l k oL
Wy =< (2, u* ut,p,py,) € Wi @ po = 5 a, p=1L-— Zpaul (4.98)
We then obtain the tangency conditions:
’ PL = 5 L 5 0L
B, = + U, —a—— + A, ———— =0; 4.99
dxdug 2_: "o’ oug Y oul oue (4.99)
8L — LOL .
C = Zulﬂa : W > (Appl, + BLup) . (4.100)

=1

Note that, thanks to equation (4.95), the terms in (4.100) with coefficient A, cancel out.
Now, for simplicity, suppose that n = 1 and ignore the a’s and [’s that appear above.
Consider the linear system of equations with respect to the B’s formed by equations
(4.94) (with { = k—1) and (4.99). This system is overdetermined since it has 2 equations
and only one variable (B¥).

Ezample 4.53 (The loaded and clamped plate). Let us set M = R? and £ = R*xR = R3,
and consider the Lagrangian

1
L(I Y, u, uwauy7uxx7uzy7uyy) 2(U +2U +U 2qu),

where ¢ = g(x,y) is the normal load on the plate. Given a regular region R of the plane,
we look for the extremizers of the functional I(u) = [, L such that u = du/dn = 0
on the border R, where n is the normal exterlor Vector The Euler-Lagange equation
associated to the problem is

Uggza + 2ua:xyy + uyyyy = (. (4101)

Written in the multi-index notation, the Lagrangian has the form

L(j2¢) = %(U%Q,O) + 2u%1,1) + u%O,Q) — 2qu)
and the Euler-Lagrange equation reads
U4,0) + 2U2,2) + Uo4) = q-
The velocity-momentum space is Wy = J?m x ji A3(J'7), with adapted coordinates

(2, Y, Ug, Uy, Ugg, Ugy, Uyy, P, D7, PV, Y, D™, p¥%, p¥Y). It is straightforward to write down
the premultisymplectic 3-form and a general horizontal projector on T'W,, so we are not
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going to do it here. Even so, the coefficients of solutions of the dynamical equation would
satisfy the relations

XX

T z, x,y p = Uy
B” + B, P = 2u,,  (4.102)

pYoo= uy,

7$ k> JR— _p

where the latter ones are the equations that define W;. The tangency condition on W;
gives us the relations

B;z,ac = A:m:,z B;’x = A:c:::,y
B2V 4+ BY® = 2A4,,. BV + Byt = 2A,,, (4.103)
By = Ay ij’y = Ayyy

from where we can see that the Lagrangian is “regular”, since

) 100
(8—1)) (o020} (4.104)
Qur QUK )| g\ k=2 001

Finally, we remark that the middle equations of (4.102) and (4.103) form a 8 x 8 linear
system of equations on the B’s, which is completely determined.

Frample 4.54 (The Camassa-Holm equation). In 1993, Camassa and Holm introduced
the following completely integrable bi-Hamiltonian equation (see [23]):

Vg — Uyye = —300y + 20,V + VVyyy, (4.105)

which is used to model the breaking waves in shallow waters as the Korteweg-de Vries
equation. But, as the former is of higher order, we are going to use it as example.

The CH equation (4.105) is expressed in terms of the Eulerian or spatial velocity field
u(y,t), and it is the Euler-Poincaré equation of the reduced Lagrangian

1

l(v) = 5/ (v +v}) dy. (4.106)

To give a multisymplectic approach to the problem, as Kouranbaeva and Shkoller did (see
[112]), we must express the CH equation (4.105) in Lagrangian terms. Thus, we shall use
the Lagrangian variable u(z,t) that arises as the solution of

ou(z,t)
ot

= v(u(x,t),t). (4.107)

The independent variables (z,t) are coordinates for the base space M = S! x R, and the
dependent variable u(z,t) is a fiber coordinate for the total space £ = ST x R x R =
St x R?. The Lagrangian action is now written as

1
L(2, b0, Uy, Upy Uy, Ugg, Ugg) = E(uzuf 4+, u?,) (4.108)
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The coefficients of a horizontal projector which is solution of the dynamical equation must
satisfy
B+ BY = 0
pro= 1/2(uf — (uae/u,)?) — (By* + B))
P= = (B B

(4.109)
pxz = 0
pa:t + pta: = umt/um
ptt — 0

where the last three are the equations that define W;. The tangency condition on W,
gives us the relations

B2 = 0
Bygg:’t + B?I = _U;IUIIUIt + A:ct,zua_;l
Bt = 0
o (4.110)
BU' 4 B = (e fue) + Ay
B = 0
from where we can see that the Lagrangian is clearly “singular”, since
0 0 O
O?L
(a ! ) {0 w0 (4.111)
UKOUK' /| K |=|K|=2 0 0 O

Again, we may form a completely determined system of linear equations on the B’s with
the corresponding relations of (4.102) and the equations (4.110).

Ezample 4.55 (First order Lagrangian as second order). For the sake of simplicity, let
suppose that n = 1. Given a first order Lagrangian L : J'r — R, extend it to a
second order Lagrangian, L = L o my;. Consider the first and second order velocity-
momenta mixed spaces W)} = J'm xp AT'E and W2 = J?1 x ji, A J %, with adapted
coordinates (x', u,u;, p,p") and (2%, u, us, ug, p, p', p”) (with |K| = 2), respectively. Let
mo' W3 — W{ be the natural projection (Diagram 4.6).

2,1
o

Figure 4.6: The 1st and 2nd order Lagrangian settings

We are going to apply the theory we have developed here to the systems given by
each Lagrangian. Consider the premultisymplectic forms Qy and Qg, where H and H
are the corresponding dynamical functions (equations (4.48) and (4.49)). Let h and h
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denote solutions of the respective dynamical equations on (W, Q) and (W, Q). They
would locally have the form

0

G, 8 o 0 |
h = (—+A4,—+A;— + B i,
(8xﬂ+ i30T A5y ]al—l—C’ap)@dx

0
. o 0 9 o 0
h = (—.+Aj%+AUa +AK’8 +Bi— + B*

oxJ

where | K| = 2. We then obtain the relations

B = 2= 4.112
j o0 (4.112)
; oL

i = 4.11
p 9w’ (4.113)
A = (4.114)
for (W,, g, h); and
_ . 0L
B = — 4.11
j P (4.115)
A oL  _..
f o= - B} 4.11
p ou, i (4.116)
o oL
P74+ = (Li+1) ——=0, (4.117)
au1i+1j
Ay = (4.118)
A = 4y, (4.119)

for (W2, Qp,h). Equations (4.113) and (4.117), together with H = 0 and H = 0, define
the corresponding submanifolds W, and W# of W and W§.

We notice that, even though L is in some sense the same Lagrangian than L, a solution
of the dynamical equation on W3 may be easily determined, while in W the space of
solutions has grown (there are more coefficients to be determined). We thus infer from
here, that a solution h of the dynamical equation in W must satisfy an extra condition.
Since p = L — piu; + 0 in W2, the projection 73" maps W2 to W3. We therefore impose
to a solution h of the dynamical equation along W} to be in addition projectable to a
solution h of the dynamical equation along Wy . In such a case, we would have that

BY =0 (4.120)

which implies that the following equation

. 0L
v =g (4.121)

is now a restriction in 7. So, by tangency condition, we get

G L PL L _ d oL
I 0ri0u, | U oudu, | Y du0u, | dad Ou,

(4.122)
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Combining this with equation (4.112), we finally obtain

oL d oL _ 1.12
Ou  dad Ju; 0, ( 3)

which is the Euler-Lagrange equation.

It is worth to remark here that, at this time, the Euler-Lagrange equation has not
been deduced by the process shown in the proof of Proposition 4.50, but directly from the
projectability condition, although the previous Euler-Lagrange equation may be recovered
from any of the two settings.

4.2.4 Constraints within the Skinner-Rusk Formalism

As in the previous section, we begin by considering a constraint submanifold i : C < Jkr
of codimension [, which is locally annihilated by [ functionally independent constraint
functions W#, where 1 < pu < [. The constraint submanifold C is supposed to fiber over the
whole of M and it is not necessarily generated from a previous constraint submanifold by
the process shown in Remark 4.22. We define in the restricted velocity-momentum space
Wy = {w € W : H(w) =0} the constrained velocity-momentum space W¢ = pri'(C),
which is a submanifold of Wj, whose induced embedding and whose constraint functions
will still be denoted 7 : WOC — W and V¥ where 1 <y <[. The first order case k =1 is
treated in [33].

The following proposition allows us to work in local coordinates on the unconstrained
velocity-momentum space W, as it is done in [11].

Proposition 4.56. Given a point w € W§, let X € Az(TwWé:) be a decomposable
multivector and denote its image, i.(X) € A™(T,W), by X. The following statements
are equivalent:

1. ixQ5(Y) =0 for every Y € T,,W§;
2. igxQ e TOWE;
where TOWE is the annihilator of i.(T,WE) in T,W.
We therefore look for solutions of the constrained dynamical equation
(—1)MigQ = —\,dU* — X\dH, (4.124)

where X is a tangent multivector field along W§, the M’s and ) are Lagrange multipliers
to be determined. Here, the coefficient (—1)™ is used for technical purposes.

Remark 4.57. It should be said that the Lagrange multipliers that appear in the dynamical
equation (4.124) have a different nature that the ones that appear in Proposition 4.43.
The former are locally defined on W, while the latter are locally defined on M. Although
they coincide on the integral sections o € I'my s of a solution X of the dynamical equation
(4.124), since its “Lagrangian part” o3 = pr; o o satisfies the constrained Euler-Lagrange
equation (4.46) with A\, = \, o & (¢f. Proposition 4.59).
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 Let X e Am(T W) be a decomposable m-vector at a given point w € W, that is,
X =X, A--- A X, for m tangent vectors X; € T,,W/, which have the form
- 0 0 0 0

Ii
Xj = aJ+AJJ8 a+BO<Ja Iz+cja_p

(4.125)

in a given adapted chart (2%, u%, p%t, p). A straightforward computation gives us

(—1)™ig(dpli A du§ A d™tz;) = (A% BY — AY,BY) da’ + A% dpll — Bl dug  (4.126)

Ii a]
and '
(—D)™ig(dp A d"x) = dp — C;dz’. (4.127)
Applying the above equations to the dynamical one (4.124), we obtain the relations
coefficients in dp : 1 = X\
coefficients in dpl’ : AT = gy
coefficients in du§ Bl = \ a‘iﬁ -\ g‘i’:,
i j OVH |
Béz = AMges — Z]Jrljzfng) - A“ oug
oW
0 = A aua ZJ-H _x P ) A au:a
coefficients in da’ :  AYBL — ALBL+C; = AL — )\, 9

Thus, a decomposable m-vector X € A™(T,W) at a point w € W is a solution of the
dynamical equation

(—1)™igQ = -\, d¥" — dH, (4.128)
if for any adapted chart (z,u%, pki, p), the coefficients of X and the point w satisfy the
equations

Afy =ufyy,, with |[I| =0,... k=1, i=1,..; (4.129)
oL OUH
= A - BJ; 4.1
0= oue M oue aj’ (4.130)
oL OUH )
Z p —au?; _/\/J‘au ajo with |‘]|:177k_17 (4131)
I+1,=J
OUH
- A ith |K| = k; 4.132
I+1,=

8L « Ii
i g -0 X i, (-0 3 o) -l

17]=0 I+1;=J
(4.133)

Because of the Lagrange multipliers )\,, we cannot describe the submanifold of W
where solutions X of the constrained dynamical equation (4.128) exist, like it has been
done in (4.67) for the unconstrained dynamical equation (4.52) . Therefore, we need to
get rid off of them. Consider the more concise expression for the equations of dynamics
(4.130), (4.131) and (4.132)

Z
> opli= SV with |J] = 0,..., k, (4.134)

* ous a’
[+1,=J
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where the first summation term is understood to be void when |J| = 0, as well as it
is the last one when |J| = k. We now suppose that the constraints ¥* are of the
type u? = @?(mz u?), where uf} are some constrained coordinates which depend on the
free coordinates (2°,u%) through the functions @"‘ Thus, the constraint have the form

W (2", uG) = uf — @?(x u$) = 0. So, writing again the previous equation (4.134) for the

different sets of coordinates, the ones that are free and the ones that are not, we obtain

) L 5 N
Sl = 5_ N - B with [ =0,k (4.135)
I+1;=J U]

, L ;004 y
ook o= gu Aga : — BJ, with [J|=0,...,k. (4.136)

I+1,=J

Substituting —/\g from (4.135) into (4.136), we have that

4 0P 9L 9L 09“ 99 §
Ii J J JJ Jj : —
g S = —— -— — B — B; th [J]|=0,... k.
Z Vpa * Z p ou®  Ous + ou® Oud Oy O" with |J] T
I+1;=J I+1;=J J J S
(4.137)
Note that, when |j| = k, the term Bij disappears, but Bij i ;f do not necessarily. This

is circumvent by supposing that, if |J| < k, then 61{) 0 for any |K| = k. That
is the case when the constraint submanifold C has noK constraint of higher order, i.e.
C= ﬁ;,ﬁfl(wk,k_l(C)), or, more generally, when C fibers by m, ;_1 over its image.

Taking this into account, we expand the previous equation (4.137), obtaining then
constrained equations of dynamics freed of the Lagrange multipliers

003 9Le 04
- 2= B} - Bl I, 4.138
Zpaaua aua a]a a’ ( )
I+1,=
el ) 5 04 .
J _ Jj ; —
Sk +) Er : = o ~BY - BR =S 2 with [J] = 1,...,k — 1{4.139)
I+1;=J I+1,=J
8<I>°‘ OLC .
YK ~ _ 7.
Z P+ D P £ = g vith K| = k; (4.140)
I+1;,= [+11_
where % = % + gf 8u"" belng L = Loi:C — A™M the restricted Lagrangian.
J J

We are now in dlsposmon to define the submanifold W< along to which solutions of
the constrained dynamical equation (4.128) exist,

4

uf = 4 (", uf) )

p= L(l’i: UC;) pgu?+1

) c
ZerZpa _ o

@Oé
8u uk
\ I+1,=K I+1;=

={weWs : 4140)} =SweW :

(4.141)
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Tangency conditions on X with respect to W¢ will give us the constrained equations
of tangency

Al = &Da A aq)a 4.142
J] 8 ] + aUI?? ( N )
LS A OLC .
j 8ZE] Z J+1 8u5¥ - Z Ps (4143)
|J|=0 Jr=J
0<I>a I
S S DRI i B ST ST
|J]=0 I+1,=J |K|=k I+1,=K |7]=0
, 92LC 82@*
Bl — : 4.144
Zv o 0x38u Z po‘ axﬂé?u ( )
; 92LC 62(1)0‘ 0P
AP Z - BE_K |K|=k
7 3u5 ou 8u5 dus. W Ou
K I+1;= I+1,=K K

Proposition 4.58. Let QS be the pullback of the premultisymplectic form Qy to WS by
the natural inclusion i : WS < W, that is QS = i*(Qy). Suppose that m = dim M > 1,
then the (m + 1)-form QS is multisymplectic if and only if L is regular along W¢, i.e. if
and only if the matrix

O2LC . 00
PP Z 8 P (4.145)
uR uK I+1;,= uR uK |R|=|K|=k

is non-degenerate along WE.

Proof. First of all, let us make some considerations. By definition, QS is multisymplectic
whenever QS has trivial kernel, that is,

if v eTWs, i, =0 <= v=0.
This is equivalent to say that

ifve Z*<TW2)7 1,8 2%

i) =0 <= v=0.

Let v € TW be a tangent vector whose coefficients in an adapted basis are given by

0 9 B 9
— z_' Aa Blz _
L P

Using the expression (4.51), we may compute the contraction of Qy by v,

iy Qy = — B du¢ A d™ o + AVl A d™ ey — A7 dplE A duf A A
, oL
Ii, o « m
<AI+1 Po + Buf,, — A T 9 )d xr (4.146)

. A - 0L
— (pgf duf, . +up,, dplt — — du?) A d" ey
: : oug
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In addition to this, let us consider a vector v € TW tangent to W, that is v € i, (TWs),
we then have that

& & a(]:)o‘ aLC
A= =0, a| 3 i+ 3 AT -G |00 wmd aH) =0

I+1;= I+1;,=K K

which leads us to the following relations for the coefficients of v:

A% J’a@? Ada@f} 4.147
L A T (4.147)
, [ 92LC - 0%9e
Bl = i —— — i K 4.148
ZV ¢ 7 0w us, ZAPO‘ O usy, ( )
I+1;=K I+1;=K
. 9?LC oAtk oLk
e P e e B
aujau‘;( I+1;=K Gujau;’g I+1,=K Y
[ OL¢ iaCDOZ
C =955 > b ﬁxé( (4.149)
I+1;=K
o1 8LC Ii Iiaq)j&i Ii, o
+Aj o Z Ps — Z p&ﬁ — Byurya,
Jor=J I+1;=J J

It is important to note that, even though in all the previous equations (4.146), (4.147),
(4.148) and (4.149) explicitly appear A’s with multi-index of length &, for such a vector
v € i,(TWs), the terms associated to these A’s cancel out in the development of i,$y,
Equation (4.146), and the third tangency relation (4.149). Thus, a tangent vector v €
i.(TW5) would kill 4 if and only if its coefficients satisfy the following relations

7 =0, AY=0, Bi=0, C=0,

(’9@5‘ O?LC : 82¢‘5‘
A = A and AY —— Z PE | =0
U duous o o' Ou.
These considerations being made, the assertion is now clear. O]

Proposition 4.59. . Let 0 € I'my be an integral section of a solution X of the
constrained dynamical equation (4.128). Then, its “Lagrangian part” oy = prioo is
holonomic, o, = j*¢ for some section ¢ € I'r, which furthermore satisfies the constrained
higher-order Euler-Lagrange equations (4.46).

Proof. Tt X is locally expressed as in (4.125), we know that it must satisfy the equations
of dynamics (4.130), (4.132) and (4.132), for unknown Lagrange multipliers \,. If we
note A, = A, 00 and L' = L — X, W* it suffices to follow the proof for L’ of Theorem
4.50. ]
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Example: Controlled Fluid Mechanics

Here, we study an incompressible fluid under control as in [3]. The corresponding equa-
tions are the Navier-Stokes one plus the divergence-free condition:

ov +Vyww+VII = vAv+f (4.150)

ot
V-v = 0 (4.151)

where the vector field v is the velocity of the fluid, f is the field of exterior forces acting
on the fluid, which will be our controls, and the scalar functions II and v are the pressure
and the viscosity, respectively. In particular, our case of interest is the two dimensional
case on R? endowed with the standard metric. If we fix global Cartesian coordinates
(z,y) on R? and adapted coordinates (z,y,u,v) on its tangent TR? = R*, the previous
equations become

U+ U Uy + 0 Uy + O Il = v (g +uyy) + F (4.152)
Vit u-vp vy + Ol = v (v +vy) + G (4.153)
Up+v, = 0 (4.154)

where, with some abuse of notation, v(¢,z,y) = (u,v) and f = (F, G).

We therefore look for time-dependent vector fields v = (u,v) on R? that satisfy the
Navier-Stokes equations (4.152) and (4.153) for a prescribed control f = (F,G) and
submitted to the free divergence condition (4.154). Moreover, we look for such vector
fields v = (u,v) that are in addition optimal in the controls for the integral action

1
Ap(v,R) = 5/ IE|2 dE A da A dy. (4.155)
R

In order to apply the development of the present jet bundle framework, all of this is
restated in the following way: We set a fiber bundle 7 : £ — M by putting M = R x R2,
E =R x TR? and 7 = (pry, prg:). We fix global adapted coordinates (t,z,y,u,v) on E,
which induce the corresponding global adapted coordinates on J*7 and J*7'. Besides,
we choose the volume form n on M to be dt A dx A dy. Thus, the Lagrangian function
L : J?7 — R is nothing else but

L= %(F2 + G?),

where we obtain F' and G as functions on J?7 using the equations (4.152) and (4.153).
To make the reading easier, we change slightly the coordinate notation of jet bundles
to fit in this example: The coordinate “velocities” associated to u and v will still be
labeled u and v, respectively, with symmetric subindexes (as in the original equations);
the coordinate “momenta” associated to u and v will now be labeled p and ¢, respectively,
with non-symmetric subindexes. Finally and as we will focus on the equations of dynamics
(4.138), (4.139) and (4.140), the coefficients in the local expression (4.125) of a multivector
X associated to the coordinate momenta p and ¢ will be labeled B and D, respectively.

Ezample 4.60 (The Euler equation). We will first suppose that the fluid is Eulerian, that
is, it has null viscosity. In this case, the Lagrangian function L = (F? + G?)/2 associated
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to the integral action (4.155) is of first order when the “Euler equations”, (4.152) and
(4.153) with v = 0, are taken into account. In J'm, we consider the divergence-free
constraint submanifold C = {z € J'7 : u, + u, = 0}, which introduces a single Lagrange
multiplier \.

Proceeding with the theoretical machinery, we compute the bottom level equations of
dynamics corresponding to those of (4.130)

0 = uy-F+uv,-G—(B{+ B+ BY))
= uy-F+v, -G—(D;+Dj+ DY)

and the top level equations of dynamics (there are no middle ones) corresponding to those
of (4.132)

pt:F qt:G
p=u-F—M\ ¢ =u-G
Y =v-F ¢ =v-G—\

We can dispose of the only Lagrange multiplier A by putting
p'—q¢'=u-F—v-G,

what defines W together with the top level equations of dynamics with no Lagrange
multiplier.

From here, we may compute also the constrained Euler-Lagrange equations (4.46) for
this problem, which are

dF+u- dF v dyF +vy- F —v, - G = 0\
G +u- 4,G+v- d,G+uy -G —uy - F=0,\

where d, = 51—*.

Finally, we note that L is not regular along WY since the square matrix, that corre-
spond to (4.145),

1 U v 0 0
u uw+v: u-v —v —u-v
voou-v 20 0
0 —v 0 1 U
0 —u-v 0 U u?

has obviously rank 2. Here we have used as u, as independent (“check”) coordinate and
v, as dependent (“hat”) coordinate.

Ezample 4.61 (The Navier-Stokes equation). Now, we tackle the full problem of the
Navier-Stokes equations. In this case, the Lagrangian function L = (F? 4+ G?)/2 is of
second order. In J%m, we consider the constraint submanifold

C:{ZEJQT(' DUy Uy =0, wy vy =0, Ugy + Uy =0, uxy—i—vyy:O}

which comes from the first order constraint (4.151), free divergence, and its consequences
to second order (see Remark 4.22). These constraints introduce for Lagrange multiplier
A, At, A and A, that are associated to them respectively.
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We now proceed like in the previous example by computing the equations of dynamics.
In first place, we have the bottom level ones corresponding to those of (4.130)

0 = u,-F+uv,-G— (B + B+ BY)
= wu,-F+v,-G—(Di{+ D;+ DY)

Note that they are formally the same as before. In second place, the mid level equations
corresponding to those of (4.131)

F— (B + B, + B) ¢
u-F — (B + By + BjY) + A q*
- F —(BY" + BY* + BY) ¢’

G — (D' + D + D))
u-G— (D' + Di* + D}Y)
-G — (D} + D¥* + D¥) + A

pt
px
py

v v
Note that formally they also coincide with the top level ones of the previous example but
for the coefficients that now appear in them. And in third place, the top level equations
corresponding to those of (4.132)

ptt:O qttzo
pr=—v-F—\ " =—-v-G
W= —y.F W=—-v-G-\
ptm +pzt: _)\t th+qzt:0
pY+p" =0 ¢ +q" = =\
N ¢ = A

We can again get rid easily of the Lagrange multipliers by putting
ptm+pxt:qty+qyt pzx+yF:qmy+qym pzy+pyx:qyy+y_G

what defines W together with the top level equations of dynamics with no Lagrange
multiplier.

From here, we may compute also the constrained Euler-Lagrange equations (4.46) for
this problem, which are

200\ + Dopdhe + 2050y — N = 02w F+200- doF +v- &2 F +
+8§y1/ -F+20,v-d,F +v- dzyF —
- F—u-dF—v- 4y F —v, - F+uv,-G
20p N+ 200,00 + 0 Ay — O N = oG +20,v- d,G+v- d2.G+
—l-@syl/-G—i-?@yy- d,G+v- df,yG—
-dG-u-d,G—-v-d,G—-uy-G+uy, - F

As before, the Lagrangian is not regular along WS, what seems to be clear if we observe
that L is highly non-degenerate: It depends only on 4 of the 12 coordinates of second
order. It is worthless to show its “Hessian”, even though it is interesting to say that it is
null only when v is.
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4.2.5 Hamilton-Pontryagin Principle

We next show how the higher-order Fuler-Lagrange equations for unconstrained systems
can be derived from a Hamilton-Pontryagin principle (see [156]).

Definition 4.62. Let £ : J*r — A™M be a Lagrangian density. The associated
(extended) Hamiltonian-Pontryagin action is the map Az : T'mwr x K — R given by

Acto ) = |

Looy+ (ol jlona) ~ (ol.ov) (4.156)
R

where I is the collection of smooth compact regions of M.

Theorem 4.63. A section 0 : M — W of mywy : W — M s a critical point of the
Hamiltonian-Pontryagin action Ay if and only if o, is holonomic, being oy, = j*oq, and
o satisfies the local equations

oL 0o}
0 = _ a . 4.157
ou>  Oxd’ ( )
. OL  doli
S ool = — Lo with [J] =1,...,k— 1 (4.158)
-« ougy  0xd
I+1;=J
, oL
Y ol = e With |K| = k. (4.159)
I+1;=K Uk
on M, and ‘
ol =0, with |[I| =0,...,k—1. (4.160)

on the boundary OM of M, where (%, u%,p,pkt) denotes adapted coordinates on W and
o= (2',0%,5,0l).

Proof. Given a section o € I'my s and a compact region R C M, we have that the
variation of the Hamiltonian-Pontryagin action A, with respect to a vertical variation do

of o is given by

0A, 0 - i [(00F
g . — — (2% o i @
5o 00 /Réa [ (z',05) + 0g (81;1 O1+41;

(o,R)

dod™x

[

aL a 7 ao.a fe i a fe a m

oL @ ( dot e ao-clzi «a is m
= /R|:au§(50-]+(50-£ (8; _‘71+1i) - %501 — ol (50‘1+1i:| d™x

+/ olisoy d™
OR

OL 907\ . . ~= (0L 0ol A
-/ (%_aw)&’ f?(w* a2 “a)&"f

J I+1;=J

L Ii « 80'? a Ii m

|K|=k I+1;=K

+/ olisoy d™ 1,
OR
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where (2%, u%,p,plt) denotes adapted coordinates on W and o = (z¢,0%,5,0l"). We
thus infer that o is a critical point of A, i.e. d.Az/dc = 0, if and only if the relations
(4.157-4.160) are satisfied and o}, = j*0y, what is derived from the last term of the first
integrand. [l

4.2.6 The space of symmetric multimomenta

Lemma 4.64. Let (2°,u®) and (y?,v") be adapted coordmates on. E, whose domains have
a non-empty intersection, and let (x',u%, p,pl") and (3, U],q qIB 7) be the corresponding
induced coordinates on the space of forms AT Jm, where 0 < |I|,|J| < k.

1. For any pair of multi-indexes I,J € N™ of length k and any pair of indexes 1 <
a, B < n, the following holds:

8v§ B Z 1 0v? Oz Qx'm (k)
ouy = 11 Ou~ Oy Oyir

TE

(4.161)

where Y5, denotes the collection of permutations m of k elements and the indezes
1 <., <mand 1 < ji,...,J50 < m are such that [ =1, +---+1;, and
J=15 4+ 1,

2. For any multi-index I € N of length k and any indezes 1 < o <n (and1 < <n),
the following holds:

(%J o Jel OvP oz Qatr
E = — — " 4.162)
(e B | « qﬁ ) (
|J|= kaul J1sendke It Qus oyn Oy
where J, = 1; + --- + 1; and the inderes 1 < iy,...,19, < m are such that

Proof. The first equation is proven by induction on k. The case k = 0 is trivial thus, let
us suppose that the result is true for £k —1 > 0 and show that it is also true for k. Thanks
to Equation (4.4) and the identity (A.6), we may write

o’ Gvi , Ox*
oug 8u5 Dyix

S+1s=1I

— zk: 1 aUJk 1 ox'*
— I(is) Oug, OyIx’

where we have used the fact that v} only depends on u§’s of order |I| > |.J|, which is in

this case on u$’s of order k. We therefore have by the hypothesis of induction

o Z > L 1907 a"e  da’sun
I

oug .5 I'@ua oy Oyik—1 Qylk

S 181)5 dx'=)  Qx'rkh)
B I Qu> Oy Oyx

TEL
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The second statement is easily proved using the first one.

8
3 (%quj . Jk!a“quka
oug "’ k! oug P

J1seek

Z Z Jk' 1 (%5 al’ m(1) 8$i“(k) Jij
— e - q .

NG B
TEX J15--5Jk Kl Il ou y]l ay]k

Now, for each permutation m € ¥, we relabel the indexes j, in such a way its subindexes
s coincide with those of i, i.e.

0v; ! 1 0vP 9zt )]
TR S S 8 L R AR
ug k! I Qu® Oy~ Dyyinh)

|J|=k TEXE Jis-Jk

. Z Z Jk' 1 (91)5 3:10“ ax"“qt}“

- R B Arr ik 3
= k! 11 Qu® Oyl Oydx

_ Je kL ovP 9z Qatr

= > Winowoy o
J15-50k

Note that in any moment J, is affected by the relabelling. O

Theorem 4.65. Let (2%, u$,p,pkt) be an adapted system of coordinates on AJ'J*r. The
relation

IN-plt =1t whenever I +1;, = I' + 1y and |I| = |I'| = k, (4.163)
s invariant under change of coordinates.

Proof. Consider adapted coordinates (z°,u%, p, pl) and (yj,vg,q,qgj) on A" J*r, where
0 < |I],]J] < k, whose domains have a non-empty intersection. Let pX’ a fixed coordinate
where I € N is a multi-index of length £, there must be k integers 1 < iy,...,i < m
such that we have the decomposition I = 1;, +---+1;,. Using the dual coordinate change
formula (4.29) and the previous Lemma 4.64, we obtain

- e . ox
JaC($(y))p3 = Z Z aui ,Bjja j
i =k 1 Y

_ Z Z Jk! ovP Oz Ox'* T

B 11 Que oyt Oy %

J 1k

Let (I,i), (I',4") such that I +1; = I' + 1y and |I| = |[I'| = k. Then [ = I+ 1; and
I' = I + 1;, for some multi-index I of length |I| = k — 1. If I' - p!* = I'- p!'", by the
previous reasoning, we do have

Z Ji! Ov? Ot - Oz~ &Ei/ oz’ Ikjr+1 _
k* aua ayjl 8yjk—1 ayjk ayjk+1 q/B

o Jk+1

Z o’ Oz oz 9" Oz qJ,;ij
8ua ayh ayj;c—l 8y312 ayj;f‘*'l B

.717 7-7k+1
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Note that (9v®/0u®) is regular and 9v?/Ou® - Qu® /Ov® = 55,, thus

or Qa1 9rt 9t
) | o Kkl _
Z Jk(.]k)‘]k_l ayjl ayjk—l ay]k ayjlﬁ—l qu

J1seeJkt1

dr  Qxt-1 Jrt 9xt g
E Jk Jk 1 2 -7 7 -7 q;kaJrl
8y91 ayjk—l 8y]k ayjkz+1

J1ee 7]1¢+1
As (02'/0y’) is also regular, we have

-/

. oz’ JkJjk 0z’
Z (Je—10jk) + 1) Jp—1! - Oyx s Ha e
JkJk+1 Y Y
Ox' e, O0x¥
_ ~ . 1 B ' . . kJk+1 _
Z (Jk 1(]k)+ )Jk 1 ayjkqﬁ 0 Jrg1’
Tk /
thus

. J l - . B L
(i1 (5) + 1) T gy 1t (kal(])—Fl)kal!qék 17

Which is equivalent to
J . J/ -/

whenever J 4+ 1; = J' + 1, and |J| = |J'| = k. O
Corollary 4.66. The space of (k + 1)—symmetric multimomenta
JHrh = fw e A - I pl =Tl T+ L, =1+ 1y, |I| ==k} (4.164)

is an embedded submanifold of J*T'xwt. A system of adapted coordinates (x%,u®) on E
induces coordinates (z*,u$,p, pt*, pi) on J*ixt where 0 < |I'| < |I| < |k| and |K| =
k + 1. The natural embedding J*Hint — JE+1ixT is then given in coordinates by pt =
pItLi J(I(i) + 1), for |I| = k. This manifold is transverse to 7r;2+1 and therefore fibers over
Jkr.

Remark 4.67. For the second order case, there is an intrinsic definition of this space that
involves the use of the semi-holonomic jets (see Definition 4.26) and which was presented
by Saunders and Crampin in [140].

Note that the k-symmetric multimomenta space J*7* coincides with the whole dual
JF7rT whenever we are considering a first order theory (k = 1) or a unidimensional one
(m = 1). Thus, in the forthcoming discussion we may assume that we are not in any of
these cases (k,m > 2).

Remark 4.68. Unfortunately, the restriction I!-pZ = I'l.p!"", I4+1; = I’ + 1, is no longer

invariant under a change of coordinates when |]| |I'l < k. For instance, if |I| =k — 1,
we have that

v Jjax

I
Jac(x(y))Pa - U? ds ay]

v Jjé?x v’ J]ax
% OyJ ouy % oyi’

k

n’
2 Gup
|J|=k—1

o’
2 dup
|J|=k—1

|J|=k
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The first term will be easily expandable to the form (4.162) and, following the proof
of Theorem 4.65, it is invariant. However, this is not true for the second term, which
depends on the chosen coordinates (see Example 4.70 below).

Ezample 4.69 (Second order case) Con81der the dual space AJ'J'7 of J%m and let (2,
u®, u?, p, pi, p') and (y7,0° ,vj . q, qﬁ,qﬁ 7) denote adapted coordinates on it. As the
multi-indexes I and J have unitary length, we may view them as a regular indexes. In
this case, the higher momenta transform accordingly to

' 81} oz
L Yvy JJ
Jac(z(y))pa = |;1 oug 1 Dy

ov? ox! o ox!
ou® Ay’ s oyl

)

Indeed, the relation (4.163) that defines the space of 2-symmetric multimomenta is in-
variant,
Jj
ph=pl = ¢ =d;,
as stated by Theorem 4.65.

Ezample 4.70 (Third order case). Consider the dual space AY'J?r of J?7 and consider
the induced coordinates from adapted ones (z%,u®) and (y’,v”) on E. Consider a fixed
multimomentum coordinate p% where I has length || = 2. If we assume that [ = 1,4+ 1;,
then the change of coordinates (4.30) reads

Jacla()pl s = 303 Ot

s J

J ‘J‘ 2 1 1y ay
B 0+ 1008 921" 927 1,141,507
3.gq" 5;// + 1 auoa ay]// 8y] QIB 6y]

Which proof that the relation I'-p% = I'l- pI'" for I 4+1; = I' + 14, is invariant whenever
1] = || =2.

Let I now denote a multi-index of length |I| = 1. In this case, the rule (4.30) is
written

011] Jjﬁx 8vJ Jjasc
Jac(z Z ou? s oy’ Z ou? 95 oyi”
=1 U I

The first term, may be treated as in the previous example 4.69. The second term is

o' vy ;0x" Z { d 0v?0z" 0x" 9z 1P 9% 92t

o oug ue 8 ayi oy dzi” Oue dyi” Oy’ dyi + 2 du Oy dyd’ Dyi 95"

j’j/’jll
From here, we see that the relation pa = pa fails to be coordinate independent in A5 J?7
while it is in AJ'J'7 (see Example 4.69 and Remark 4.68 above).

Proposition 4.71. Assume that k,m > 2 and consider the pullback Q° of the canonical
multisymplectic form Q of A J* to the space of (k + 1)-symmetric multimomenta. We
have that ° 1s still multisymplectic.
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Proof. From the local description (4.34) of €2, we have that

k-1
0 = —dpAdTx— Z dpl A dug A d™ o — Z dpEtl A due A d™ ey (4.165)
[7]=0 |K|=k

k—1
= —dpAd"x — Z dpl" A dug A d™ oy — Z dpZ+ A Z duss A d™ oy

|7]=0 |K+|=k+1 K+1;,=K4

Let V € T J* 171t be of the form

o .0

. 0 0

opi+ * 03_]97

+ Bl 0

-+ B+
J@foj o' apéz «a

then

k-1 k—1
Q= —Cd™— Y Bl dug A d" a4 Y AYdpl A d™

[1]=0 |1]=0

=Y BEHdugo A A+ Y dplr A Y AR d

|K|=k | Ky |=k+1 K+1,=K

We deduce from this expression that Q° has a trivial kernel (iy2* = 0 iff V = 0), thus
)% is multisymplectic. O]

This result turns to be trivial for a first order theory or a unidimensional one since,
as stated earlier, in either cases the space of symmetric multimomenta coincides with the
whole dual space.

Symmetric multimomenta constraints within the Skinner-Rusk formalism

We are now in disposition to introduce the k-symmetric multimomenta within the Skinner-
Rusk formalism. Two options are available here: First, we could consider the fibered
product J*7 x ju-1, J¥mt and work directly there following the schema of the Skinner-
Rusk formalism presented in Section §4.2.3; The second option is to mimic the constrained
version of it, presented in Section §4.2.4, but considering the k-symmetric multimomenta
constraints in J*7' instead of an arbitrary constraint submanifold of J*m. We will stick
to the latter.

Let W = J*7 X ji-1, J*7T be the mixed space of velocities and momenta and W* =
JEm X i1y JETE = 75,1 (JF7Y) be the mixed space of velocities and k-symmetric multi-
momenta. There is a natural embedding W* < W which is described in coordinates by
plt = pIH1i/(1(i) + 1), where |I| = k — 1 (see Corollary 4.66). Therefore W* is defined by
the constraints I'py = I'pl'" where [ +1; = I' + 1y and |I| = |I'| = k — 1. As usual, we
consider in addition the constraint H = 0 that defines the Hamiltonian submanifold W}
of W. Thus, we will work on Wj = W*NW, rather than on W?*. If 0y = 24 d’H denotes
the Cartan (m + 1)-form of W associated to a Lagrangian density £ : Jm — A™M, we
write €23, and Qf for their pullbacks to W* and Wy, respectively.

In order to be able to use the free coordinates of W, we use again the Proposition
4.56 (more precisely, an adaptation of it) that establishes that the dynamical equation in
terms of multivectors

ixQ =0, Xexi(TWws),
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is equivalent to

ii*XQH c TOW(‘)S, X ¢ %?(TWS),

where TYW§ is the annihilator of i, (TWg) in TW. To write down in coordinates the last
equation, we first have to describe properly de set of constraints. For each multi-index K
of length k, we fix a pair (I, ix) where I is a multi—index oflength k—land 1 < i <m

such that I +1;, = K. The set of constraints is I!-p!* = (I1,,,)! p[]+1 N for arbitrary
pairs (1,4) where [ is a multi-index of length &£ — 1 and 1 < ¢ < m. Note that in this set,
for each multi-index K of length k, there is a trivial identity for the fixed pair (I, ).
We therefore look for solutions of the dynamical equation

(C1)"ixQe= > AG (10l = (L)t dp ) £ AAH, (4.166)

() #Ur41,501415)
\T|=k—1

where X is a multivector field tangent along W and the \’s are Lagrange multipliers to
be determined.

If we assume that the locally decomposable m-multivector fields X € x(W) have the
form

0 o 0 o
X=X A ANX,,=— + A%, Bl —_ 4 C.—,
! dui + Migug T Peigpn T g,

(4.167)

expanding the first member in local coordinates and equating coefficients, we obtain:

coeffs. in dp: 0=\
coeffs. in dp!’ : Af =uty,, I =0,...,k—2;
A+ IV Ay =gy, =k - 17 (£,8) # (41, i04,);

A= >0 Il X =uge, |K| =k
(Ii)#(Ik ik )

[+1;=K
coeffs. in duf : B, _%.
_6u1 Jg;—[p I|=1,....,k—1;
8uK J+1Z— P =&
coefl. in do’: AgiBey — 43,50 = (S—L ‘Zp) A5, 40 B

To get rid off the Lagrange multipliers that appear in the equations coming from the coeffi-
cients of dp’ with |I| = k—1, we multiply the corresponding equations by I () + 1/|I| + 1
and sum over I +1; = K. Be81des, the last equation turns to be null thanks to the other
ones and the tangency equations (see below) which come from the k-symmetric restriction
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of the multimomenta. So, we do have

Af = wufyy, with [I|=0,..., k=2, i=1,...,m; (4.168)

2. I,([i,)jllfl?i = uj, with [K|=Fk; (4.169)
I+1,=K
0 = gqi—Baﬂs (4.170)
IHX; i = gi 9 with [J] =1, k-1 (4.171)
>t = i—; with [K| = k. (4.172)
I+1;=K

Furthermore, we have the tangency conditions

1Bl = 1B, I+1Z-:I’+1i/, |I|:u'y:k;—1- (4.173)
9L k-1
Y B = ) A+ > A ; (4.174)
«a ﬁ Jj /5
e Oxi du et JaulauK et T ou/ 8uK
oL . OL N .
Cj == %_}—AJ‘ja_uLa]_Al—‘rl’] a BI qu (4175)

with respect to the k-symmetry restriction, the equation (4.172) and the zero-level set of
H, respectively. Note that, the Lagrange multipliers are hidden in Equation (4.174) and
(4.175) through the coefficients AS; of X of degree k — 1.

Remark 4.72. We have obtained the same equations than in the free case, cf. equa-
tions (4.64-4.67), but with a slight difference in the highest order equations of holonomy
(4.169). What does that imply? An integral section o € I'my s of a solution X of the
dynamical equation (4.166) will no longer be holonomic (at order k) as happens in the
free case, c¢f. Proposition 4.50 and we will have to require it.

Proposition 4.73. Given a solution X € X7'(i.(TWg)) of the dynamical equation
ixSy € TOWG‘;,

let 0 € I'mwr be an integral section of X and denote its Lagrangian part o, = prioo.
If jl(wkﬁk_l o 0y) = Ok, then oy is holonomic, i.e. o = i*, and og = Tko O Ok Satisfies
the higher order Euler-Lagrange equations.

Proof. The hypotesis o = j! (7,1 0 o) directly implies that o is holonomic, i.e. o =
4*(00) (and that the Lagrange multipliers are null along the image of o). The rest of the
proof is the same than the one of Proposition 4.50 (note that equations (4.170), (4.171)
and (4.172) coincide with (4.65), (4.66) and (4.67)). O

This result ensures that, even with the addition of the k-symmetric multimomenta
constraints, the holonomic integral sections of a solution of the dynamical equation are
still solutions of the Euler-Lagrange equations. Furthermore, there is an improvement
with respect to the free case, Section 4.2.3. If we consider the system of linear equations
in terms of coefficients B’s with multi-indexes of length £ — 1, the highest one, given by
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Equation (4.171), (4.173) and (4.174), then the system is overdetermined in oposition to
the free case (see Proposition 4.46). This is because now we have added the tangency con-
dition with respect to the k-symmetry, Equation (4.173). If we put BL" = Bl /(1(i)+1),
for |I| = k—1, which is well defined thanks to (4.173), then Equation (4.171) and (4.174)
1s rewritten to

. oL
Sl = — BV, with || =k — 1; (4.176)
- aUJ
I+1;,=J
PL 0%L 02L
BE = Y A= YA~ with K| = k4.177)
J OxI Qus- ;:0 T oul oug. JZ:k T oulou.

Now, the new unknowns Bolfj are explecitely given in Equation (4.177). Thus, for fixed
coefficients A%, with |K| = k, we may consider Equation (4.176) as an extra constraint
on W. Tangency conditions on it will then give conditions on the B’s of order k — 2 but,
since there are no (k — 1)-symmetric constraints on the multimomenta (see Remark 4.68),
we have to deal again with an undeterminacy on the coefficients of a solution X of the
dynamical equation.

Let us recover some examples to clarify this.

FEzample 4.74 (First order Lagrangian as second order). In Example 4.74, we set up a first
order Lagrangian £ : J'm — A™M as a second order one £ : J?r — A™M by putting
L = L omy;. We saw that, we cannot go pass the first constraint manifold even though
L is completely degenerate (in the second order sense). The space of solutions X of the
second order dynamical equation is too big and the natural first order solutions cannot
been determined from it since the system of linear equations of the coefficients B of X is
underdetermined.

We considered the first and second order velocity-momenta mixed spaces W' =
Jir xp J'nt and W? = J?1 x 1, J?#t, together with the premultisymplectic forms
Qy and Qy, where H and H are the corresponding Hamiltonian functions associated
to the Lagrangians £ and £. Adapted coordinates are denoted (%, u,u;, p,p’) and
(2%, u, s, ug, p, p', p¥) (with |K| = 2) on W' and W?2, respectively. For the sake of
simplicity, we assume that the fibers of 7 : £ — M have dimension n = 1.

\
\

2

),
.k

Figure 4.7: The 1st and 2nd order Lagrangian settings

If the multivector field X € x7(W?') and X € x7(W?), solutions of the respective
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(free) dynamical equations ix€y = 0 and ixQ4 = 0, have the form

m g 9 9 9 9
X = 9 a9 4.2 B
/\(axﬁ igu T Yy, T iy j@p)

N I ) ) 9 o 0
X = —+ A+ Ay A B; By’ =
A(axﬁ Tou "M gu TGy T gy ]8]9’“_'—0310)’

where | K| = 2. We then obtain the relations

Ai = Uy,
oL
0 = ==-B
ou a
, oL
P = 4.178
for (W1, Qy, X); and
Ai = Uy,
Aij = U141
oL .
0 = =B
ou 7
. 0L — i
i _Bl]
p 8”2 7
o oL
Pyt = (14 1) ——— =0, (4.179)
auliJrlj

for (W2, Qy, X). Equations (4.178) and (4.179), together with H = 0 and H = 0, define
the corresponding submanifolds W and W2 of W' and W?2. The tangency condition to
(4.179) is

B + Bl =0,
which is not enough to overdetermine the B’s of highest order.

We therefore introduce the 2-symmetric multimomentum constraint p¥ = p’* in W?
and denote the resulting submanifold W2*. If we use adapted coordinates (z,u, u;, ug,
p, %, p¥) (with |K| = 2) on W2, then the embedding is given by p” = plitli. Now, a
solution X € x™(W?2) of ixQy = 0 along W2 is governed by

A =
A+ Ay = UL41;
OL
0 = ou BJ]’
po= ;i By,
P+t = (1#1»!-%:0.

This, together with the 2-symmetric multimomentum constraint p¥ = p/® and the tan-
gency contitions - B - )
B+ B]'=0 and B/ = B,
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reduces the previous system to

Ai = U,
/Lj + Aji = Ul;41;,
oL _ .
i oL
p = o’
p’ =0
BY =0,

which is precisely the first order one (if we ignore the second order terms).

If we compare this example with Example 4.55), we have again that the Euler-
Lagrange equations appear as a constraint at the second step of the reduction algorithm
(combine the tangency condition to p' = dL/0u; with 0 = dL/Ju— Bj) But, in this case,
and in contrast to the free setting, now it manages to detect if a second order Lagrangian
is actually a first order one.

Ezample 4.75 (The second order case). Given a second order Lagrangian £ : J?1m — A™M,
let H: W = J?m x 1, J?nT — A™M be the associated Hamiltonian and let Qy = Q — dH
denote the Cartan (m + 1)-form. If we consider the dynamical equation ixQs = 0 “in”
the space of mixed velocities and 2-symmetric momenta W# (defined by p¥/ = p?*) instead
of “along” W*, then a solution X € X7'(IW*°) will be governed by the equations

Aia = U,
A+ A = Ui

oL -

0 = - B
ou® g’

P = 5o B (4.180)
oL

pk = R |K| =2, (4.181)

K

where (2%, u, u;, ug, p, p*, p&), | K| = 2, denote adapted coordinates on W* and X has the
form

A L0 .0 .0 K 0 0

The tangency condition to Equation (4.181) explicitly gives the coefficients ij, |K| =2,
of X. Thus, Equation (4.180) is a space constraint from which we may determine the
coefficients Baij of X. Moreover, if £ was degenerate, then further constraints would be
determined, so reducing the space of possible solutions.

So far, we have seen that the introduction of the k-symmetric momentum constraints
not only removes the ambiguity in the simple case of a 1st order Lagrangian viewed from
a 2nd order setting, but also the full general problem within the 2nd order setting. All
this ambiguity was one of the reasons why it was not possible to define a Legendre trans-
form nor a Poincaré-Cartan form in higher-order field theories, problem of furthermost
importance. Having removed this ambiguity, is it possible now to define such objects?
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Given a solution X € X7'(W?*) of the dynamical equation ixQy =0, let 0 € I'mys o
be a holonomic integral section of X, meaing that its Lagrangian part o, = pryoo is
holonomic. Then,

K
ijoazaga; = 0 (8L oa,k):(i 8L)ojlak.

dzd  Oxd \ Oug dad Ou,

We therefore define the 2nd order (extended) Legendre transform as the fibered map
Leg, : J3m — J?7* locally given by

oL
K — = |K|=2 4.182
W= o 1K= (4.18)
; oL d 0L
P 2= 4.1
pa auza dl‘] au?l—i_lj Y ( 83)
oL d 0L oL
= L—u® | /= - — = | . , 4.184
D U; (au? A 8u(117:+1j> U ous; ( )

The Poincaré-Cartan form is then the (m + 1)-form €2, along 735 locally given by

L L L
Qr=—4d L—u?-(a da—)—u%-a )/\dmx

ou? da out, 4, ou$;
L L
_qfoL_d4 9 A du® A d™ g (4.185)
Oug  dx? Ju, +1,
oL
—d - A du?‘ A d™ L,
auli-l—lj

For a similar approach, the paper [140] by Saunders and Crampin is strongly recom-
mended.

FErample 4.76 (The third order case). In this example, we are going to see that the
improvements we got in the second order case by introducing the 2-symmetric momentum
constraints are only partial for the third order case. We fix a third order Lagrangian
L : J3r — A™M and look for solutions X € x7(W), where W = J31 X jo, J37T, of
the dynamical equation ixQy € T°W3, where W* is the Hamiltonian mixed space of
velocities and 3-symmetric momenta given by % = 0 and I! - p/ = J!-p/i for I +
1, = J+1, and |I| = |J| = 2. Recall that, as usual, we denote adapted coordinates
on W by (a%,u® u$, us,us, p, i, pt, pk), with |I| = 2 and |K| = 3. Thus, we take
coordinates (%, u®, u$, u$, us, p, pi,, pit, pX), with |I| = 2 and |K| = 3, on W* such that
the embedding W* < W is given by p' = pItli/(1(i) + 1).
If X € ¥7'(W?) has the form

" 0 0 0 0 0
X = — 4+ A“ A — + A —— A
,/\ <8xj 4 ou® M ou? AL ous; Ak ou$,
Jj=1
Bi— 4+pBi_~_ 4 pi_~ 4.~
+ (o) apza + aj apgz + (&%} 8}93 + ]ap) ?
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in order to be a solution of the dynamical equations in W?, its coefficients must satisfy

the following relations

A? Ui,
Alo‘[] u?i—‘rl]-?
YA = i =2
J+1;=1
oL ’
0 — %_Ba.;W
Pa = oug aj’
o — BT [ =2 4.186
Z Pao 8u? aj | | ) ( )
1+1;=1
oL
K
= ——, |K|=3. 4.187
Pa e K| (4.187)

Tangency conditions on Equation (4.187) gives explicitly all the coefficients ij, with
|K| = 3. This turns Equation (4.186) into a space constraint in W?*; however, tangency
conditions on it do not give enough conditions on the coefficients Bg; to determined
them, like in the free second order case. In general, the top level coefficients Bolfj are
overdetermined inducing a new space constraint on W?* but the subsequent coefficients
Bli (of order k — 1) with |I| = k — 2 are always undetermined, unless k = 2.

This example is of furthermost importance since it is the key step to solve the ambi-
guity that exists in the solutions of the dynamical equation for higher order field theories.
Moreover, to solve or describe this ambiguity will also do it for the definition of the

higher-order Legendre transform and, consequently, higher-order Poincaré-Cartan form.



Chapter 5

Conclusions and future work

As for conclusion, I summarize the main results obtained in this memory.

e First, we have given a description without ambiguity of the higher-order classical
field theory within a formulation of Skinner and Rusk type, which has permitted
to define a premultisymplectic form and a unique Hamiltonian function; and in
consequence a global and unique formulation of the dynamics. This part of the
treatise has been published in Journal of Physics A: Mathematical and Theoretical
Vol. 42 (2009).

e Secondly, we have developed the previous work and exposed an intrinsic formulation
of the variational problem equations subjected to constraints dependent on higher
order partial derivatives of the fields with respect to the base coordinates. As a study
case, we have apply this theory to optimal control systems of partial differential
equations. This results are gathered in the proceedings of different congresses: “18th
International Fall Workshop on Geometry and Physics” and “Variational Integratos
in Nonholonomic and Vakonomic Mechanics”; and in a paper that has to appear in
the Journal of Physics A: Mathematical and Theoretical.

e Finally, we have given an important step in order to answer the inherent ambiguity
of the Hamiltonian formulation. This work has proven to define univocally the
Hamiltonian formulation of classical field theories of second order; specifically, we
have successfully established a space of momenta in which the reduction algorithm
does not stop and continues giving the subsequent steps.

Besides, also some results have been obtained in continuum mechanics with of applying
the developed work in classical field theory to it (see Section §5.4 below).

e Within the theory of constitutive equations of material, a new definition has been
given for materials know as functionally grade media thanks to their inherent prop-
erties. This definition has been proven to generalize the classical one, which has
been published in the proceedings of the “XVI International Fall Workshop on Ge-
ometry and Physics” and in the International Journal of Geometric Methods in
Modern Physics.

In particular, this results are given by Equation (4.52), Proposition 4.46, Proposition
4.48, Theorem 4.50, Example 4.55, Equation (4.124), Proposition 4.58, Theorem 4.59,

119
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Theorem 4.63, Theorem 4.66, Theorem 4.73, Examples 4.74 and 4.75, Definition 5.15 and
Theorems 5.20 and 5.22.
These results haven been published in

C. M. CAmpPOs, M. EPSTEIN Y M. DE LEON, Functionally graded media. Int. J.
Geom. Methods Mod. Phys. 5 (2008), no. 3, 431-455.

C. M. CAMPOS Y M. DE LEON, Functionally graded media. Proceedings of the
"XVI International Fall Workshop on Geometry and Physics" (2007)

C. M. CamPOS, M. DE LEON, D. MARTIN DE DIEGO AND J. VANKERSCHAVER,

Unambiguous formalism for higher order Lagrangian field theories. J. Phys. A:
Math. Theor. 42 (2009) 475207 (24pp)

C. M. Campros, Vakonomic Constraints in Higher-Order Classical Field Theory.

Proceedings of the "XVIII International Fall Workshop on Geometry and Physics"
(2010)

C. M. CamMPOs, Higher-Order Field Theory with Constraints. To appear in Rev.
R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM

C. M. CamPOS, M. de Leon and D. Martin de Diego, Constrained Variational
Calculus for Higher Order Classical Field Theories. To appear in J. Phys. A:
Math. Theor.

The geometrical framework of the developed field theory is already prepared for its
application to different lines of research, for instance: continuum mechanics, media with
microstructure, multisymplectic integrators in higher-order field theory with or without
constraints, etc. I debrief some of them in the following sections.

5.1 Geometric integrators for higher-order field theo-
ries

During the last years, there was a great interest in developing of geometric integrators for
mechanical systems using a discrete variational principle (see [123] and references therein).
In particular, this effort has been concentrated for the case of discrete Lagrangian func-
tions L4 on the cartesian product ) X () of a differentiable manifold. This cartesian
product plays the role of a “discretized version" of the standard velocity phase space T'Q).
Applying a natural discrete variational principle and assuming a regularity condition, one
obtains a second order recursion operator Y : () X ) — ) X @) assigning to each input
pair (qo, q1) the output pair (¢i,¢2). When the discrete Lagrangian is an approximation
of a continuous Lagrangian function (more appropriately, when the discrete Lagrangian
approximates the integral action for L;) we obtain a numerical integrator which inherits
some of the geometric properties of the continuous Lagrangian (symplecticity, momentum
preservation). Although this type of geometric integrators have been mainly considered
for conservative systems, the extension to geometric integrators for more involved sit-
uations is relatively easy, since, in some sense, many of the constructions mimic the
corresponding ones for the continuous counterpart. In this sense, it has been recently
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shown how discrete variational mechanics can include forced or dissipative systems, holo-
nomic constraints, explicitely time-dependent systems, frictional contact, nonholonomic
constraints... All these geometric integrators have demonstrated, in worked examples, an
exceptionally good longtime behavior and obviously this research is of great interest for
numerical and geometric considerations (see [104, 135]).

These methods have also extended for lagrangian field theories (see [120] and references
therein) of order 1. These methods start by discretizing the spacetime M and in many
cases it is assumed for simplicity that M = R?, and Y = R? x ), where Q is a vector
space. Typically, it is considered a mesh as a discretized version of M. Remember that a
mesh X is a discrete subset of R2. For instance, the quadrangular mesh X = hZ x kZ =
{z;; = (hi,kj) | (4,5) € Z x Z}. In this sense a discrete field is a map ¢4 : X — Q.
In the following we will restrict ourselves to quadrangular mesh although it is easily
generalizable to other types of meshes. Define the set of squares X* whose elements are
the ordered quadruples of the form

Uiy = (Tigs Tiv1j, Tit1,j11, Tije1)

The idea behind these discretizations is that the values of the discrete field at the
vertices of the squares can be used to define the concept of discrete jet as an approximation
of the continuous jet. In the case of a first order field theory the discrete jet bundles is
defined as

Jim =X x Q*

and a discrete jet is a pair (J; j, (@i, Giv1,45 Giv1,j+1, Gigr1])-
For discretizing the theory it can be useful to define appropriate discretization maps
O, = Jir — J'7 as for instance:

Ga((Dig, [igs i1, Git1,j+15 Gij+1))

_(Tig Ty T Tipin T Gig 1 Gy T vt i
- ( ) ) ‘/17 ‘/2)
4 4
where
L (Giv1y — Gy | Git15+1 — Qig+
V — _ 5J 5] + )] 5] ,
! 2 ( k h
L (Gij+1 — Gy | Gi+1+1 — Qi1
V — _ 5J 5] + ) 5] ,
? 2 ( h k

which are considered as an approximation of the partial derivatives of the field.

Then, given a lagrangian L : J'm — R, we define the discrete lagrangian Ly : JiT — R
by Lg = hk®}.

The discrete field equations are deduced extremizing an appropriate discrete sum. In
this particular case, the discrete field equations are (see [120]:

0 = DiLy((Diy, (i, Qi1 G111, Gije1))

+DoLg((Oij-1, [@ij—1, Git1,j-1, Giv1,5> Gig))

+DsLa((Divj, [@i-1,55 Gijs Gija1, Gi1,j41))
(0

+DyLa(Oi-1j-1, [Gim1-1, Gij—15 Tijs Qi15])-
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Of course we can generalize these methods for higher order field theories adding dis-
cretizations of the higher-order derivatives (the second order case is already studied in
[112]). For instance, for a second-order lagrangian we can consider a discrete Lagrangian
defined by

L2 (Xt x XY xQ" =R
where (X4 x X*), are rectangles such that the third right-upper vertex of the first rectangle
is also, the left-bottom vertex of the second one. Now, a discretization of the second-order
derivatives is given, for instance, by:

Qit1,j — 2Gi; + Gi—1j

Vi —
H 2h
Qij+1 — 20 + Gij—1
Voy —
22 2%
Vie = Vi — Qit1,5+1 — Qij+r1 — Gij—1 T Gi-1,5-1

2hk

In future research we will study these methods for higher order lagrangian systems in-
cluding their geometric preservation properties (multisymplecticity, etc.). Moreover, it is
possible to extend these techniques for the case of Lagrangian systems with constraints
(see [15]).

5.2 Space+Time Decomposition

As for the Skinner-Rusk formalism, another framework of interest is the so called “space+
time decomposition” originally developed by Gotay in [96] (see also [21]). This formalism
is strongly based on the theory of Cauchy surfaces, in which ones assumes that there
exists a space-like surface in the ambient space that evolves along the time line such that
it covers the whole ambient space. This description allow us to consider any field theory
in “frozen time” and then watch it evolve.

To be more precise, let as usual 7 : £ — M be a fiber bundle whose fibers have
dimension n but whose base manifold, which is assumed to be orientable and oriented
with a provided volume form 7, has now dimension m + 1. We assume that there exists
an m-dimensional manifold X that can be embedded into M. Let ¢ € Emb(X, M) be
one of such embeddings, we view M, := ¢(X) as a Cauchy surface. We now consider the
field theory restricted to M., that is me shall consider the fiber bundle 7. : E. — M.,
where E. = E). = n~'(M.) and 7. = 7|g.. The space of sections E. = D', is called the
instantaneous configuration space at “time” €.

In this setting, given a section o € E. we have that the tangent space to E. at o is

T.E. = {v: M. — Vr.|vcovers o},

and the cotangent space to E. at o is

T'E.={a: M. — L(V7r.,A"M.) | « covers o},

where L(V m., A™M.) is the vector bundle over E. whose fiber at u € (E.), is the set of
linear maps~form V. E: to AT"M,. Thus the pairing between the elements of 77 E. and
those of T, E. is given by the integral expression:

(o, v) = /Ea(v).



5.3. REDUCTION 123

Furthermore, we can define a Liouville form on the e-phase space T*E. in the usual
manner:

O-()(V) = <oz,Ta7TEE(V)>.

And, of course, the canonical symplectic form w. = — d#f..

Before we give a Lagrange description of the field dynamics within this setting, we
must introduce two concepts. First, we consider a slicing of M with section X, that is a
time-dependent family of embeddings y : I x X — M, where I C R, such that y is in
fact a diffeomorphism. We define the generator of x as the push forward of 9/0t, that is

0
fXOX:TX(a)

Secondly, we assert that TFE. is isomorphic to the collection of restrictions of holonomic
sections of 7y : J'm — M (see [96]).

Now, given a Lagrangian density £ : J'm — A™M, we define a Lagrangian function
L:TE. — R in the following way:

Ley(o) = / e £('9).

where jl¢ is the holonomic section that corresponds to o.

From here we could proceed in the standard ways but, we remark that we finally
have the three basic elements to follow the Skinner-Rusk formalism: the Lagrangian,
the pairing and the canonical form. The goals of this work is to study the space+time
decomposition within the Skinner-Rusk formalism and extend it to higher-order theories.
Since the base manifold adds a new data in the picture, the slicing, it could possibly
reduce the ambiguity in the space of solutions.

5.3 Reduction

Among different extra structures that the fiber bundle 7 : £ — M may carry, of particular
interest is the case when 7 is a principal fiber bundle. In this context and under extra
assumptions on the Lagrangian, one may seek for symmetries of the problem or use
reduction techniques to eliminate variables and simplify the problem. This is a natural
step when a dynamic formalism is well established, which is the case of first order classical
field theories, and which has already started (see for instance [37, 38, 39]).

The aim of a future work is to study and develop a theory of multisymplectic reduction
in higher-order field theories and, in view of example 4.75, particularly for the second order
case.

5.4 Continuous Media

The study of the mechanics of continuous media constitutes a non-trivial example of the-
ory of classical fields, whose structure and dynamics may be characterized geometrically.
Nonetheless, there still is a long way in process to geometrize this study. From the use
of Lie algebra to describe the movement of a rigid body, to the modeling of Cosserat
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media and liquid crystals by means of principal fiber bundles. Before focusing on the dy-
namical aspects of a continuum, one should start studying the behavior of a body under
infinitesimal deformations in order to understand its internal structure, which is the basis
of constitutive theory of materials. In this sense, what follows is the work developed in
[28], which is a study of materials that gradually change its behavior from point to point,
that is, functionally graded media.

The mechanical response at a point X of a simple (first-grade) local elastic body B
depends on the first derivative F' at X € B of the deformation. In other words, B obeys
a constitutive law of the form:

W =W (F(X); X) (5.1)

where W measures the strain energy per unit volume. The linear map F(X) is called
the deformation gradient at X. Of course, there are materials for which the constitutive
equation implies higher order derivatives or even internal variables as it happens with
the so-called Cosserat media or, more generally, media with microstructure, but such
materials will not be considered here.

An important problem in Continuum Mechanics is to decide if the body is made of
the same material at all its points. To handle this question in a proper mathematical
way, one introduces the concept of material isomorphism, that is, a linear isomorphism
Pxy : Tx B — Ty B such that

W(FPyxy:; X) = W(F;Y)

for all deformation gradients F' at Y. Intuitively, this means that we can extract a
small piece of material around X and implant it into Y without any change in the
mechanical response at Y. If such is the case for all pairs of body points, we say that
the body B is uniform. This has been the starting point of the work by Noll and Wang
[130, 146, 155, 154] in their approach to uniformity and homogeneity.

In this context, a material symmetry at X is nothing but a material automorphism
of the tangent space TxB. The collection of all the material symmetries at X forms
a group, the material symmetry group G(X) at X. An important consequence of the
uniformity property is that the material symmetry groups at two different points X and
Y are conjugate.

A natural question arises: Is there a more general notion that permits to compare the
material responses at two arbitrary points even if the body does not enjoy uniformity? An
answer to this question is based on the comparison of the symmetry groups at different
points. Indeed, we say that the body B is unisymmetric if the material symmetry groups
at two different points are conjugate, whether or not the points are materially isomor-
phic. From the point of view of applications, this kind of body corresponds to certain
types of the so-called functionally graded materials (FGM for short). The unisymmetry
property was introduced in [81] with the objective to extend the notion of homogeneity
to non-uniform material bodies. Let us recall that the homogeneity of a uniform body is
equivalent to the integrability of the associated material G-structure [22, 80]. Roughly
speaking, this material G-structure is obtained by attaching to each point of B the cor-
responding material symmetry group via the choice of a given linear reference at a fixed
point; a change of the linear reference gives a conjugate G-structure. In a more sophis-
ticated framework, the set of all material isomorphisms defines a Lie groupoid, which in
some sense is a way to deal with all these conjugate G-structures at the same time.
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In the case of unisymmetric materials the attached group is not the material sym-
metry group, but its normalizer within the whole general linear group. This implies a
more difficult understanding of the generalized concept of homogeneity associated with
unisymmetric materials. The main aim of the present paper is to provide a convenient
characterization of this homogeneity property. In this sense, this work may be regarded
as a continuation and improvement of the results obtained in [81].

The paper is organized as follows. Section §B.1 is devoted to a brief introduction to
groupoids and Lie groupoids; in particular, we define the normalizoid of a subgroupoid
within a groupoid, which is just the generalization of the notion of normalizer in the
context of groups. An important family of examples is provided by the frame-groupoid,
consisting of all the linear isomorphisms between the tangent spaces at all the points
of a manifold M; if M is equipped with a Riemannian metric g, one can introduce the
notion of orthonormal groupoid (taking the orthogonal part of the linear isomorphisms
given by the polar decomposition). If, without necessarily possessing a distinguished
Riemannian metric, M is endowed with a volume form, one obtains the Lie subgroupoid of
unimodular isomorphisms. In Section §B.2 we analyze the relations between Lie groupoids
and principal bundles; in particular, we examine the relation between the frame groupoid
and G-structures on a manifold M. In Section §5.4.1 we study the concepts of material
symmetry and material symmetry groups, and in Section §5.4.2 we discuss uniformity
and homogeneity. Finally, Section §5.4.3 is devoted to study the case of FGM materials,
and the geometric characterization of homogeneity in this case is obtained for both solid
and fluids.

5.4.1 The Constitutive Equation

In the most general sense (see [119], for instance), a body is a manifold B that can be
embedded in a Riemannian manifold (S, g) with the same dimension, the ambient space.
Usually, the body B is a simply connected open set of R® and the ambient space is R3
itself with the standard metric. Fach embedding K : B — S is called a configuration
and its tangent map TK : T'B — T'S is called an infinitesimal configuration. If we fix a
configuration K (the reference configuration) and we pick an arbitrary configuration K,
then the embedding compositon ¢ = K o K~' : K(B) € S — S is considered as a body
deformation and we call its tangent map T'x¢ at a point X in B an infinitesimal defor-
mation or the deformation gradient, usually denoted by F. Since (S, g) is a Riemannian
manifold, we can induce a Riemannian metric on B by the pull-back of g by a reference
configuration K. Since the metric on B depends from a chosen reference configuration,
it is not canonical. However, for solid materials, we are able to define an “almost” unique
metric compatible with the material structure, as we will show in section §5.4.2.

Usually, points in the body or in the reference configuration (when they are identified)
are denoted by capital letters X, Y, Z, etc., and by small letters x, y, z, etc., in the
deformed configuration. At the moment we have the picture shown at Figure 5.1.

As stated by the principle of determinism, the mechanical and thermal behaviors of
a material or substance are determined by a relation called the constitutive equation. It
does not follow directly from physical laws but it is combined with other equations that
do represent physical laws (the conservation of mass for instance) to solve some physical
problems, like the flow of a fluid in a pipe, or the response of a crystal to an electric
field. In our case of interest, elastic materials, the constitutive equation establishes that,



126 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Figure 5.1: Deformation in a reference configuration.

in a given reference configuration, the Cauchy stress tensor depends only on the material
points and on the infinitesimal deformations applied on them, that is

o = o(Fx,, K (X)). (5.2)

This relation is simplified in the particular case of hyperelastic materials, for which equa-
tion (5.2) becomes
W =W (Fk,, K.(X)). (5.3)

where W is a scalar valued function which measures the stored energy per unit volume.

Among other postulates (principle of determinism, principle of local action, principle
of frame-indifference, etc.), it is claimed that a constitutive equation must not depend
on the reference configuration. It turns out that equation (5.2) (and (5.3)) now can be
written in the form

o=0(F,X) (W=W(F, X), respectively), (5.4)
where F' stands for the tangent map at X of a local configuration (deformation).

Definition 5.1. A material symmetry at a given point X € B is a linear isomorphism
P :TxB — TxB such that
o(F-P,X)=0(F,X), (5.5)

for any deformation F at X. The set of material symmetries at X € B is denoted by
G(X) and it is called the symmetry group of B at X. Given a configuration K, we will
denote by G (X) the symmetry group G(X) in the configuration K, that is

Or(X)=TxK -G(X)- (TxK)™". (5.6)

Different types of elastic materials are given in terms of their symmetry groups. For
instance, a point is solid whenever its symmetry group in some reference configuration is
a subgroup of the orthogonal group O(3) and, fluid whenever the orthogonal group is a
proper subgroup of the symmetry group. In [118, 154] it is possible to find a classification,
due to Lie, of the connected Lie subgroups of S1(3) and their corresponding Lie algebras.

Definition 5.2. Given an elastic material B, let X € B and consider its symmetry group
G(X). If there exists a configuration K such that:

1. Gk(X) is a subgroup of the orthogonal group of transformations O(3), then X is
said to be an elastic solid point. If furthermore
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Figure 5.2: Material symmetry.

(a) Gr(X) = O(3), then we call X a fully isotropic elastic solid point;

(b) Gk (X) is a transverse orthogonal group (a group of rotations which fix an
axis), then X is said to be a transversely isotropic elastic solid point;

(¢) Gk (X) consists only of the identity element, then X will be a triclinic elastic
solid point;

2. Gk (X) is a subgroup of the unimodular group of transformations U(3) and has the
orthogonal group O(3) as a proper subgroup, then X is said to be an elastic fluid
point. If furthermore

(a) Gr(X) = SI(3) then we still call X an elastic fluid; and

(b) Gk (X) is a transverse unimodular group (a group of unimodular transforma-
tions which fix an axis or a group of unimodular transformations which fix a
plane) then we call X an elastic fluid crystal.

-1

The infinitesimal configuration Tx K or the induced frame z = (TxK)~! is called an

undistorted state of X.

This material classification is pointwise. A body is solid if every point is solid.

5.4.2 Uniformity and Homogeneity

To define the uniformity of a material, we first have to give a criterion that establishes
when two points are made of the same material. To compare their symmetry groups is
not sufficient since this is only a qualitative aspect. Indeed, consider two points in a
rubber band, one point may be relaxed while another point may be under stress. But we
are still able to release the stress on the second point and bring it to the same state as
the first one, and then compare their responses.

Definition 5.3. We say that two points X,Y € B are materially isomorphic, if there
exists a linear isomorphism Pxy : Tx B — Ty B such that

o(F - Pxy,X)=o0(F,Y), (5.7)
for any deformation F' at Y. The linear map Pxy is called a material isomorphism.

Even if the definition of material isomorphism and material symmetries are mathe-
matically similar, there is an important conceptual difference. While the symmetry group
of a point characterizes the material behavior of that point, a material isomorphism estab-
lishes a relation between two different points. In fact, as already pointed out, a material
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RB

FPxy
Figure 5.3: Material isomorphism.

symmetry can be viewed as a material automorphism by identifying X with Y in the
above definition.

Definition 5.4. Given a material body B, the material groupoid is the set of all the
material isomorphisms and symmetries, that is the set

G(B) = {P € II(B) satisfying Definition 5.3} . (5.8)

It is easy to check that the material groupoid G(B) is actually a groupoid. Further-
more, it is a subgroupoid of the frame groupoid II(B), but note that it is not necessarily
a Lie groupoid or even transitive as the frame groupoid. In fact, when all the points of
a body are pairwise related by a material isomorphism, it means that the body consists
only of one type of material. In this case, it is materially uniform.

Definition 5.5. Given a material body B, we say that it is uniform if the material
groupoid G(B) is transitive, and smoothly uniform when the material groupoid is a tran-
sitive differential groupoid (and hence a Lie subgroupoid of TI(B)).

A simple but important property of uniform materials is that the groups of material
symmetries are mutually conjugate by any material isomorphism between the respective
base points. To be more precise, equation (B.2) reads in terms of elastic bodies:

G(Y)=P-G(X)-P', VPeG(B)xy, (5.9)

for any pair of materially isomorphic points X,Y € B.

When we look a material through different configurations, there are prefered states
of the material we want to distinguish: e.g. transversely isotropic solids have a fixed axis
“invariant” under material isomorphisms that we prefer to align with the vertical axis.
Such a state may be modelized in an infinitesimal configuration by a linear frame z. As we
have just said, in the material paradigm, this frame of reference z has some behaviors that
will be mainted by material isomorphisms. If we consider the set of all these distinguished
references that arise from material transformations of the ‘reference crystal’ (see Figure
5.4), then we obtain the so called material G-structure of B. As far as we know, Wang
was the first to realize that the uniformity of a material can be modeled by a G-structure
[154], although this fact was emphasized by Bloom [22]. For definiteness,

Definition 5.6. A material G-structure of a smoothly uniform body B is any of the
G.-structures induced by the material groupoid G(B) as shown in Theorem B.17. The
chosen frame of reference z € F B is called the reference crystal.
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Figure 5.4: The reference crystal.

Definition 5.7. Given a smoothly uniform body B, a configuration K that induces a
cross-section of a material G-structure will be called uniform. If there exists an atlas
{(Ua, Ko)} e of B of local uniform configurations for a fixed material G-structure, the
body B will be said locally homogeneous, and (globally) homogeneous if the body B may
be covered by just one uniform configuration.

The material concept of homogeneity corresponds to the mathematical concept of in-
tegrability. By Theorem B.22, a smoothly uniform body B will be locally homogenous if
and only if one (and therefore any) of the associated material G-structures is integrable.
Let K a uniform configuration for a particular integrable G-structure G(B) of a homo-
geneous elastic material B. If (X, vy, va,v3) denotes the cross section induced by K, thus
the constitutive equation (5.2) may be written in the form

0 =0(Fx,K(X)) =o(F},z"), (5.10)

with obvious notation. Now note that, since through K any material isomorphism P
may be considered as an element of the structure group G, which is clear for material
symmetries, and since the body B is uniform, we have that

o(Fly) = o(Fi, K(Y)) = o(Fic - P, K(X)) = o(F}- Pb,a') = o(Fl,a).  (5.11)
Thus, we have just proved the following result:

Theorem 5.8. If K is a uniform configuration of a homogeneous elastic body B, the
constitutive equation (5.2) is independent of the material point and invariant under the
right action of the structure group G of the G-structure G(B) related to K. Thus,
o=0(F)) and o(F}- ij) = o(F)) for any P € G. (5.12)
The physical interpretation of this theorem is that points of a homogenous elastic
body B can be put by means of a configuration K in such a manner they are all at the
same state, at least locally. This configuration K is uniform. Even if the material G-
structures of a smoothly uniform body B are different (but equal via conjugation), there

must be at least one of them in which the structure group G satisfies a condition of the
material classification 5.2.

Definition 5.9. Accordingly to Definition 5.2, a smoothly uniform elastic body B is solid
or fluid, if all the points are solid or fluid, respectively. Any of the material G-structures
for which the structure group fulfills the classification is called undistorted.
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Uniform Elastic Solids

The following result is due to Wang (cf. [154]). In his paper, Wang defines the material
G-structures from the point of view of atlases, families of cross-sections of the frame
bundle, instead of our approach through groupoids. These families are the cross-sections
of the resulting G-structures. When a material is solid, it is possible to endow the body
with a metric wich is compatible with the material structure. Wang calls such a metric
an intrinsic metric.

Theorem 5.10. Let B be a uniform elastic solid material; each undistorted material
G-structure G(M) defines a Riemannian metric g, invariant under material symmetries
and isomorphisms.

Proof. Given a cross-section (U, o) of a fixed undistorted material G-structure G(B), let
X € U and define

9% (w,w) = (o(X) v, 0(X) - w), VX eUWVv,weTxB, (5.13)

where () is the Euclidean scalar product. Thus, g7 is clearly a smoooth positive definite
symmetric bilinear tensor field on U, since it is nothing more than the pullback of the
Fuclidean metric. Let us check that, in this manner, the metric ¢° does not depend on
the chosen cross-section (U, o). Given any other cross-section (V,7), let X € B be in the
intersection of their domains (if not empty, of course), then

95k ww) = (o(X)™ v, 0(X) tew)

< '
= Q- T(X) 0. Q T(X) - w)
(r(X) -0, 7(X) - w) (5-14)

= gx(v,w),
where we used the fact that, by hypothesis, Q@ = o(X)™! - 7(X) € G is orthogonal.

Now, let P € Gxy(B) be a material isomorphism; there will exist cross-sections
(U,0),(V,7) such that P = 7(Y) - o(X)~'. Then, we have

gy(P-v,P-w) = (r(Y)7'-P.ou,7(Y)L-P-w)

(o(X)™ v, 0(X)7t - w) (5.15)
= gy(v,w).
The metric we where looking for is just the metric g defined in (5.13). ]

If we consider the orthogonal groupoid O(B) related to this metric, we have that
the material groupoid is included in it, G(B) C O(B). Reciprocally, if B is a smoothly
uniform material such that it can be endowed with a Riemannian metric for which the
material symmetries and isomorphisms are orthogonal transformations, G(B) C O(B),
then B must be an elastic solid. Thus, elastic solids are completely characterized by
Riemannian metrics with the property of being invariant under material symmetries and
isomorphisms.

Remark 5.11. Given two material G-structures, G1(B) and G3(B), of a uniform elastic
solid B, we know that they must be related by the right action of a linear isomorphism F' €
GI(3), that is G5(B) = G1(B) - F. Thus, if G1(B) is undistorted, the G-structure G3(B)
will be undistorted if and only if the symmetric part V' of the left polar decomposition
of F, F =V - R, lies in the centralizer of Gy, that is V' € C(G;) (¢f. [154], proposition
11.3). But this does not imply that G1(B) and Go(B) define the same metric, which is
true only if V = 1.
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Uniform Elastic Fluids

There are similar results for fluids as for solids. In this case, the fluid structure induces
volume forms.

Proposition 5.12. Let B be a uniform fluid material, then each undistorted material
G-structure G(B) defines a volume form p invariant under material symmetries and
1somorphisms.

Proof. Given a cross-section (U, o) of a fixed undistorted material G-structure G(B), let
us define on U the volume form

pe =0 NTEN G, (5.16)

where ¢* denotes the co-frame cross-section of o, that is ¢* : U — F*B such that
0*(0;) = 65 on U. Let us show that the volume form p, does not depend on the chosen
cross-section (U, o). In fact, let (U, o), (V, ) be two cross-sections with non-empty domain
intersection, then for any n vectors vy,...,v, € TxB, with X € UNV, we have

po(v1,...,v,) = det(v))
= det((a‘lT)f) . det(@i)
= pr(vlu"'7vn)7

where we have used v; = v/o; = /7, v! = (67'7)% - ¥ and o~'7 € U(n). Since the
tangent vectors vy,...,v, are arbitrary, p, and p, coincide on the intersection of their
domains, U N V. Thus, the volume form given in (5.16) defines locally a volume form p
on the whole material body B.

Let us see how p is invariant under material symmetries and isomorphisms. Given
P € Gxy(B), there must exist cross-sections (U, o), (V,7) such that P = 7(Y) - o(X)".

Then, we have
poP= (P )" A(PT')2 A (P =0 No™ ANo™ = p, (5.17)
which finishes the proof. O

Considering now the induced unimodular groupoid U(B), by the invariance we have
the inclusion G(B) C U(B) which also characterizes elastic fluids.

5.4.3 Unisymmetry and Homosymmetry

As we have seen, the concept of homogeneity must be understood within the framework
of uniformity. But, there are materials that are not uniform by their very definition, the
so called functionally graded materials, or FGM for short. This type of material can be
made by techniques that accomplish a gradual variation of material properties from point
to point: for instance, ceramic-metal composites, used in aeronautics, consist of a plate
made of ceramic on one side that continuously change to some metal at the opposite
face. The material properties are also given through a constitutive equation like (5.4).
Therefore, we will have a notion of material symmetry and the symmetry groups will
be non-empty as in the case of uniform materials. For a FGM material, the symmetry
groups at two different points are still conjugate, accordingly to the following definition.
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Definition 5.13. Given a functionally graded material B, let be X|Y € B; we say that a
linear map A : Tx B — Ty B is a unisymmetric (material) isomorphism if it conjugates
the symmetry groups of X and Y, namely,

GY)=A-G(X)-A" (5.18)

As for uniform bodies, the material properties of a FGM are now characterized by the
collection of all the possible unisymmetric isomorphisms.

Definition 5.14. Given a functionally graded material B, the set of unisymmetric iso-
morphisms, that is the set

NB)={A€ll(B) : GY)=A-G(X)-A"}, (5.19)

will be called the FGM material groupoid of B.

Figure 5.5: The FGM material groupoid.

We may now extend the ideas of section §5.4.2 using this new object. Then we obtain:

Definition 5.15. A functionally graded material B will be said unisymmetric if the FGM
material groupoid NV(B) is transitive and, smoothly unisymmetric if it is a Lie groupoid.

Note that the notion of unisymmetry covers a qualitative aspect in the sense that a
unisymmetric FGM is made of only one “type” of material. For instance, it will be a fully
isotropic solid everywhere or a fluid everywhere, but it cannot be a fully iscotropic solid
at some point and a fluid at another point.

For this groupoid, we also have the associated G-structures.

Definition 5.16. Let B be a smoothly unisymmetric body. Any of the asociated G-
strutures NV, (B), with z € FB, will be called a material N-structure. A cross-section of
a material N-structure will be a unisymmetric cross-section and a configuration inducing
such a cross-section will be a unisymmetric configuration. If for any of the material N-
structures there exists a covering by unisymmetric configurations, the body B will be said
locally homosymmetric, and (globally) homosymmetric if the covering consists of only one
unisymmetric configuration.

As we may see, the homosymmetry property is equivalent to the integrability of any
of the material N-structures. However, there is not an analogue result to Theorem 5.8 for
homosymmetric bodies. Since, even if we have an N-structure and the group structure
is the same for any point through any unisymmetric configuration, the symmetry groups
may be represented by different subgroups of N at each point.
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Functionally Graded Elastic Solids

Definition 5.17. We will say that a functionally graded elastic material B is a func-
tionally graded solid if there is a Riemmanian metric on B invariant under material
symmetries, that is every point is solid. Furthermore, B will be said

1. fully isotropic if every point is fully isotropic;
2. transversely isotropic if every point is transversely isotropic; and
3. triclinic if every point is triclinic.

The compatible metric is called a material metric.

We have not used the term “intrinsic” for the material metric, since it does not arise
from the material structure as for uniform elastic solids (¢f. Theorem 5.10). The material
metric is an extra structures that ensures that the solid points are glued in a solid way.

If B is a FGM solid and we consider the orthonormal cross-sections (U, o) of the
O(3)-structure given by a solid metric, then they must verify:

o(X)1-Gg(X) - o(X)COB) VXeU VU,o0), (5.20)
oX)"tr(X)eO0@B) vXeUNnV Y{U,o),(V,7); (5.21)

where G(X) is the material symmetry group of B at X. In fact, these two conditions are
necessary and sufficient to define a solid metric compatible with the material structure
by means of a family of cross-sections of FB.

On the other hand, if we consider another O(3)-structure, giving a second solid metric,
the two structures are not a priori related by the right action of a linear isomorphism
F € GI(3). But if they are, then the symmetric part of the polar decomposition of F
must be spherical, a homothety. This can be interpreted as the material being in both
cases in the same state but the measures of stress, or strain, are performed with different
scales.

Definition 5.18. A solid FGM B will be said to be relazable if the O(3)-structure
given by some solid metric is integrable or, equivalently, if the Riemannian curvature
(with respect to this metric) vanishes identically. We then say that the O(3)-structure is
relazed.

Definition 5.19. We say that a body B is homosymmetrically relaxzable if B is an unisym-
metric solid material for which there exists a covering Y of local configuration that are
both, unisymmetric and relaxed configurations.

Let B be a homosymmetrically relaxable elastic solid, then we have these two struc-
tures, the unisymmetric and the orthogonal, which are in certain manner interconnected.
As B is a solid, intuitively we may perceive that only the orthogonal part of a unisym-
metric isomorphism must be important. In what follows, we will explain this fact in more
detail.

A direct consequence of the previous Lemma B.11 and Proposition B.23 is the following
theorem, which implies a result proved by Epstein and de Leon [81].
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Theorem 5.20. If B is relazable elastic solid that is also homosymmetric, we have
N(B) =N(B)NO(B), (5.22)

where N(B) consits in the orthogonal part of the isomorphisms of N (B). Therefore, if
N.(B) is a smooth N;-structure, B will be homosymmetrically relazable if and only if the
reduced material groupoid N (B) is integrable (where z € FB s fized).

Let B a relaxable and homosymmetric elastic solid and let g denote the compatible
material metric

e If Bis fully isotropic, which means the symmetry group G(X) of each point X € B
is equal to the orthogonal group O(Tx B, g) itself, then the reduced FGM material
groupoid N(B) coincides with the orthogonal groupoid O(B).

e If B is triclinic (the only element of the symmetry group is the identity map), the
FGM material groupoid NV(B) is the full frame groupoid II(B), and thus N (B) =
O(B) as before.

e If B is transversally isotropic, at each point X € B there exists a basis of Tx B in
which the material symmetries ¢ € G(X) may be represented by matrices of the

form:
1 0 0

0 cosf —sinf
0 sinf cosf

Thus, for this basis, the normalizer of G(X) is

1 0 0 a 0 0
N(X):< 0 cos —sinf|,{0 B 0 >
0 sinf cos6 0 0 B
where the brackets denote the group generated by the elements enclosed, and where
0, «, 8 are real numbers, a, 3 being in addition positive. Therefore, the group at

any base point of the reduced FGM material groupoid coincides with the respective

symmetry group, that is B
N(X)=G(X) VzeB.

This means that, even if the material groupoid G(B) (the set consisting of material
isomorphisms and symmetries) is not transitive (i.e. B is not uniform), the reduced
FGM material groupoid N(B) is, and it coincides with G(B) on the symmetry
groups. Thus, there is some kind of uniformity that generalizes the classical one.
Finally, note that any G-structure related to N'(B) will have a transversely isotropic
structural group as mentioned before.

Finally, note that we recover an analogue result to Theorem 5.8, which is also
true for fully isotropic FGM solids. If B is homosymmetrically relaxable, then for
a unisymmetric and relaxable configuration K, the constitutive equation will be
invariant under the action of the structure group of the reduced N-stucture, related
to the configuration K. In this case, the structure group will coincide through K
with the symmetry group Gx(X) at any point X in the domain of K. However, the
constitutive equation will not be independent of the point.
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Functionally Graded Elastic Fluids

In the same way we have generalized the definition of elastic solids in section §5.4.3, we
are going to give a new definition of elastic fluids. Classically, an elastic fluid is a uniform
elastic material which posses a unimodular material structure, that is a U(3)-structure
(see [146] for instance), even though there are smaller fluid structures as the ones of fluid
crystals (cf. [118]).

Definition 5.21. We will say that a functionally graded elastic material B is a function-
ally graded fluid (or a functionally graded fluid crystal) if there is a volume form p on
B invariant under material symmetries such that every point is fluid (or, respectivelly, if
every point is a fluid crystal). The volume form is called a material form.

As in the case of functionally graded elastic solids, the following two conditions on
cross-sections (U, o) of the frame bundle FB,

o(X)™ G, 0(X)CUB) VX eU V(U,o) (5.23)
o(X)tr(X)eU@B) vXeUNnV Y{U,o),(V,7) (5.24)

characterize the fluid material structure.
Given a functionally graded elastic fluid B, consider the unimodular groupoid U(B)
related to the volume form p (Example B.7). When two fluid points have conjugate
symmetry groups, only the unimodular part of the conjugate transformation plays a role

in the conjugation. That is, if P is the transformation that conjugates these two groups,
then the unimodular transformation P/det,(P) still realizes the conjugation.

Proposition 5.22. If B is a unisymmetric elastic fluid, then
N (B) = N(B)NU(B), (5.25)
where N'(B) is the unimodular reduction of the FGM material groupoid.

Let B a fluid crystal of first kind (see [118, 154]), that is, an elastic fluid as in 5.21
such that, for each material point X € B, the symmetry group G(X) may be represented
for some reference z at X by matrices of the form

A:

Qo
NS

0
0
g

with det(A) = £1. The normalizer in GI(3) of this group of matrices is the set of
matrices of the same form but with the restriction det(A) # 0. Therefore, when we
intersect the normalizer with U(3) we obtain the original group of matrices. This means
that N1(X) = G(X) for every material point = € B.

The latter example shows us how a fluid material, which is not necessarily uniform,
preserves uniformly the symmetry group structure across the body.
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Appendix A

Multi-index properties

Given a function f: R™ — R, its partial derivatives are classically denoted

o f
8%181:1-2 cee 8$Zk )

fi1i2--'ik =

When smooth functions are considered, their cross derivatives coincide. Thus, the order
in which the derivatives are taken is no longer relevant, but the number of times with
respect to each variable.

Another notation to denote partial derivatives is defined through “symmetric” multi-
indexes (see [139]). A multi-index I will be an m-tuple of non-negative integers. The i-th
component of [ is denoted (7). Addition and subtraction of multi-indexes are defined
component-wise (whenever the result is still a multi-index), (I +J)(i) = I(i) £ J(i). The
length of I is the sum |I| = ) . I(i), and its factorial I! = IL,I(i)!. In particular, 1, will
be the multi-index that is zero everywhere except at the i-th component which is equal
to 1.

Keeping in mind the above definition, we shall denote the partial derivatives of a
function f : R™ — R by:

8|I|f a](l)+[(2)+~~-+l(m)f
fr="4 =

e 8:1:{(1)81’5(2) o Qplm)

Thus, given a multi-index I, I(7) denotes the number of times the function is differentiated
with respect to the i-th component. The former notation Shoulog not be confused with the
latter one. For instance, the third order partial derivative % (with f: R* — R)
. . 202302
is denoted fo32 and f2.1,0), respectively.

Here we present some simple, but useful, results on multi-indexes.

Lemma A.1. Given k integers 1 < iq,...,4 < m, with k > 0 and m > 1, define the

function
n(iy, ... i) =17 (i) (n(D) :=1), (A1)

where I .= 1;, +---+1;, € N™, for l = 1,..., k. We have that n is invariant under
permutations, that is, if 1 € ¥y is a permutation of k elements, then

n(il, Ce ,ik> = n(iﬂ(l), . ,iﬂ/@). (A2)

Moreover, n(iy, ..., i) = Ix!.
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Proof. We proceed by induction on k. The cases £ = 0 and k£ = 1 are trivial thus,
let us suppose that the result is true for some integer £ > 1 to show that it is also
true for k + 1. Since n(iy, ... ik, ik41) = lps1(igy1) - n(i1, ..., 1), by the hipotesys of
induction, it suffies to show that n(i, ..., ik 1,0k, igr1) = n(i1, -« ik_1, %41, ik ), Which is
equivalent to ]k—i-l(ik—i-l) . Ik(lk) = ],2+1(zk) . I]/{;(ik-‘rl)J where ]I/c = 11‘1 + -t 11‘1@71 + 1ik+1
and ]l/erl = 11‘1 i 1ik—1 + 1ik+1 + 1Zk

Lo (iggr) - Ln(iy) = Z 0 + 6i + 63 ) Z G 4 0
k—1
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1=1
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Note that J! = J(i) - I! for any pair (I,4) such that I +1; = J.

Lemma A.2. 1. Let {a“}l be a family of real numbers indexed by a multi-index
I e N™ and by an mteger 1 such that 1 < i < m. Given an integer k > 1, we have

that
Z Za” Z Z ar;. (A.3)

I|=k—1 i=1 |J|=k I+1;=

2. More generally, let {a, 12}[ I be a family of real numbers indexed by two multi-
indexes I, I, € N™. Given two integers k > 1 > 0, we have that

Z Z ar 1, = Z Z Qg Iy- (A4)

Iy |=1 | Io|=k—1 |J|= k11|+1‘21
I =

Proof. The proof is trivial when we realize that the sets {(1,7) : |[I|=k—1,1 <i < m}
and {(I,7) : I+ 1; = J, |J| = k} are in bijective correspondence. For the general case,
we shall consider the sets {(I1,12) : || =1, || = k—1} and {([1,15) : I + 1, =
J L =1 |J] =k} O

Z ah,IQ:ZZ Z CLIhIQ:Z Z ar, 1,- (A.5)

L1 |+ |12 | =k 1=0 |Iy|=1|Is|=k—1 |J|=k L1+I2=J
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Lemma A.3. Let {a;;},,; be a family of real numbers indexed by a multi-index I € N™
and by an integer i such that 1 <i<m. If J=1; +---+1;, € N™ is a multi-indez of
length k > 0, we then have that

1
IEDY TGy G (A.6)

I+1;=J =1

where Jy:=1; + -+ 1;,_ + 1, +--+ 1.

Proof. We proceed by induction on the dimension of the multi-indexes, m. The case
m = 1 is clear thus, let us suppose that the result is true for m — 1 > 1 to show that
it is also true for m. We first note without lose of generality that we may suppose that
i1 < g < -+ < and that J(m) #. Otherwise, we could easily reorder the indexes and
the coordinates correspondingly before the computations and undo the changes at the
end.

E ar; = E ari; + aj-—1,m

I+1,=J I+1;,=J
i#Em
= Z A1+ J(m)lmyi T CT—1m,m
I+1;=J
where J = J — J(m)1,,
k—J(m) 1
= D S et T 0l
=1 J(ir) e
where we have applied the hypothesis of induction

kJm) k ]
= Z /N aJA,il + Z /N a’J*,il
= J) I=k—J(m)+1 J(u)

Lemma A.4. Let J € N™ be a non-zero multi-index. We have that

> o+l (A7)

I+1;,=J |I| - 1

Proof.

" J(4) J(4) I(i)+1
PSRy I Dl i B

]

Lemma A.5. Let {a;}; be a family of real numbers indezed by a multi-index J € N™.
Given a positive integer | > 1, we have that

“I() + 1
ZCLJ: Z Zma[_i_l“ (AS)

= [T|=i-1 i=1
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Proof.

Sa - Z(Z I|<1i|)j11)‘”

|J|=t |J|=t \I+1
S IPIL
oA |f |+1
5 i”““
= I+1;
[I|=1—-1 i=1 [l +1

]

Lemma A.6. Let {a;}; be a family of real numbers indexed by a multi-index J € N'™.
Given a positive integer k > 1, we have that

Jj!
Z ajy = Z ﬁa.]k, (Ag)
=k 1<j1,esji<m
where Jy = 1; +---+1;,.

Proof. We proceed by induction on k. The case k = 1 is trivial thus, let us suppose that
the result is true for some integer k > 1 to show that it is also true for k£ + 1.

T S T

|J|=k+1 Je+1=1|J|=k

_ e T (Jrs1) + 1
-y Z T et

Jek+1=11<j1,....jk<m

B Z Jes1(Jrr1) - Ji!
S

1<g1,- 0 Jk+1<m
O

Lemma A.7. Let {aJ, bJ}J be a family of real numbers indexed by a multi-index J € N™.
Given an integer | > 1, we have that

Svar= 3 S M g g, (A.10)
|J|=t |I|=l—1 i=1 1 ’

where {Q”}“ is a family of real numbers such that for any multi-index J € N™ (with
|J| > 1) we have that

ey I+l
+1;,=J

Proof.

J Iz 1\ .,
Zb a;y = Z(Z |§_‘)—:_1>baj

|J|=1 |J]=l \I+1
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Appendix B

Groupoids and G-structures

B.1 Groupoids

Groupoids are a generalization of groups; indeed, they have a composition law with
respect to which there are some identity elements and every element has an inverse. For
a good reference on groupoids, the reader is refered to Mackenzie [117].

Definition B.1. Given two sets 2 and M, a groupoid €2 over M, the base, consists of
these two sets together with two mappings o, 8 : Q — M, called the source and the target
projections, and a composition law satisfying the following conditions:

1. The composition law is defined only for those n,{ € Q such that «(n) = 4(£) and,
in this case, a(né) = a(§) and S(n€) = B(n). We will denote Qa C Q x ) the set
of such pairs of elements.

2. The composition law is associative, that is {(n&) = ({n)¢ for those (,n,& € Q such
that each member of the previous equality is well defined.

3. For each x € M there exists an element 1, € €2, called the unity over x, such that
(a) a(ly) = B(1.) = z;
(b) n-1, =n, whenever a(n) = x;
(c) 1, -& =&, whenever 5(§) = x.

4. For each £ € ) there exists an element 1 € Q, called the inverse of &, such that

(a) a(§71) = B(&) and B(ETT) = a(§);
(b) 716 = 1ag and £671 = 1p(g).

The groupoid 2 will be said transitive if, for every pair x,y € M, the set of elements that
have z as source and y as target, i.e. Q,, = o~ !(x) N S7(y), is not empty.

A subset ' C € is said to be a subgroupoid of Q0 over M if itself is a groupoid over
M with the composition law of 2.

The elements of M are often called objects and those of Q2 arrows due to their graphical
interpretation as we may see in the Figure B.1 or in the example B.2. By the very
definition of groupoids, the unity over an object and the inverse of an arrow are unique.
Note also that €2, , is a group and the unity 1, is the group identity.

141
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Figure B.1: The arrow picture.

Ezample B.2 (The trivial groupoid). Let M denote any non-empty set. The Cartesian
product M x M is trivially a groupoid over M. The source of an arrow (z,y) is x and
the target y, and the composition (v, z) - (z,y) is (z, 2) if and only if ¥/ = y.

Fzample B.3 (The action groupoid). Now, let G be a group acting on the left on M.
Then the product G x M is a groupoid over M with the following structural maps:

e the source, a(g,z) = x;
e the target, f(g,x) =g - x;
e and the composition law, (h,y) - (g,x) = (h - g,x) if and only if y = g - z.

With these considerations, the unity over an element x € M and the inverse of an arrow
(g9,7) € G x M are respectively given by 1, = (e,z) and (g7, g- ), where ¢ € G denotes
the identity and ¢! the inverse of g.

Proposition B.4. Let Q) be a groupoid over a set M. Then, given three points x,y,z € M
such that they can be connected by arrows, we have the relation

Qpo=9 - Qpy=Qy.-f, VgeQ,., VfeQ,,,; (B.1)

in particular,
Qy»y =g Qx,:p ’ 9717 vg S Qx,y~ (BQ)

For the moment, we have only algebraic structures on groupoids. Let us endow them
with differential structures.

Definition B.5. We say that a groupoid ) over M is a differential groupoid if the
groupoid ) and the base M are equipped with respective differential structures such
that:

1. the source and the target projections «, 8 : 2 — M are smooth surjective submer-
sions;

2. the unity or inclusion map i : v € M — 1, € € is smooth;

3. and the composition law, defined on 24, is smooth.
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Additionally if € is transitive, then we call it a Lie groupoid.

A subgroupoid € of a differential (or Lie) groupoid € which is in turn a differential
groupoid with the restricted differential structure is called a differential subgroupoid (resp.
Lie subgroupoid).

Note that the condition (1) in Definition B.5 implies that the a-diagonal 2, is an
embeded submanifold of 2 x €2, and then (3) makes sense. Ver Eecke showed (cf. [117])
that, even with more relaxed conditions, the inverse map £ € Q — ! € Q is smooth, and
therefore a diffeomorphism. In fact, there is a more general way to define groupoids and
subgroupoids (differentiable or not) as the reader may find in [117], but for our purposes
these definitions will be sufficient.

Ezample B.6 (The frame groupoid). Let M be a smooth manifold with dimension n and
consider the space of linear isomorphisms between tangent spaces to M at any pair of
points, namely
(M) = | Iso(T.M,T,M). (B.3)
z,yeM
This set is called the frame groupoid of M and, in fact, it is a Lie groupoid over M, as
we are going to show.
First of all, we must give a manifold structure to II(M). Let (U, ¢) and (V, ) be two
charts of M and consider the map given by

W — 6(U) x Gl(n) x $(V)

A — (2 AL y) (B-4)
where Gl(n) denotes the general linear group on R",
W= |J Iso(T,M,T,M) and A O\ _ 42 (B.5)
Y oz’ t Oyl

zel,yeV

By means of the induced chart (W, x) we endow II(M) with a differential structure of
dimension 2n + n?.
The structural maps are given in the following way:

o the source and the target projections: if A € Iso(T,,M,T,M), then o(A) = = and
BlA) =v;

e the composition law is the natural composition between isomorphisms when it is

defined;

e and the inclusion: if x € M, then the unity 1, over z is the identity map of
GUT, M) = Iso(T, M, T, M).

These maps define clearly a groupoid over M and, through (B.4) and (B.5), they are
smooth for the differential structure naturally induced from the one of M.

Ezample B.7 (The unimodular groupoid). Let M be an orientable smooth manifold of
dimension n and let p be a volume form on it (in a more general case, without the
assumption of orientation, we can consider a volume density). We can use p to define a
determinant function over the frame groupoid II(M) by the formula:

p(A-vy,...,A-v,) =det,(A) - p(vy,...,v,) YVAell(M), (B.6)
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where vy, ...,v, € TyayM. Now, it is easy to check that the set of unimodular transfor-
mations

UM) = det, ' ({-1,+1}), (B.7)

which is called the unimodular groupoid, is a transitive subgroupoid of II(M). In fact,
it is a Lie subgroupoid of II(M), since det, is a smooth submersion and thus (M) is a
closed submanifold.

FEzample B.8 (The orthogonal groupoid). Let (M, g) be a Riemannian manifold of dimen-
sion n and consider the space of orthogonal linear isomorphisms between tangent spaces
to M at any pair of points, namely

o) = |J oTMT1,M). (B.8)

x,yeM

This set is called the orthogonal groupoid of M and, with the restriction to it of the
structure maps of the frame groupoid II(M), O(M) is a subgroupoid of II(M). Since
O(M) is defined by closed and smooth conditions, namely

OM)={Aell(M) : A7t =A"},

this set is a closed submanifold of II(M), and thus a Lie subgroupoid.
Furthermore, the orthogonal groupoid O(M) is also a Lie subgroupoid of the unimod-
ular groupoid U (M) related to the Riemannian density induced by the metric.

Definition B.9. Let ) be a groupoid over M; then the normalizoid of a subgroupoid Q
of Q2 is the set defined by

N ={g€Qy : Qyy=g-Quurg™', 2y € B}, (B.9)

From the definition, it is obvious that a subgroupoid Q of a groupoid 2 is also a
subgroupoid of its normalizoid N (Q) which is, in turn, a subgroupoid of the ambient
groupoid (2.

Note that the group over a base point in the normalizoid is the normalizer of the

group over this point in the subgroupoid, that is
(N( )2z = N(Qus), (B.10)

which explains the used terminology. The difference between a subgroupoid and its
normalizoid can be huge. For instance, given a transitive groupoid €2 over a set M,
consider its base groupoid, that is the subgroupoid consisting of the groupoid unities:

1(Q) = {1, :z € M}. (B.11)

Then, the normalizoid of 1(Q2) in Q is the whole groupoid Q. From now on, we will focus
on subgroupoids of the frame groupoid over a manifold and we will see how to reduce the
normalizoid of a subgroupoid whenever an extra structure is avaible on the base manifold.

First of all, recall that there exists a unique decomposition of a linear isomorphism
into an orthogonal part and a symmetric one. More precisely, let F' : £ — E’ be
a linear isomorphism between two inner product vector spaces £ and E’. There exist
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an orthogonal map R : E — E’ and positive definite symmetric maps U : £ — F,
V : B — E’ such that:
F=R-U and F=V-R. (B.12)

As we have mentioned, each of these decompositions is unique and they are called the left
and right polar decompositions of F', respectively; the orthogonal part R will be denoted
by F*.

Proposition B.10. Let Q be a (transitive) subgroupoid of the frame groupoid II(M) of
a Riemannian manifold (M, g). Denote by ) the set of the orthogonal part of elements
of Q, that is

Q={F*: FeQ}. (B.13)

Then Q is a (transitive) subgroupoid of the orthogonal groupoid O(M). We call Q2 the
orthogonal reduction of Q0 (or the reduced groupoid, for the sake of simplicity).

Proof. In order to show that 2 is a subgroupoid of O(M), we only have to check that it
is a groupoid over M with the restriction of the structure maps of II(M), which is clear
once we note that for any three linear isomorphisms Fi, F,, F3, such that F3 = F, - Fy, we
have by the uniqueness of the polar decomposition that ;- = F3- - Fit. O

Note that the orthogonal reduction of a normalizoid is not necessarily a subgroupoid
of the original one.

Proposition B.11. In the hypotesis of Proposition B.10, if ) is such that, for every
base point x € M, Q.. is a subgroup of Oy .(M) (the orthogonal group at x), then
the orthogonal reduction of the normalizoid of ) coincides with the intersection of the
orthogonal groupoid and the normalizoid itself, i.e.

N(Q) = N(Q) nO(M). (B.14)

Proof. The inclusion N'(2) D AM(Q) N O(M) is clear and, from the above Proposition
B.10, we have N (Q) C O(M), thus we only need to show that N (Q) C N(Q). Let
R € N,,(Q), then there exist a linear isomorphism F € N, ,(Q) such that F* = R.
Since F' conjugates the orthogonal subgroups €2, , and €2, ,, so does its orthogonal part

(cf. [81], Lemma A.2). Hence, R € N, ,(Q2) and N'(Q) C N(Q) N O(M). O
Similar results can be given whenever M is equipped with a volume form.

Proposition B.12. Given a smooth manifold M, suppose it is endowed with a volume
form (or density) p. If Q denotes a (transitive) subgroupoid of the frame groupoid TI(M),
then the set

Q' = Q/det,, (B.15)

is a (transitive) subgroupoid of the unimodular groupoid U(M) associated with p and it
will be called the unimodular reduction of Q.

Even more, if 1 is such that, for every base point x € M, Q,, is a subgroup of
Uy (M) (the unimodular group at x), then the unimodular reduction of the normalizoid
of Q0 coincides with the intersection of the unimodular groupoid and the normalizoid itself,
ie.

NYQ) = N(Q) NUM). (B.16)
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B.2 ({-structures

Lie subgroupoids of the frame groupoid of a manifold are closely related to another
geometric object: G-structures, which are a particular case of fiber bundles. For a com-
prehensive reference related to principal fiber bundles and G-structures see [84, 110, 111].
We give here their definition and some results about the interconnection with groupoids.

Definition B.13. Given two manifolds P, M and a Lie group G, we say that P is a
principal bundle over M with structure group G if G acts on the right on P and the
following conditions are satisfied:

1. the action of G is free, i.e. the fact that ua = u for some u € P implies a = e, the
identity element of G;

2. M = P/G, which implies that the canonical projection 7 : P — M is differen-
tiable;

3. P islocally trivial, i.e. P is locally isomorphic to the product M x GG, which means
that for each point x € M there exists an open neighborhood U and a diffeomor-
phism ® : 77}(U) — U x G such that ® = 7 X ¢, where the map ¢ : 7 1(U) — G
has the property ¢(ua) = ¢(u)a for all u € 7=1(U), a € G.

A principal bundle is commonly denoted by P(M,G), m : P — M or simply by P, when
there is no ambiguity. The manifold P is called the total space, M the base space, G the
structure group and 7 the projection. The closed submanifold 7—!(z), with z € M, is
called the fiber over x and is denoted P,; if u € P, Py, is called the fiber through u and
is denoted P,. The maps given in (3) are called (local) trivializations.

It should be remarked that a similar definition can be given for left principal bundles
using left actions.

Notice that any fiber P, is diffeomorphic to the structure group GG, but not canonically
so. On the other hand, if we fix u € P,, then P, = uG. We may visualize a principal
fiber bundle P(M,G) as a copy of the structure Lie group G at each point of the base
manifold M in a diffentiable way as it is stated by the trivialization property (3).

An elementary example of principal bundle is the frame bundle F M of a manifold M.
This manifold consists of all the reference frames at all the point of M. The frame bundle
F M is a principal bundle over M with structure group Gl(n), where n is the dimension
of M. As it is obvious, the canonical projection 7 sends any frame x € FM to the base
point x € M where it lies. The right action of Gl(n) over M is defined in the following
way:

R:FM x Gl(n) — FM

(z,a) — Rez=z-a=(alv;), (B.17)

where (al) is the matrix representation of a € Gl(n) in the canonical basis of R” and (v;)
is the ordered basis given by z € FM.

Definition B.14. Let P(M,G) and Q(M, H) be two principal bundles such that @ is
an embedded submanifold of P and H is a Lie subgroup of G. We say that Q(M, H) is
a reduction of the structure group G of P if the principal bundle structure of Q(M, H)
comes from the restriction of the action of G on P to H and (. In this case, we call )
the reduced bundle.
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Consider the following (non rigorous) construction: take a principal bundle P(M, G),
shrink its structure group to a Lie subgroup H of G, fix an element u € P in each fibre
of the bundle and apply the action of H to each of these chosen elements; this gives us a
subset () C P. The obtained set () is a reduced bundle when the selection of the u’s is
made smoothly and with certain compatibility.

Definition B.15. Let M be an n-dimensional smooth manifold and G a Lie subgroup
of Gl(n); then a G-structure G(M) is a G-reduction of the frame bundle FM.

Note that there may exist different G-structures with the same structure group. As
an example of G-structure, consider a Riemannian manifold (M, g). The set of orthonor-
mal references of FM gives us an O(n)-structure. In fact, any O(n)-structure on M is
equivalent to a Riemannian structure (see [84]).

Now let us introduce two results from [118] that show how a G-structure may arise
from a Lie groupoid.

Proposition B.16. Let Q2 be a Lie groupoid over a smooth manifold M with source and
target projections o and 3, respectively. Given any point x € M, we have that:

1. Q. =a Y(z)N B~ Yx) is a Lie group and

2. Q. = a”(z) is a principal Q, .-bundle over M whose canonical projection is the
restriction of 3.

Given a smooth manifold M of dimension n, any reference z € FM (at a point
x € M) may be seen as the linear mapping e¢; € R" — v; € T, M, where (eq,...,e,) is
the canonical basis of R" and (vy,...,v,) the basis of T, M defined by z.

Theorem B.17. Suppose that M is a smooth n-dimensional manifold and Q) is a Lie
subgroupoid of the frame groupoid II(M). If o and 5 denote the respective source and
target projections of (0, then we have that for any point x € M and any frame reference
ze€ FM at x:

1. G, =2"1-Qu, 2 1s a Lie subgroup of Gl(n) and

2. the set €1, of all the linear frames obtained by translating z by ., that is

Q={g2y 2 ¢ Goy € L}, (B.18)
15 a G,-structure on M.

Once the reference z is fixed, the linear frames that lie in the G -structure are called
adapted or distinguished references.

Even though the frame groupoid (and hence each of its subgroupoids) acts on the left
on the frame bundle of the base manifold, the structural group that arises from a frame
subgroupoid acts naturally on the right on any of the induced G-structures:

Ry " Yzp = (gx,y $ 2g) - (Z;1 o Zx) = Gy * Gzx - Rz = g;,y ‘ Ry = Zg/ﬁ (B.19)

where 2z, € F, M, z, € (2,)ys 92 € Gy, oy € sy and so on.
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Remark B.18. It is readily seen from equation (B.2) that two G-structures that come
from the same Lie groupoid are equal if and only if they have a reference in common,

O, =0, &0, N, £0. (B.20)

Here “equal” means that the two G-structures are the same as sets and they have the
same structure groups. By the above statement, given two G-structures €),, and €2,
induced by a Lie groupoid €2, we can suppose without loss of generality that z; and z,
are linear frames at the same base point. Thus, it is easy to see that their respective
structure groups G, and G, are conjugate; more precisely:

G, = 2521 -Gy - 27 2. (B.21)

In short, given a Lie subgroupoid  of I[I(M), the frame bundle FM is the disjoint union
of G-structures related to €2 by Theorem B.17. Moreover, they have conjugate group
structures and one of these G-structures may be transformed to another by means of
any element g € Gl(n) that conjugates their structural groups. Hence, modulo these
transformations, a G-structure related to a Lie subgroupoid 2 of TI(M) is unique, which
is clear since (2 is fixed.

A natural question is whether Theorem B.17 has a converse. Given a G-structure, it
seems reasonable to be able to choose differentially isomorphisms that transform adapted
references to their counterparts.

Theorem B.19. Let w be a G-structure over an n-dimensional smooth manifold M.
Then the set of linear isomorphism that transforms distinguished frames into distinguished
frames, that is the set

Q={Aecll(M) : Az€w, 2z € waa}, (B.22)

where II(M) is the frame groupoid of M and « the source projection, is a Lie soubgroupoid
of II(M). Furthermore, for any reference frame z € w, the G-structure associated to <)
and given by Theorem B.17 coincides with w, i.e.

N, =w and G,=G. (B.23)

Proof. The set defined by equation (B.22) is obviously a transitive subgroupoid of IT(M).
It remains only to show that it is a differential groupoid with the restriction of the
structural maps. Given two local cross-sections (U, o) and (V,7) of w, consider the set of
isomorphisms in 2 with source in U and target in V', namely

QU7V = Oé_l(U) N 5_1(‘/), (B24)

where « and ( are the restrictions to €2 of the source and the target projections of II1(M).
Given an isomorphism A € Qpy, let © = a(A) € U and y = S(A) € V. If we denote
the components of the ordered bases o(z) and 7(y) by (o;(x)) and (7;(y)) respectively,
we have that there exist coefficients A7 such that

Aoi(z) = AlTi(y). (B.25)

Since o(x) = (0y(x)) is a linear frame at x in w, Ao(z) = (Al7;(y)) is a linear frame

at y in w too. But 7(y) = (7;(y)) is also a linear frame at y in w, thus a = (A7) must
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necessarily be an element of the structure group GG. This consideration being made, we
define the coordinate chart ®,, by

Cor:Quy — UxGxV

A — (z,0,y) (B.26)
Given a covering of M by local sections of w, say X, the atlas
{(QU7V7 q)Uﬂ') : (U7 0)7 (V, T) € 2} (B27)

defines a smooth structure on 2, from which it is a straightforward computation to show
that the projections o and  and the composition law are smooth. O

Remark B.20. The result we have just proved, toghether with Theorem B.17, shows the
equivalence between Lie subgroupoids of II(A) and reductions of the frame bundle FM.
In fact it is still true for principal bundles in general: by Proposition B.16 we are able to
associate some principal bundles to a groupoid and, given a principal bundle P(M,G),
the set of maps ¢, : P, — P, such that ¢, ,(u-g) = ¢.,(u) - ¢(g), for a suitable group
isomorphism ¢ : G — G, is a Lie groupoid related to P by Proposition B.16.

Definition B.21. A G-structure G(M) over a manifold M is said to be integrable if there
exists an atlas {(Ua, ¢a)},c4 Of the base manifold, such that the induced cross-sections
0o(7) = (Tpda) ™' take values in G(M).

By the very definition, if a G-structure is integrable, the same happens to all its
conjugate G-structures.

Theorem B.22. A G-structure over a manifold M with dimension n is integrable if and
only if it is locally isomorphic to the standard G-structure of R™, that is, to R™ x G.

The following result will be useful in the next section.

Lemma B.23. Let M be a manifold. If and~(~2 are two subgroupoids of the frame
groupoid IL(M ), then their intersection §) := QN Q is again a subgroupoid of IL(M) (and
of Q and ). Furthermore, if they are Lie groupoids, then we have the following relations:

Q.=0.NQ, and G.=G.NG., (B.28)

where z € FM is a fived frame and 2, Q,, Qz, G,, G, and G, are the respective G-
structures and structural groups.
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