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Chapter 1

Introduction

The concept of dynamical system arises from the need to represent real physical systems
with a mathematical language, so that mathematical tools can be used to deduce some
properties of the physical system, maybe even to solve it completely (that is, to know
exactly its behaviour at any time). Although there are more general definitions for the
concept of dynamical system (which may include, for example, discrete systems) we
will work with the one which is more “geometric”, in the sense that the elements of
differential geometry are used. In fact, many of the structures and tools of differential
geometry were developed during and for the study of dynamical systems.

A dynamical system is constituted by a manifold M , whose points represent the
possible states of the physical system, and a differential equation on M , which repre-
sents the rule that governs the behaviour of the physical system. Thus, in every local
chart (U,x) of M , there is a differential equation

F

(
t,x,

dx
dt

, . . . ,
dkx
dtk

)
= 0. (1.1)

It is known that such a k-th order differential equation is equivalent to a first-order
differential equation on another “extended” manifold (namely, the (k − 1)-th order
tangent bundle Tk−1M). To work with a higher-order differential equation or with
a first-order differential equation on a manifold of higher dimension is a question of
the approach one takes to the problem. For instance, one of the pillars of Newtonian
mechanics is that the equation of motion is a second-order differential equation in the
configuration space, whereas the equations of the Hamiltonian formulation of mechanics
are first-order differential equations in the phase space.

In this dissertation we will not consider the general case represented by equa-
tion (1.1), but the particular case represented by differential equations that are affine
in the highest-order derivative:

A
(

t,x,
dx
dt

, . . . ,
dk−1x
dtk−1

)
· dkx

dtk
= b

(
t,x,

dx
dt

, . . . ,
dk−1x
dtk−1

)
,

1
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where A is a (generically singular) matrix and b is a vector. Of course, the main case
is the first-order case

A(t,x) · ẋ = b(t,x), (1.2)

since a higher-order equation can be transformed into it.

If A is a regular matrix, then the highest-order derivative can be isolated, obtaining
the equation

ẋ = c(t,x),

where c = A−1 · b. Then it is said that the differential equation is written in normal
form. Equations in normal form are easier to solve: at least, by the theorem of exis-
tence and uniqueness of solutions of ordinary differential equations we know that local
solutions of initial value problems exist and are unique.

From the geometrical point of view, a dynamical system with differential equation
in normal form is associated with a (time-dependent) vector field, and the integral
curves of this vector field are the solutions of the dynamical system. Therefore, it
makes sense to study equation (1.2) with the aim of finding an equivalent differential
equation in normal form, though perhaps not defined on the whole manifold. Thus,
one of the goals of this dissertation is to give a geometrical formulation for
the dynamical systems whose differential equation is of the kind of equa-
tion (1.2) and to find equivalent systems with equation in normal form (or,
in other words, to find vector fields whose integral curves are solutions of
the dynamical system).

It may seem too restrictive to consider only affine differential equations, but there
are strong motivations for the particular study of them. Our main reason is that several
formalisms of mechanics lead to equations of this kind, amongst them, the most impor-
tant two: the Lagrangian and Hamiltonian formalisms. In fact, both the Lagrangian
and Hamiltonian formalisms have presymplectic formulations, and the equation of the
presymplectic systems are affine. Some constrained mechanical systems also fall in this
category, notably the so-called nonholonomic systems. So, a second objective of
this thesis is to show how various formulations of mechanics fit into our
geometrical framework, with particular attention to nonholonomic systems.
Although not discussed in this work, this kind of equations also arise in other fields, such
as electric o chemical engineering, control theory or economics —see some references
in [BCP96, GMR04].

We will see that the geometric formulation of the differential equation (1.2) is dif-
ferent whether A and b are autonomous (independent of the evolution variable t) or
not. It is well-known that a time-dependent differential equation may be transformed
into an autonomous one by means of the following “trick”: consider the independent
variable t as dependent of a new variable s, satisfying the differential equation dt

ds = 1.
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Since clearly t = s + c for some constant c, equation (1.1) is equivalent to

{
F

(
t,x, dx

ds , . . . , dkx
dsk

)
= 0

dt
ds = 1

.

Hence, at the cost of extending the set of dependent variables to (t,x) we now have
an autonomous differential equation. In some cases, this may be advantageous. For
example, the autonomous differential equation may be easier to solve than the original
time-dependent differential equation, or we may know some method to solve the au-
tonomous differential equation that can not be directly applied to solve time-dependent
differential equations. The “trick” described above deals with differential equations
and we have given geometric formulations for theses differential equations. Therefore,
a third objective of this work is to develop a geometrical equivalent of the
process of converting a time-dependent differential equation into an au-
tonomous one, that fits well with the geometrical formulations proposed for
the autonomous and time-independent cases. It turns out that the concept of
vector hull is the appropriate geometrical tool, and a chapter of this dissertation will
be devoted to its discussion.

Now let us give an outline of this dissertation. We will explain the contents of the
different chapters, indicating the original contributions as well as the most relevant
references.

Chapter 2. Review of results on differential geometry

In this chapter we give the basic mathematical tools from differential geometry that
are used throughout the dissertation, and we fix the notation.

We review some notions like tangent bundle, submanifold, tensor field, riemannian
metric or (pre)symplectic form. These concepts can be found with more detail in some
reference books as [AM 78, Car 92, KN 63, Lan 85, LM 87].

We study more deeply the theory of bundles. Roughly speaking, a bundle consists
of a surjective submersion π: A → B such that all the fibres π−1(b) are isomorphic
to a “typical fibre”. We put special emphasis on vector bundles and affine bundles,
which have a vector space and an affine space respectively as typical fibre. We also
review the theory of jet bundles, which is the framework where time-dependent sys-
tems and derivatives are naturally described. Basically, we have followed the book by
Saunders [Sau 89] for the exposition of the topics on bundles.

Finally, we study the geometry of the tangent and cotangent bundles, as well as
higher order tangent bundles. We will show later that these concepts have a funda-
mental role in the geometric description of Lagrangian and Hamiltonian systems; this
is explained in detail in [LR 89].
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Chapter 3. Time independent systems

Here we review a geometrical model for the differential equation

A(x)ẋ = b(x), (1.3)

that is, equation (1.2) when the matrix A and the vector b are independent of time.
We give the name of (autonomous) linearly singular system to this structure because
the matrix A is singular in general. Autonomous linearly singular systems were first
presented by Gràcia and Pons [GP91] and subsequently developed in [GP 92a, GP02].
The first part of this chapter follows these works.

An autonomous linearly singular system consists of these elements:

• a vector bundle F → M over the configuration manifold M

• a vector bundle morphism A: TM → F between the tangent bundle TM and a
vector bundle F

• a section b: M → F of the vector bundle F

and it is denoted by (A: TM → F, b). We show all these elements in the following
diagram:

TM
τM

²²

A // F
π

}}zz
zz

zz
zz

M
f

==zzzzzzzz

Then, for a curve γ in M , the equation

A ◦ γ̇ = b ◦ γ

has equation (1.3) as local expression. We can also try to find the vector fields on M

such that its integral curves are solutions of the system. In this case, the condition is,
for a vector field X,

A ◦X = b. (1.4)

Since A is singular, we do not have a theorem of existence and uniqueness of so-
lutions, so we can not expect a global solution. In order to identify the subset of the
configuration manifold where the system has solutions one has to apply a recursive
procedure. Procedures like the presented here are generically known as constraint al-
gorithms. The first one was given, in a non-geometrical language, by Bergmann [BG 55]
and Dirac [Dir 64], and it was conceived to deal with the Hamiltonian formulation of
system with singular lagrangian. A geometric version was developed by Gotay and
Nester [GNH 78, GN 79] for presymplectic systems. Since a presymplectic system is a
time-independent linearly singular system, the algorithm presented here is a generaliza-
tion of the Gotay–Nester one. Geometric constraint algorithms for first-order implicit
differential equations of the form F (x, ẋ) = 0 were given in [RR 94, MMT 95].



5

We also give some notions on regularity and symmetries of autonomous linearly
singular systems.

The aim of the second part of this chapter is to show that different formulations of
(time-independent) Lagrangian systems can be written as autonomous linearly singular
systems.

The basic notions and the usual symplectic formulation of Lagrangian systems can
be found, for instance, in [AM 78]. The differences between regular and singular systems
are considered, notably the need to add, in the singular case, a “second–order condition”
that is directly fulfilled in the regular case.

We present two less-known formulations of Lagrangian systems, which overcome
this problem. The first one makes use of the so-called time-evolution operator K,
which was introduced in coordinates in [BGPR86] and was defined geometrically as a
vector field along the Legendre transformation in [GP 89]. The other formulation is the
first-order formulation of Skinner and Rusk [Ski 83, SR 83].

We also review the Hamiltonian formalism of Lagrangian systems, following [Car 90].
Finally we show how these different formulations of Lagrangian systems can be

considered as autonomous linearly singular systems.

Chapter 4. Generalized nonholonomic systems

Except for the introduction to nonholonomic Lagrangian systems, the contents of
this chapter are original, they were partially presented in [GM 04a] and can be found
in [GM 05a].

It is not unusual that a mechanical system has constraints, that is, some states
(position and velocities) of the system are forbidden. In other words, the derivative of
any solution of the system must lie on a submanifold, determined by the constraints,
of the tangent bundle of the configuration space.

If the constraints of the states of the system are determined by constraints of the
configuration space, it is said that the constraints are holonomic. For example, a
pendulum is constrained to move on a sphere, so the velocities must be tangent to
this sphere. Another possibility is that the constraints are integrable (also called semi-
holonomic constraints), so the configuration space is foliated by integral submanifolds
and the motion evolves separately in each integral submanifold. In both cases the
system can be reduced to subsystems that can be considered unconstrained.

Here we will consider the remaining case. Nonholonomic mechanical systems are
mechanical systems with non-integrable constraints. An easy example is a disk rolling
without sliding on a horizontal plane, and many wheeled vehicles has been modelled
with nonholonomic systems. More examples can be found in [NF 72].

Nonholonomic systems have been discussed since the last years of nineteenth cen-
tury, however, the geometric foundations for the theory were given in the 1970s with the
work by Vershik and Faddeev [VF72]. Since then, different geometric approaches have
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been taken to deal with the subject, for example, a hamiltonian approach in [BŚ 93],
a lagrangian approach in [LM96], a more general Poisson framework in [Mar 98], an
approach based on a gauge independent formulation of lagrangian and hamiltonian me-
chanics in [MVB 02], or a model based on ideals of differential forms and distributions
[KM01, Kru 02]. Symmetries of these systems, as well as reduction schemes derived
from them, have also been considered in the literature, see [Koi 92, BKMM 96, KM 98,
CL 99, Mar 03]. A very comprehensive work on nonholonomic systems and specifically
its geometric control can be found in [Cor 02].

In the first section we give the basic notions on nonholonomic systems and we
present the so-called Chetaev’s rule that provides the dynamics (although we note that
other principles has been proposed). We find that the resulting equation of motion, in
coordinates, has the form

{
A(x)ẋ− b(x) =

∑m
α=1 λαfα(x)

φα(x) = 0, 1 ≤ α ≤ m
,

where φα are m functions that define the constraints and λα are multipliers to be
determined. In terms of vector fields, the equation of motion has the following general
form: {

(A|C) ◦X − b|C ∈ F ′

X ∈ X(C)
. (1.5)

This is nearly the equation of a linearly singular system (see equation (1.4)), but we
notice two modifications: the restriction of the vector bundle morphism A and the
section b to some submanifold C and the appearance of some subbundle F ′ of the
vector bundle F (the range of A and b). We are not going to specify here which precise
objects are the base manifold M , A, b, C, F and F ′ in the nonholonomic case, but
let us say that (A: TM → F, b) is the linearly singular system associated with the
unconstrained dynamics.

In the second section we see that equation (1.5) is indeed the equation of a linearly
singular system, and that this linearly singular system can be constructed from the
linearly singular system (A: TM → F, b). The key is that we can perform two particular
operations with linearly singular systems: restriction to a subsystem and projection to
a quotient. With each operation we obtain a linearly singular system from another
linearly singular system, and combining both of them we can obtain a system with
equation (1.5) from the system (A: TM → F, b).

We call generalized nonholonomic systems to the systems obtained from another
by restriction and projection to a quotient. The reason for this name is clear, since
nonholonomic systems can be seen as a particular case. The detailed proof of this fact
is given in section 4.

We study the regularity, consistency and equations of motion of the generalized
nonholonomic systems in relation to the “original system” in the second section. In
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the third section we study the circumstances under which symmetries and constants of
motion of a linearly singular system induce symmetries and constants of motion of a
generalized nonholonomic system derived from it.

In section 5 we deal with another class of dynamical systems that has been a topic
of research for the last decade: the implicit Hamiltonian systems. We review the
basic notions on these systems and we show that they fall into the class of generalized
nonholonomic systems.

The notion of implicit hamiltonian system was introduced by van der Schaft and
Maschke [SM95a, SM 95b], and it can be regarded as a generalization of the notion of
symplectic and Poisson systems. Implicit hamiltonian systems can be used to model
a wide range of physical systems. For example, physical systems with a singular La-
grangian or mechanical systems with linear nonholonomic constraints naturally give
rise to implicit hamiltonian systems.

Furthermore, external variables can be easily added to obtain the so-called implicit
port-controlled Hamiltonian systems, which are suitable to model control systems as
for instance electrical LC-circuits. As well, by means of the external variables, these
systems can be interconnected, allowing a modular approach to the modeling process.

In section 6 we apply the theory to the example of a relativistic particle. We
consider two lagrangian functions, the usual singular lagrangian and a regular one,
studied in [KM01], where the authors study the relativistic particle as a mechanical
system with nonholonomic constraints. We study both systems without constraints
and with the nonholonomic constraint v2 = c2, and we find that the singular system
becomes regular with the addition of the constraint.

We finish the chapter with two simple examples to illustrate the relations between
the symmetries and constants of motion of the unconstrained and constrained systems.
One of the examples, the particle in R3 under the nonholonomic constraint ż− yẋ = 0
was proposed in [Ros 77] and it has been studied in various papers about reduction of
nonholonomic systems [BGM 96, BKMM 96, BŚ 93, CL 99].

Chapter 5. Vector hulls

In this chapter we leave aside the differential equations and we undertake the study
of the vector hull, a topic more related to linear algebra. Firstly, we are interested
in this subject because vector hulls can be applied to convert, in a neat geometrical
way, a time-dependent differential equation into an autonomous one. We will see this
application in the next chapter, devoted to time-dependent systems. Nevertheless,
vector hulls have other applications and are interesting by themselves, so we want to
have a closer look at them. The contents of this chapter are presented in [GM 06] and
have been partially published in [GM 05c].

Roughly speaking, a vector hull of an affine space A (over a field K) is a vector
space V that contains A as a proper hyperplane (that is, an hyperplane that does not
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contain the zero vector). Such a vector space satisfies the following universal property:
for every vector space F and affine function h:A → F , there exists a unique linear
function ĥ :V → F such that the following diagram is commutative

A Â Ä //

h ÃÃB
BB

BB
BB

B
V

ĥ

²²
F

As it is expected, all the vector hulls of A are isomorphic, and we denote by Â any
of them. One obvious choice for the vector hull of A is K ⊕ ~A, where ~A is the vector
space associated with A. The drawback of this construction is that the inclusion of A

into K ⊕ ~A depends on the choice of a privileged point in A, so it is not a canonical
construction.

There are various canonical constructions of the vector hull in the bibliography. We
show with detail that the set of affine maps X:A → ~A such that its associated linear
map X: ~A → ~A is a homothety is a vector hull of A. This construction is inspired by
the construction given in [BB 75] (included in the book [Sch 75]), where the homothetic
vector fields are characterized by another property called equiprojectivity.

The first canonical construction of the vector hull appears as an exercise of Bour-
baki’s Algèbre[Bou 70], where it is constructed as a quotient of the vector space K(A),
that has all the points of A as a basis, by a suitable subspace. A similar construction
appears in [GGU 03]. Another usual choice, only valid when A is of finite dimension, is
the dual space of affine functions from A to K: A (A, K)∗. This construction is used, for
instance, in [MMS 02]. Other constructions appear in [Ber 77, Fre 73, Gal 01, IREM 75].

Along with vector hulls of affine spaces come vector prolongations of affine maps.
We see that for every affine map map f : A → B there is a unique linear map f̂ : Â → B̂,
called the vector prolongation of f , such that the following diagram is commutative:

AÄ _

²²

f // BÄ _

²²

Â
f̂ // B̂

It turns out that the assignment A Ã Â, f Ã f̂ , is a covariant functor from the
category of K-affine spaces to the category of K-vector spaces.

The first half of the chapter is a review of the vector hull functor, presenting also
new results about it. In the first section we review the basic notions on affine spaces
and give some results on hyperplanes that will be used later. In particular, it is crucial
the fact that the set of proper hyperplanes of a vector space is in bijection with the set
of non-vanishing linear forms.

In the second section we define the vector hull and the vector prolongation, and we
state some properties of these objects. It will be of special relevance that if there exists
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an exact sequence of vector spaces

0 // ~A
i // W

w // K // 0 (1.6)

then W is a vector hull of A. We also study the case when the affine space A is indeed a
vector space (then Â = K×A canonically) and finally we take a look on the coordinate
expressions of the different objects defined.

The notion of vector hull has various applications in linear algebra. For example,
in the framework of affine geometry, expressions like a + u = b and u = b − a, and
barycentric combinations like

∑
λiai (where

∑
λi = 1), have a neat interpretation

under the vector space structure of the vector hull Â. Another application is a pretty
interpretation of the well-known linear representation of the affine group GA(n, K) as a
subgroup of the linear group GL(n+1,K). There is also benefit for projective geometry:
there is a canonical inclusion A ↪→ P(Â), so that P(Â) is the projective completion of A,
and affine transformations yield projective transformations in the projective completion
[Fre 73] [Ber 77]. These applications of the vector hull are explained in section 3.

There are another examples of the use of the vector hull in the literature. For
instance, they have been applied to the study of mechanics of rigid bodies (see for
instance [BB75]), or to devise algorithms to draw curves and surfaces for computer-
aided geometric design [Ram89] [Gal 01].

In sections 4 and 5 we explain our construction of the vector hull and discuss the
other constructions mentioned above.

The vector hull functor can be extended to the categories of affine bundles and
vector bundles, that is, every affine bundle π: A → M has a vector hull, denoted by
π̂: Â → M . Without going into details, each fibre (Â)m of the vector hull is the vector
hull (̂Am) of the fibre Am. All the properties of the vector hull functor of affine spaces
extend well to the vector hull of affine bundles. We discuss these subjects in section 6.

In the field of differential geometry, jet manifolds provide with examples of affine
bundles. For instance, the first-order jet space J1M of a bundle M → R is an affine bun-
dle over M . There is a canonical affine immersion of J1M in the tangent bundle TM ,
and it turns out that this bundle is a model of the vector hull of J1M . Although in
this chapter we do not talk about differential equations, here we already glimpse a rela-
tion between vector hulls and differential equations, since (first-order) time-dependent
differential equations are geometrically modelled on (first-order) jet spaces and (first-
order) autonomous differential equations on (first-order) tangent bundles. In section 7
it is shown that the vector hull of the k-th order jet bundle JkM → Jk−1M of a
bundle M → R can be identified with the so-called Cartan distribution on Jk−1M .

Jet bundles over an arbitrary base are discussed in section 8. This may be useful
in the study of partial differential equations, for instance, these jet bundles are the ap-
propriate geometrical framework for the description of classical field theories [CCI 91].
Indeed, the vector hull of the first-order jet bundle is the dual of the so-called multi-
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momentum bundle, which arises in the multisymplectic formalism of field theories—
see, for instance [EMR 00]. We identify the vector hull of the k-th order jet bundle
JkM → Jk−1M of a bundle M → B with a subspace of the space of homomorphisms
Hom(π∗k−1TB, TJk−1π). This result includes all the cases studied in sections 6 and 7.
We point out that the proof of all the results of these two sections are based on the use
of an exact sequence (1.6).

Finally, in section 9 we study the second order tangent bundle T2M → TM , which
is another affine bundle. This case is different from the previous cases because T2M

is naturally included into the vector bundle T(TM), but its vector hull can not be
embedded into T(TM).

Chapter 6. Time-dependent systems

The main objective of this chapter is to extend the theory of autonomous linearly sin-
gular systems exposed in chapter 3 to the time-independent case. Most of the contents
of this chapter are exposed in [GM 04b, GM 05b].

We study the geometric framework of time-dependent first-order implicit differential
equations,

F (t,x, ẋ) = 0.

Time-dependent systems in general are studied in many books, as for instance [AM 78,
Olv 93]. We are interested in the case when F is affine in the velocities, the case that
we call linearly singular case, represented by equation (1.2)

A(t,x) · ẋ = b(t,x),

where A is a matrix that is generically singular.
First we should point out that our model for the time-dependent configuration

space, rather than a trivial product M = R × Q, is a fibre bundle ρ: M → R, where
the base R contains the time variable. Such an M is isomorphic to a product R×Q,
but in practical applications there may not be a privileged trivialization, and a possible
extension to deal with field theory of course should not be based on a trivial bundle.

The basic difference between the formulation of the autonomous and the non-
autonomous case is the use of tangent bundles and jet bundles respectively. To describe
an autonomous differential equation on a configuration space Q we use the tangent bun-
dle TQ, which is a vector bundle. On the other hand, to describe a non-autonomous
differential equation on a time-dependent configuration space M , we use its jet bun-
dle J1ρ, which is an affine bundle over M . Naturally, we will use affine morphisms
defined on this affine bundle to describe a linearly singular equation on M .

In section 1 we present a geometrical model for equation (1.2), which we call time-
dependent linearly singular system. It consists of the following elements:

• a vector bundle E → M over the configuration manifold M
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• an affine bundle morphism A: J1M → E between the first-order jet bundle J1M

and a vector bundle E.

J1ρ
A //

ρ1,0

²²

E

π
~~}}

}}
}}

}}

M

Then, equation
A ◦ j1ξ = 0,

for a section ξ: I → M has equation (1.2) as local expression.
Now we have the same problem as in the autonomous case. If A is singular, there

is no existence and/or uniqueness of solutions guaranteed. In section 2 we propose a
constraint algorithm for time-dependent singular systems. This algorithm is the natural
generalization of the algorithm for the autonomous case, both in the general implicit
case [RR 94, MMT95] and the linearly singular case [GP 91, GP 92a], that was presented
in chapter 3. The case of an implicit equation in a product M = R × Q has already
been discussed in [Del 04]. It is worth noting that constraint algorithms for some
particular time-dependent systems (arising from mechanics) have been described in
several recent works, as for instance [CF 93, CLM 94, ILMM 99, LMM 96, LMMMR 02,
Vig 00]. Since all these systems are of linearly singular type, they are included within
our framework. Their various algorithms are also particular instances of the general
constraint algorithms that we will study here. So, there is a general procedure that
can be applied to these several systems, and their particular details are secondary with
respect to the algorithm followed to obtain their solutions.

When studying a time-dependent differential equation, sometimes it is useful to
convert it into an equivalent time-independent one. This is even more interesting for
implicit equations; for instance, the constraint algorithm for the autonomous case is
easier to implement than for the non-autonomous case, because of the fact that vector
fields instead of jet fields are used to obtain the constraint functions. In the beginning
of the introduction we have sketched the usual method (using coordinates) to perform
this transformation.

Here in section 3 we examine the possibility of associating an autonomous linearly
singular system with a time-dependent one, so that the solutions of both systems will
be in correspondence. Essentially, we use the canonical inclusion of J1M into TM . In
order to perform this association, we propose two different strategies. One possibility
is to choose a connection on the jet bundle to induce a splitting of the tangent bundle.
The other possibility, which does not make use of any choice, is based on the notion
of vector hull that we studied in the previous chapter. The time-dependent linearly
singular system A: J1M → E is converted into the autonomous linearly singular system
(Â: TM → Ê, 0̂).
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The process of converting a time-dependent linearly singular system into an au-
tonomous one is shown in section 4 with a concrete example, a pendulum of variable
length.

Since our main motivation for studying the linearly singular systems comes from
Euler–Lagrange equations and mechanical systems, where equations of motion are of
second order, it is natural to extend the preceding study to second-order implicit and
linearly singular equations:

F (t,x, ẋ, ẍ) = 0, A(t,x, ẋ)ẍ = b(t,x, ẋ).

This is done in section 5, also exploring the two constructions to pass from a time-
independent system to an autonomous one.

Section 6 is devoted to the study of time-dependent Lagrangian systems. We review
its formulation with jet bundles, that can be found in [CPT84, LR89], for the trivial
product case (M = R × Q), and [LMM 96] for the general fibre bundle case. The
equations of motion are found and it is shown that these equations are those of a
time-dependent linearly singular system.

In chapter 2, we studied the first-order formulation of autonomous mechanics, geo-
metrically developed by Skinner and Rusk [Ski 83, SR 83]. There is a similar formulation
for time-dependent systems, proposed by Cortés, Mart́ınez and Cantrijn [CMC02]. We
review it and see that it is also equivalent to a time-dependent linearly singular system.

Other formulations of time-dependent lagrangian systems can be found in [EMR 91],
for the regular case, and [Kru 97, MPL 00, MS 98, LMMMR 02] for the general case; see
also references therein.

We saw in chapter 4 that (time-independent) nonholonomic mechanical systems
can be modeled in a natural way with (time-independent) linearly singular systems by
means of the construction of generalized nonholonomic systems. Here in section 7, we
introduce the concept of time-dependent generalized nonholonomic system, which is
the analogous construction for the time-dependent case.



Chapter 2

Review of results on differential

geometry

Here we are going to review the notions of differential geometry that will be relevant
to us, and we will also fix the notation. The reader can find all the details in reference
books as [AM 78, KN63, Lee 03]. We assume that basic concepts of differential geometry
such as local chart and differential manifold are known. Unless stated otherwise, we
will suppose that the manifolds and mappings we deal with are smooth (that is, of
class C∞). We will also assume that manifolds are finite-dimensional, paracompact
and Hausdorff.

2.1 Manifolds and maps

We will denote the linear space of tangent vectors to a manifold M at a point p ∈ M

by TpM , and the tangent bundle by TM , with projection to the base denoted by
τM : TM → M . The dual space of a tangent space TpM is the cotangent space T∗pM
and the cotangent bundle will be denoted by T∗M , with projection πM : T∗M → M .
Every local chart (U, xi) of M induces basis

(
∂

∂xi

∣∣
p

)
of TpM and (dxi

p) of T∗pM . It

also induces local systems of coordinates (xi, ẋi) (defined by ẋi
(

∂
∂xj

∣∣
p

)
= δi

j)) on TM

and (xi, pi) (defined by pi(dxj
p) = δj

i ) on T∗M . These systems of coordinates are called
natural coordinates

The set of maps f : M → N between two manifolds M and N is denoted by
C∞(M, N). We use the notation Tf : TM → TN for the tangent map of f and
Tpf : TpM → Tf(p)N its restriction to a tangent space. If Tpf is surjective (respec-
tively, injective) we say that f is a submersion (respectively, immersion) at p. The map
f is called a submersion (or immersion) if f it is a submersion (or immersion) at every
point p ∈ M .

If the target manifold is N = R, a map f : M → R is called a function on M , and

13
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we denote the set of functions on M simply by C∞(M). On the other hand, when the
source manifold is an open interval M = I ⊂ R (maybe the whole R), we say that
a map γ: I → N is a path (or a curve) in N . The derivative (or velocity) of a path
γ: I → N is the path γ̇: I → TN in the tangent bundle defined by

γ̇(s) = Tsγ

(
d
dt

∣∣∣∣
s

)
,

where t denotes the natural coordinate of I, the identity. If, in local coordinates,
the path γ is expressed by γ(t) = (γi(t)), then its derivative has local expression
γ̇(t) = (γi(t), γ̇i(t)), where here the dot on the right side of the equation denotes the
known derivative of real-valued functions of real variable.

2.2 Tensor fields

A section of the tangent bundle (that is, a mapping X: M → TM such that τM ◦X =
IdM ) is a vector field on M . The set of all vector fields over M is denoted by X(M). The
action of a vector field X on a function f ∈ C∞(M) will we written X · f (sometimes
LXF ). Let f : M → N be a map. We say that two vector fields X ∈ X(M) and
Y ∈ X(N) are f -related if Tf ◦X = Y ◦ f , and we write X ∼f Y .

An integral curve of a vector field X ∈ X(M) is a path γ on M such that

γ̇ = X ◦ γ.

In local coordinates, this equations reads as γ̇i(t) = Xi(γ1(t), . . . , γm(t)), that is, a
system of first-order ordinary differential equations. For each p ∈ M , denote by Ip the
biggest interval for which there exist an integral curve of X with γ(0) = p (we say that
γ is a maximal integral curve). We can define the set DX = {(t, p) ∈ R×M | t ∈ Ip}.
The map FX :DX → M , defined as FX(t, p) = γ(t), where γ is the maximal integral
curve of X with γ(0) = p, is called the flow of the vector field X. We also write
F t

X(p) = FX(t, p). Flows of vector fields have the following properties: for every t

the maps F t
X are diffeomorphisms between its domain and image, F 0

X = IdM and
F t

X ◦ F s
X = F t+s

X where the equation is well-defined.
The dual concept of vector field is the one-form, a section α: M → T∗M of the

cotangent bundle. The set of all one-forms over M is denoted by Ω1(M). We have a
pairing 〈·, ·〉: X(M)× Ω1(M) → C∞(M) defined by 〈X, α〉(p) = α(p) ·X(p).

In general, we can consider tensor fields of contravariant order r and covariant
order s (or (r, s)-tensor fields), which are sections of the bundle

⊗r
s TM → M . At a

point p ∈ M , the fibre of this bundle is T∗pM⊗ s)· · · ⊗T∗pM ⊗TpM⊗ r)· · · ⊗TpM . The set
of skew-symmetric (0, k)-tensor fields is denoted by Ωk(M) (note that this is consistent
with the definition of Ω1(M)). The elements of Ωk(M) are called k-forms. For a
detailed explanation of the tensor fields and forms, as well as the tensor product ⊗, the
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wedge product ∧, the exterior derivative d, the pullback f∗ω of differential forms by
maps and the Lie derivative LX with respect to a vector field X, we refer to [AMR83].

There are two distinguished types of tensor fields that are the central objects of
two branches of differential geometry: the Riemannian geometry and the symplectic
geometry. We give here the basic definitions, more detailed introductions to these two
vast topics can be found in [Lee 97, Car 92] for Riemannian geometry and [LM 87] for
symplectic geometry.

Definition 2.1 A Riemannian metric g on a manifold M is a symmetric and definite
positive (0, 2)-tensor field on M .

Roughly speaking, a Riemannian metric assigns an inner product to each tangent space
TpM . The pair (M, g) is called a Riemmanian manifold. A Riemannian manifold (M, g)
is provided with the so-called musical isomorphisms between TM and T∗M ,

[: TM → T∗M and ]: T∗M → TM,

defined as v[ = g(v, ·) and ] the inverse of [.
Another geometrical object associated with a Riemannian metric g is the Levi–

Civita connection ∇g. It is the unique affine connection (see [KN 63] for an explanation
of affine connections and its related concepts, such as covariant derivative and torsion)
that is Riemannian (∇gg = 0) an torsion-free.

More generally, a symmetric (0, 2)-tensor field which is nondegenerate is called
a pseudo-Riemmanian metric. The signature of a pseudo-Riemannian metric is the
signature (p, q) of the bilinear form that the metric induces on any tangent space (it
can be seen that it is fixed on every connected component), that is, the number of
positive and negative eigenvalues. Thus, a Riemannian metric has signature (m, 0). A
pseudo-Riemannian metric with signature (1, n) is called Lorentzian metric.

Definition 2.2 A symplectic form ω on a manifold M is a nondegenerate closed 2-
form on M .

The pair (M, ω) is called a symplectic manifold. It can be seen that, since a symplectic
form is nondegenerate, the dimension of every symplectic manifold is even.

Like Riemannian manifolds, a symplectic manifold has an isomorphism ω̂: TM →
T∗M , defined by ω̂(v) = ω(v, ·). We also use the notations X[ = ω̂◦X and α] = ω̂−1◦α,
for X ∈ X(M) and α ∈ Ω1(M).

Darboux’s theorem provides us a nice local description of a symplectic manifold
(M, ω) of dimension 2r. It states that around every point m ∈ M , there exist local
coordinates (qi, pi), 1 ≤ i ≤ r such that ω has the local expression

ω =
r∑

i=1

dqi ∧ dpi.
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These coordinate are called symplectic coordinates.
Given a function H ∈ C∞(M), the corresponding Hamiltonian vector field is XH =

dH]. It is the unique vector field on M such that

iXH
ω = dH.

The triple (M, ω,H) is called a Hamiltonian system and H is the hamiltonian function
of the system. The solutions of the Hamiltonian system are the integral curves of
the Hamiltonian vector field XH . In symplectic coordinates (qi, pi), a curve γ(t) =
(qi(t), pi(t)) is a solution of the Hamiltonian system if and only if satisfy the equations

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
,

which are called Hamilton equations.
If a 2-form ω ∈ Ω2(M) is closed but degenerate is called presymplectic, and the pair

(M, ω) is a presymplectic manifold. Given a one-form α in M , the triple (M,ω, α) is
said to be a presymplectic (dynamical) system and has the associated equation

iXω = α,

for X ∈ X(M). Thus, a Hamiltonian system is a special case of presymplectic system.

A generalization of the concept of symplectic manifold is that of Poisson manifold.
Here we only give the definition, we refer to [Vai 94] for a detailed discussion.

Definition 2.3 A Poisson bracket on a manifold M is a mapping {·, ·}: C∞(M) ×
C∞(M) → C∞(M) with the following properties:

1. bilinearity over R,

2. skew-symmetry,

3. the Leibniz rule: {f, gh} = {f, g}h + g{f, h}, for all f, g and h ∈ C∞(M), and

4. the Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, for all f, g and
h ∈ C∞(M).

A Poisson manifold is s manifold endowed with a Poisson bracket. For example,
any symplectic manifold (M, ω) is a Poisson manifold with Poisson bracket {f, g} =
ω(Xf , Xg). More generally, a mapping {·, ·}: C∞(M)×C∞(M) → C∞(M) that satisfies
the first three conditions of definition 2.3 is called an almost-Poisson bracket and M

an almost-Poisson manifold.
An (almost-)Poisson manifold carries an antisymmetric (2, 0)-tensor field (or bivec-

tor field) Λ, characterized by the equation {f, g} = Λ(df, dg). If the manifold is a
Poisson manifold, then the bivector field Λ is nondegenerate if and only if M can be
endowed with a symplectic form ω that induces the Poisson bracket {·, ·}.
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2.3 Submanifolds

A submanifold is a subset of a manifold which is a manifold itself, with a certain
compatibility between both manifold structures. The precise definition is as follows.

Let N be a manifold of dimension n and M a subset of N . We say that M is a
regular submanifold (or simply submanifold) of N of dimension m if for every p ∈ M

there exists a local chart (U,Φ) of N around p such that M ∩ U = Φ−1(Rm × {0}).
This charts are said to be adapted to M . Furthermore, local charts on M of the
form (M ∩ U,Φm) defined from local charts (U,Φ = (Φm,Φn−m)) of N adapted to M

constitute an atlas that provides M with a differentiable structure.
An immersed submanifold is the image F (M) of an injective immersion F : M → N ,

with the quotient topology determined by the bijection F |M : M → F (M). However,
the image F (M), as a subset of N , also has an induced topology. If the two topologies
coincide, that is, M is homeomorphic to its image F (M), then F is called an embedding.
It turns out that the image F (M) of an embedding is a regular submanifold and,
conversely, if M ⊂ N is a regular submanifold, the inclusion M ↪→ N is an embedding.

Now, the following theorem gives alternative definitions of regular submanifolds:

Theorem 2.4 Let N be a manifold of dimension n, M a subset of N and m a natural
number with 0 ≤ m ≤ n. The following properties are equivalent:

i) M is a regular submanifold of N of dimension m.

ii) For every p ∈ M there exists an open neighborhood U ⊂ N of p and a submersion
g: U → Rn−m such that M ∩ U = g−1(0).

iii) For every p ∈ M there exist an open neighborhood U ⊂ N of p and an injective
immersion f : V → N , where V is an open subset of Rm, such that M∩U = f(V ).

Note that condition ii) of the theorem can be written in terms of the components
of g, that is: there exist n − m functions gi:U → R such that dgi(p) are linearly
independent and M ∩U = {x ∈ U | g1(x) = · · · = gn−m(x) = 0}. Then, the annihilator
of TpM (as a linear subspace of TpN) is the subspace of T∗pN generated by the covectors
(dgi)p, with 1 ≤ i ≤ n−m.

2.4 Bundles

The tangent and cotangent bundles are two examples of bundles, a geometric structure
which generalizes the concept of pair of manifolds and maps. We will mainly follow
here the exposition by Saunders [Sau 89].

A bundle is a quadruple (A, π, B, F ), where A, B, and F are manifolds and π: A → B

is a surjective submersion such that for every b ∈ B there exist an open neighborhood U

of b and a diffeomorphism φ: π−1(U) → U×F satisfying the condition pr1◦φ = π|π−1(U),
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where pr1 is the projection to the first factor. This condition says that the following
diagram is commutative:

A ⊃ π−1(U)

π
%%KKKKKKKKKK

φ // U × F

pr1
||yy

yy
yy

yy
y

B ⊃ U

A is called the total space, π the projection, B the base space, F the typical fibre and
the diffeomorphisms φ are called local trivializations of π. For each point b ∈ B, the
subset π−1(b) is called the fibre over b and is denoted by Ab.

Note that all the fibres Ab are diffeomorphic to the typical fibre. We usually refer
to a bundle (A, π, B, F ) simply as π (or A if the projection is understood) and we will
sometimes use a subscript in the notation of an element of the total space A, as for
instance ab, to indicate that it belongs to the fibre Ab.

In the case that the total space is the cartesian product of the base space and the
typical fibre, and the projection is exactly pr1: B × F → B, we say that the bundle is
a trivial bundle.

Suppose that dimB = m and dimF = n (so dimA = m + n). A coordinate
system ϕ: U → Rm+n on an open set U ⊂ A is called an adapted coordinate system or
fibred chart if, whenever two points a1, a2 belong to the same fibre, then pr1 ◦ ϕ(a1) =
pr1 ◦ ϕ(a2) (where pr1:Rm+n → Rm). We always can construct adapted coordinates
systems in the following way. Let φ: π−1(U) → U ×F a local trivialization of π, with U

the domain of a local chart (U,ψ = (xi)) of B, and let (W,χ = (uα)) be a local chart of
F . Then (ψ × χ) ◦ φ|φ−1(U×W ) is a fibred chart and we adopt the notation (xi, uα) for
its components. The local expression of π in adapted coordinates is simply π(x, y) = x.

A section of a bundle (A, π, B, F ) is a map s:B → A such that π ◦ s = idB. The
set of sections of π is denoted by Sec(π). Then we see that a section of a trivial bundle
pr1: B × F → B is indeed the graph of a function from B to F , so the sections of a
trivial bundle correspond to the maps from B to F . There is also the concept of local
section, a map s:U → A, where U is an open subset of B, such that π ◦ s = idU . The
set of local sections with domain U is denoted by SecU (π). An extension of the concept
of section is that of section along a map. If f : C → B is a map from a manifold C to
the base space B, a section along f is a map g: C → A such that π ◦g = f . Note that if
we set f = idB we recover the previous definition of section. The set of sections along
f is denoted by Sec(f). An example of section along a map is given by the derivative γ̇

of a path γ: I → M on a manifold M , in this case γ̇ is a section along γ of the tangent
bundle τM : TM → M . A section X of τM along a map f : N → M is also called vector
field along a map. It has a corresponding differential operator dX : C∞(M) → C∞(N)
defined as (dXf)(p) = X(p) · f . In an analogous way, for each type of tensor bundle
there are tensor fields along maps.
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Let π: A → B and π′: A′ → B′ be two bundles. A bundle morphism from π to π′ is
a pair of maps (f, fo) where f : A → A′, fo: B → B′ and π′ ◦ f = fo ◦ π:

A

π

²²

f // A′

π′
²²

B
fo

// B′

The map fo is called the projection of f and we say that f is a morphism over fo. The
important point is that f maps fibres to fibres (i.e., f(Ab) ⊂ A′fo(b)), so in fact fo is
determined by f . Reciprocally, every f : A → A′ that maps fibres to fibres determines a
unique projection fo: B → B′ and hence a bundle morphism. We denote the restrictions
to the fibres f |Ab

simply by fb. Using adapted coordinates (xi, uα) on A and (yj , vβ)
on A′, a map f : A → A′ has a local description f = (f j(xi, uα), fβ(xi, uα)). Then f

induces a bundle morphism if and only if the components f j only depend on the base
coordinates xi of B (that is, f = (f j(xi), fβ(xi, uα))), and in this case the projection
fo: B → B′ has the local expression fo = (f j(xi)). An important particular case is
when B = B′ and fo = idB, then f is simply called a morphism between bundles over
B.

If (A, π, B, F ) is a bundle and f : C → B a map from a manifold C to the base B,
we can define a new bundle (f∗(A), f∗(π), C, F ) called the pull-back of π by f . The
total space f∗(A) (also denoted by A×f C) is the manifold

f∗(A) = A×f C = {(a, c) ∈ A× C |π(a) = f(c)}

and the projection f∗(π) is simply the projection to C: f∗(π)(a, c) = c. It is easy to see
that π and f∗(π) share the same typical fibre, because f∗(A)c = {(a, c) ∈ A×C |π(a) =
f(c)} ∼= Af(c), where ∼= means that the two fibres are diffeomorphic. It is clear that the
sections of the pull-back f∗(π) are in bijective correspondence with the sections along
f . Similarly, given a bundle ρ: D → C with basis C, the bundle morphisms F : D → A

over f are in bijective correspondence with the morphisms between ρ and the pull-back
bundle f∗(π). A particular case of pull-back occurs when C ↪→ B is a submanifold, in
this case we denote the pull-back bundle by π|C : A|C → C and we call it the restriction
of A to C.

Vector bundles

A bundle (E, π, B, F ) whose fibres (and the typical fibre F ) are vector spaces of di-
mension n, and such that it has local trivializations which, restricted to each fibre, are
linear isomorphisms φ|Eb

: Eb → {b} × F between the fibres and F , is called a vector
bundle. We will always use this kind of trivializations for vector bundles. The rank of
a vector bundle is the dimension of its fibres.
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If (uα) is a basis of the vector space F , the components (uα) with respect to this
basis are coordinates on F which, together with a local chart (U, xi) of B and local
trivializations, induce an adapted coordinate system (xi, uα) on E as we described
earlier. These adapted coordinates systems are called vector bundle coordinates systems
and we will always use them when dealing with vector bundles. A local frame (on an
open set U ⊂ B) of a vector bundle of rank k is a family of sections (sα: U → E) such
that, for every b ∈ U , (sα(b)) is a basis of the vector space Eb. A vector bundle chart
(U, (xi, uα)) defines a local frame (sβ) on U by uα(sβ(b)) = δα

β for every b ∈ U .
Since the fibres of a vector bundle π are vector spaces, the set Sec(π) (or SecU (π))

of (local) sections is a C∞(B)-module (C∞(U)-module) under the pointwise operations
(s1 + s2)(b) = s1(b) + s2(b) and (fs)(b) = f(b)s(b). Therefore, a local frame on U is
just a basis of the C∞(U)-module SecU (π).

The tangent and cotangent bundles of a manifold M are both vector bundles. The
natural coordinates (xi, ẋi) and (xi, pi) are vector bundle coordinates, with correspond-
ing local frames ( ∂

∂xi ) and (dxi) respectively.
Let us point out that the tangent space TA of the total space of a bundle π: A → B

is the total space of two different vector bundles: the tangent bundle τA: TA → A and
the bundle defined by the tangent map Tπ: TA → TB. In case that π is a tangent
bundle τM : TM → M itself, we see that T(TM) has two structures as a vector bundle
over TM ; the tangent bundle τTM and TτM .

Let π: E → B be a vector bundle and E′ ⊂ E a submanifold such that π|E′ :E′ →
π(E′) is itself a vector bundle under the restriction of the vector addition and scalar
multiplication of the fibres of π to the fibres of π|E′ . We say that π|E′ is a vector
subbundle of π, although sometimes we also refer to the submanifold E′ as the vector
subbundle. It will be usual that π(E′) = B, so the vector subbundle has the same basis
as the vector bundle. The notation π|E′ is also used for the restriction of a bundle to
a submanifold of the basis, but the context will clarify the real meaning in this case.

A vector bundle morphism (f, fo) between two vector bundles π: E → B and
π′: E′ → B′ is a bundle morphism which is linear in each fibre (i.e., for each b ∈ B,
fb: Eb → E′

fo(b) is a linear map). We say that f has constant rank if the rank of fb is
the same for all b ∈ B. In vector bundle coordinates, a vector bundle morphism reads
as

f(xi, uα) = (f j
o (xi), fβ

α (xi)uα).

The matrix of functions (fβ
α ) is called the local matrix representation of the vector

bundle morphism f .
If f : M → N is a map between manifolds, then the tangent map Tf : TM → TN ia

a well known example of vector bundle morphism.
The kernel of a vector bundle morphism f : E → E′ is, the subset

Ker f = {e ∈ E | f(e) = 0 ∈ E′
fo(π(e))} =

⋃

b∈B

Ker fb ⊂ E.
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The following important property holds: if f has constant rank, Ker f is a vector
subbundle of π and Im f is a vector subbundle of π′.

The usual operations that can be performed with vector spaces induce operations
among vector bundles with the same basis. For example, if we have two vector bundles
π: E → B and π′: E′ → B, π ⊕ π′: E ⊕ E′ → B is the vector bundle whose fibre
(E⊕E′)b is Eb⊕E′

b; it is called the Whitney sum. Similarly, we have the tensor product
π⊗π′:E⊗E′ → B, which generalizes to the tensor product of a finite number of vector
bundles, the alternating and symmetric products Λrπ:

∧r E → B and Srπ:SrE →
B, the bundle of homomorphisms Hom(π, π′): Hom(E, E′) → B and the dual bundle
π∗: E∗ → B, where E∗ = Hom(E,B×R). For every system of vector bundle coordinates
(xi, uα) on π we can define a system of dual coordinates (xi, uα) on π∗ in such a way
that the corresponding local frames sα of π and sα of π∗ are dual: sα(b)(sβ(b)) = δα

β .
For instance, the tangent and cotangent bundle of a manifold are dual bundles, and the
standard coordinates (xi, ẋi) and (xi, pi) are dual coordinates, since the corresponding
local frames ( ∂

∂xi ) and (dxi) are dual frames. Also, if E′ is a vector subbundle of E

(with the same basis), we can define the quotient bundle E/E′ as the vector bundle
over B with fibres (E/E′)b = Eb/E′

b.
Finally, the operations with linear transformations between vector spaces can also

be extended to morphisms of vector bundles over the same basis. In particular, a vector
bundle morphism f : E → E′ has a transposed morphism between the dual bundles, we
denote it by tf : (E′)∗ → E∗.

Let π:E → B be a vector bundle and f : E → R a function on the total space. For
each b ∈ B, consider the restriction of f to the fibre Eb, fb: Eb → R. It is a function
on a vector space, so for every point eb of the fibre, the derivative of fb at eb is a linear
form Dfb(eb) ∈ Hom(Eb,R) = E∗

b . Therefore, we can define the map

Ff : E → E∗

eb 7→ Dfb(eb)
(2.1)

This map is a morphism of bundles over B and we call it the fibre derivative of f .
In adapted coordinate systems (dual, of course), its local expression is Ff(x, u) =
(xi, ∂f

∂uα (x, u)). Similarly, we can define higher order derivatives. The fibre hessian of a
function f : E → R is the morphism F2f : E → E∗⊗E∗ defined as F2f(eb) = D2fb(eb),
where D2fb(eb):Eb × Eb → R is the second derivative of fb at eb, hence a symmetric
bilinear form. Its local expression is F2f(x, u) = (xi, ∂f

∂uα∂uβ (x, u))
The tangent bundle of the total space A of any bundle π: A → B has a distinguished

vector subbundle, namely the vertical bundle to π, whose total space, denoted by Vπ,
is the kernel of Tπ:

Vπ = {v ∈ TA |Tπ(v) = 0}.
Now let us define the vertical lift, an important operation on vector bundles. A fibre

Eb of a vector bundle π: E → B is a vector space, therefore for each eb ∈ Eb there exists
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an isomorphism λeb
: Eb → Teb

(Eb), defined by λeb
(e′b) = [t 7→ eb+te′b] = d

dt

∣∣
t=0

(eb+te′b).
The vector λeb

(e′b) is called the vertical lift of e′b over eb. Note that Teb
(Eb), which is

a linear subspace of Teb
E, is precisely the fibre Veb

π of the vertical bundle. Gluing all
these isomorphisms together we obtain an isomorphism

λE : E ×B E → Vπ

(eb, e
′
b) 7→ λE(eb, e

′
b) = λeb

(e′b)
.

Correspondingly to the vertical bundle to π:A → B, there is a distinguished vector
subbundle of the contangent bundle T∗A: the annihilator of Vπ. Its sections are called
π-semibasic 1-forms. We denote the bundle by Sbπ (or SbA when the projection is
understood) and the set of π-semibasic 1-forms by Ω1

0(π). We note that this bundle
is isomorphic to the pullback of the cotangent bundle T∗B of the basis by π, that is
A×π T∗B.

A connection Γ on a bundle π: A → B is a vector-valued semibasic 1-form (that
is, a section of the bundle Sbπ ⊗ TA) such that iσΓ = σ for every σ ∈ Ω1

0(π). In
coordinates, a connection Γ has the expression

Γ = dxi ⊗
(

∂

∂xi
+ Γα

i

∂

∂uα

)
.

A connection Γ determines a subbundle HΓ of the tangent bundle TA, called the
horizontal bundle by Γ, defined as the image of TA by Γ: (HΓπ)a = {Γa(v) | v ∈ TaA}.
The tangent bundle of A can be written as the direct sum of the vertical bundle and
the horizontal bundle by Γ: TA = Vπ ⊕HΓ, so every connection induces an splitting
of TA. Conversely, if H is a vector subbundle of TA such that TA = Vπ ⊕ H, then
there exists a unique connection Γ such that H = HΓ. Therefore, it is equivalent to
give a connection on A or a splitting of TA.

Affine bundles

In an analogous way as vector spaces give rise to vector bundles, we can define the
notion of affine bundle. Let (E, π, B, V ) be a vector bundle. A bundle (A, ρ, B, F ) such
that for each b ∈ N , the fibre Ab is an affine spaces modelled on Eb (equivalently, the
typical fibre F is an affine space modelled on V ), and such that has local trivializations
which, restricted to each fibre, are affine isomorphisms φ|Ab

: Ab → {b} × F between
the fibres and F is called an affine bundle modelled on π. We will always use this
type of trivializations when dealing with affine bundles. Naturally, there is an action
A×B E → A defined as (ab, eb) 7→ ab + eb.

A vector bundle coordinate system (xi, uα) on E and a section z ∈ Sec(ρ) of the
affine bundle A induce an adapted coordinate system (xi, aα) on A, where aα are the
affine functions aα(ab) = uα(ab − z(b)). We will always use these special coordinates
systems on affine bundles, they are called affine bundle coordinate systems.
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Every vector bundle can be considered an affine bundle modelled on itself, since
each fibre it is a vector space, that can be considered an affine space modelled on
itself. Furthermore, let ρ:A → B be an affine bundle modelled on a vector bundle
π: E → B. Then every global section z ∈ Sec(ρ) determines a vector bundle structure
on ρ, since for every b ∈ B, the section z distinguishes a point z(b) ∈ Ab and induces
an isomorphism Ab

∼= Eb by the bijection ab ↔ ab − z(b).
Let ρ: A → B and ρ′: A′ → B′ be two affine bundles. A bundle morphism (f, fo)

from ρ to ρ′ is an affine bundle morphism if it is affine in each fibre (that is, for each
b ∈ B, fb:Ab → A′fo(b) is an affine map). It has a linear part, which is a vector bundle
morphism between the vector bundles over which are modelled ρ and ρ′, defined by
taking the linear part of the affine map in every fibre. In affine bundle coordinates, an
affine bundle morphism (f, fo) is written as

f(xi, aα) = (fo(xi), fβ
α (xi)aα + fβ(xi)),

where (fβ
α (xi)) is the local matrix representation of the linear part of the affine bundle

morphism.

2.5 Geometry of the tangent bundle

Let M be a manifold of dimension m. Here we define some canonical geometric objects
associated with the tangent bundle TM that will be useful in the geometric description
of physical systems. We refer to [Cra 83, LR 89] for a more detailed discussion. The
vertical lift of the tangent bundle, λTM : TM ×M TM → T(TM), will prove to be a
very useful tool.

Let us start with the Liouville vector field ∆ ∈ X(TM), defined as

∆(v) = λTM (v, v). (2.2)

It can also be defined as the infinitesimal generator of the one-parameter group of
dilations, that is, the flow of ∆ is F t

∆(v) = etv. It can be seen that in any natural system
of coordinates (xi, ẋi), the local expression of the Liouville vector field is ∆ = ẋi ∂

∂ẋi . It
is worth noting here that a Liouville vector field ∆E ∈ X(TE) can be equally defined
in any vector bundle π: E → B.

One basic property of the Liouville vector field is the way it acts upon homogeneous
functions. If f ∈ C∞(TM) is homogeneous of degree k (that is, f(λv) = λkf(v) for
λ ∈ R) then ∆ · f = kf .

Another canonical geometric object is the vertical endomorphism S of TM . It is
the (1, 1)-tensor field on TM defined by

S(wv) = λTM (v, TvτM (w)), (2.3)
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where wv ∈ TvTM . The local expression of the vertical endomorphism is S = ∂
∂ẋi ⊗dxi.

It follows from its very definition of S that both its kernel and image is the vertical
bundle VτM . When we consider the tensor field acting on T∗(TM), we will denote it
by tS, since it is the transposed of the endomorphism S.

Every vector field X on M defines two vector fields on TM . The vertical lift of
X ∈ X(M) is the vector field XV ∈ X(TM) defined as

XV (up) = λTM (up, X(p)).

Locally, if X = Xi ∂
∂xi then XV = Xi ∂

∂ẋi , where we see that the vertical lift is indeed a
vertical vector field. The other lift is the complete lift or canonical lift ; it is the vector
field XT ∈ X(TM) whose flow is constituted by the tangent extensions of the flow of X,
that is,

F t
XT = T(F t

X).

The local expression of the complete lift is XT = Xi ∂
∂xi + (∂Xi

∂xj )ẋj ∂
∂ẋi .

There is another distinguished class of vector fields on TM . A vector field X ∈
X(TM) is called a second order differential equation (or SODE for short) if

S(X) = ∆.

Another characterization is that T(τM )◦X = IdTM , so a SODE is a section of the two
structures of vector bundle that has T(TM) over TM .

The reason of the nomenclature becomes clear when we examine the local expression
of a SODE, which is X = ẋi ∂

∂xi +f i(x, ẋ) ∂
∂ẋi , Hence, an integral curve of the SODE X

is the solution of the system of differential equations
{

dxi

dt = ẋi

dẋi

dt = f i(x, ẋ)
,

which, as it is well known, is equivalent to a system of m second-order differential
equations in the variables xi: d2xi

dt2
= f i(x, dxi

dt ). Therefore, an integral curve γ: I → TM

of X will be the derivative of the curve τM ◦ γ: I → M .

2.6 Geometry of the cotangent bundle

Now we recall that the cotangent bundle T∗M of any manifold M has a canonical
symplectic structure that can be constructed as follows.

Let θM be the 1-form on T∗M defined by its action on vectors of T(T∗M) as

〈θM (αp), vαp〉 = 〈αp, TπM (vαp)〉,
for every p ∈ M , αp ∈ T∗pM and vαp ∈ Tαp(T∗M). We call θM the Liouville 1-form.
In any natural system of coordinates (xi, pi) of T∗M , the Liouville 1-form has local
expression

θM = pidxi,
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(so it is a π∗-semibasic 1-form). Therefore, the 2-form ωM = −dθM has local expression

ωM = dxi ∧ dpi,

where we see that it is nondegenerate. Since, by definition, it is also closed, ωM is a
symplectic form of T∗M , called the canonical symplectic form of the contangent bundle.
We also note that the natural coordinates of T∗M are symplectic coordinates.

2.7 Geometry of jet bundles

Jet bundles are the basic geometric structure to model time-dependent systems and
classical field theories. Here we give an introduction to the subject and the most
relevant aspects for this dissertation. For details we refer to [Sau 89].

Let π: M → B be a fibre bundle. We say that two sections φ and ψ of π are k-
equivalent at the point b ∈ B if φ(b) = ψ(b) and, in some adapted coordinate system of
the bundle, the local expressions of φ and ψ have the same derivatives up to order k.

It turns out that this definition is independent of the choice of the coordinate system
and that this relation is an equivalence relation. The equivalence class containing a
section φ is called k-jet of φ at b and is denoted by jkbφ.

The k-th jet manifold of π is the set of all k-jets, it is denoted by Jkπ. We have the
following canonical projections:

πk: Jkπ → B

jkbφ 7→ b ,

πk,0: Jkπ → M

jkbφ 7→ φ(b)

and, for 1 ≤ l ≤ k,

πk,l: Jkπ → Jlπ

jkbφ 7→ jlbφ .

Every adapted coordinate system (xi, uα) on M induces a coordinate system on Jkπ.
To describe it, first we introduce the multi-index notation. Let n be the dimension of the
base B. A multi-index is an n-tuple I of natural numbers. We denote by I(i) the i-th
component of I, 1 ≤ i ≤ n. The length of a multi-index I is |I| = ∑n

i=1 I(i). The multi-
index 1i has all its components equal to 0 but the i-th component, which is equal to 1.
We can add and subtract two multi-indexes componentwise: (I ± J)(i) = I(i) ± J(i),
whenever the result is another multi-index. Now, given a coordinate system (xi, uα)
on M , the induced coordinate system on Jkρ is (xi, uα, uα

I ), for all the multi-indices I
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with 1 ≤ |I| ≤ k. The coordinate uα
I is defined by

uα
I (jkpφ) =

(
n∏

i=1

∂I(i)

∂xi

)∣∣∣∣∣
p

(φα).

(For the case k = 1, this simplifies to (xi, uα, uα
i ).)

Now, given an atlas of adapted charts on M , the corresponding collection of adapted
charts on Jkπ as described above is an atlas. Therefore, Jkπ has a differential man-
ifold structure induced by the fibre bundle structure of π. Moreover, πk: Jkπ → B,
πk,0: Jkπ → M and πk,l: Jkπ → Jlπ are all fibre bundles.

For any local section φ of π with domain W ⊂ B, we can define a local section of πk

called the k-th prolongation of φ. This section jkφ: W → JkM is given by

jkφ(b) = jkbφ.

Also, any bundle morphism (f, fo) between bundles π:M → B and π′: M ′ → B′ such
that fo is a diffeomorphism (in particular, when B = B′ and fo = IdB) can be prolonged
to a map jkf : Jkπ → Jkπ′ defined as

jkf(jkbφ) = jkfo(b)(f̃(φ)),

where f̃(φ) is the section f ◦φ◦f−1
o of π′. It can be seen that both (jkf, f) and (jkf, fo)

are bundle morphisms.
A significant fact is the natural affine bundle structure of the bundles πk,k−1 for

k ≥ 1. Its associated vector bundle is π∗k−1(S
kT∗B) ⊗ π∗k−1,0(Vπ). We recall that

SkT∗B → B is the bundle of symmetric k-covectors and Vπ ⊂ TM the vertical bundle
to π.

A jet field is a section Γ of the bundle π1,0: J1π → M . The set of jet field are in
bijective correspondence with the connections on π [Sau 89], so a jet field Γ induces a
splitting TM = Vπ ⊕HΓ of the tangent bundle, with projections vΓ and hΓ. We will
denote by Γ̃ the connection induced by a jet field Γ. The coordinate expressions of
these objects are:

Γ(xi, uα) = (xi, uα, Γα
i (xi, uα)),

Γ̃ = dxi ⊗
(

∂

∂xi
+ Γα

i

∂

∂uα

)
,

vΓ(xi, uα; ẋi, u̇α) = (xi, uα; 0, u̇α − ẋi Γα
i (xi, uα)),

hΓ(xi, uα; ẋi, u̇α) = (xi, uα; ẋi, ẋi Γα
i (xi, uα)).

Now we will study with some more detail the case where the base of the fibre bundle
is the real line: B = R. These bundles are the appropriate models for time-dependent
configuration spaces. In this case, we will denote the bundle by ρ:M → R. We will
use the canonical identity coordinate t in R.
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Note that the sections of ρ are also paths in M . This fact allows to define the
canonical embedding

ι: J1ρ → TM

j1t ξ 7→ ξ̇(t) . (2.4)

With the usual notation (t, qi, vi) for the coordinates on J1ρ induced by adapted coor-
dinates (t, qi) on M , the embedding is written as ι(t, qi, vi) = (t, qi; 1, vi).

Likewise, the k-jet prolongation of a section of ρ is a path in Jkρ and, for each k,
there is an embedding

ιk: Jkρ −→ TJk−1ρ

jkt ξ 7−→ (jk−1ξ).(t). (2.5)

Note that ιk is a vector field along ρk,k−1: Jkρ → Jk−1ρ, so it has an associated dif-
ferential operator from C∞(Jk−1ρ) to C∞(Jkρ), known as the total time derivative
operator [CMF92], and denoted by T(k).

Using adapted local coordinates (t, qi
(0), q

i
(1), . . . , q

i
(k−1), q

i
(k)) on Jkρ, the embeddings

ιk are written as

ιk(t, qi
(0), q

i
(1), . . . , q

i
(k−1), q

i
(k)) = (t, qi

(0), q
i
(1), . . . , q

i
(k−1); 1, qi

(1), . . . , q
i
(k)).

The associated total time derivative operator T(k) acts on a function f ∈ C∞(Jk−1ρ)
as

T(k)f =
∂f

∂t
+

k∑

l=0

qi
(l+1)

∂f

∂qi
(l)

∈ C∞(Jkρ).

As noted above, the bundle J1ρ → M is an affine bundle. In this particular case
(B = R, k = 1), the associated vector bundle reduces to Vρ. The affine structure
becomes clear making use of the canonical embedding ι, since we can view J1ρ and Vρ

as an affine and a vector subbundle of TM .
There is a canonical (1, 1)-tensor field on J1ρ that plays a similar role as the vertical

endomorphism S of a tangent bundle. It is called the vertical endomorphism of J1ρ

and, by abuse of notation, we will also denote it by S. In local coordinates it is written
as

S = (dqi − vidt)⊗ ∂

∂vi
. (2.6)

Using this vertical endomorphism we can characterize J2ρ (or, more exactly, its image
by the embedding ι2) as the subbundle of TJ1ρ

ι2(J2ρ) = {w ∈ TJ1ρ | iwdt = 1, S(w) = 0}.
The local expression of S readily shows that Im(S) = Vρ1,0. The kernel of S is called

the Cartan distribution on J1ρ and is denoted by Cρ1,0. Locally, we can describe Cρ1,0

as the distribution generated by the n + 1 vector fields { ∂
∂t + vi ∂

∂qi ,
∂

∂vi }. To sum up,
we have the exact sequence

0 // Cρ1,0 // T(J1ρ) S // Vρ1,0 // 0 (2.7)
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In general, the Cartan distribution on Jk−1ρ is defined as the distribution gen-
erated by the vectors tangent to (k − 1)-jet prolongations of sections of ρ. We de-
note it by Cρk−1,k−2, and it is locally generated by the n + 1 vector fields { ∂

∂t +∑k−2
l=0 qi

(l+1)
∂

∂qi
(l)

, ∂
∂q1

(k−1)

, . . . , ∂
∂qn

(k−1)
}.

2.8 Higher order tangent bundles

Let M be a manifold. We say that two curves γ, δ:R → M are k-tangent at 0 if
γ(0) = δ(0) and, for every function f ∈ C∞(M), all the derivatives up to order k of the
difference f ◦ γ − f ◦ δ ∈ C∞(R) vanish at 0. This relation is an equivalence relation,
the equivalence classes are called tangent vectors of order k and we denote the class
of γ by γ

(k)
0 . The set of all the equivalence classes is the tangent bundle of order k,

denoted by TkM . It is clear from the definition that if k = 1 we recover the tangent
bundle TM , and T0M is identified with M .

It can be shown that TkM has a differential structure inherited from M such that
the projections, for 0 ≤ r < k,

τk,r: TkM → TrM

γ
(k)
0 7→ γ

(r)
0

are fibre bundles.
A local system of coordinates (xi) on M induces coordinates (xi, xi

(1), . . . , x
i
(k)) on

TkM defined as

xi
(r)(γ

(k)
0 ) =

dr(xi ◦ γ)
dtr

(0),

for r ≤ k. They are called natural coordinates and in the case of the tangent bundle
they are the already known ones.

The k-th prolongation of a curve γ: I → M is the curve γ(k): I → TkM de-
fined as γ(k)(t) = (γt)

(k)
0 , where γt(s) = γ(t + s). It is a section of τ(k,1) along

γ. In local coordinates, the k-th prolongation of a curve (γi(t)) has the expression
(γi(t), dγi

dt (t), . . . , dkγi

dtk
(t)). Obviously we have that the derivative γ̇ of a curve is its first

prolongation γ(1); we will also use the notation γ̈ = γ(2).
For every three natural numbers k, r and s, with k = r + s, we can define the

embedding
ιr,s: TkM → Tr(TsM)

γ
(k)
0 7→ (γ(s))(r)0

,

which is a morphism over TsM . Of particular interest is the embedding ι1,1: T2M →
T(TM), which identifies the bundle τ2,1: T2M → TM as an affine subbundle of
τTM : T(TM) → TM . It turns out that a vector field X ∈ X(TM) is a SODE if
and only if its image belongs to T2M , so we can identify the second order differential
equations with sections of τ2,1: T2M → TM .



Chapter 3

Time independent systems

In this chapter we introduce the geometric structure which we call linearly singular
system. These systems are suitable to model first order ordinary differential equations
on manifolds that are affine in the velocities. In local coordinates, such a differential
equation is written

A(x)ẋ = f(x),

where A is in general a singular matrix.
This kind of equations arise in several formalisms of mechanics (Lagrangian, Hamil-

tonian or unified formalisms), which is the main motivation for us to study them. They
also arise in the study of higher order singular lagrangians and their “higher order differ-
ential equation” conditions, as well as many other systems that appear in technological
applications, such as electric o chemical engineering, control theory or economics —see
some references in [BCP96, GMR04].

In this chapter we will study time independent systems, leaving the time-dependent
case and other generalizations to the next chapters.

Autonomous linearly singular systems were geometrically presented in [GP 91] and
developed in [GP 92a, GP 02]. Since the matrix A may be singular, the system may
not have solutions passing through each point of of the configuration manifold, and the
solutions may not be unique. In these works was also given the consistency algorithm
that should be performed in order to solve the corresponding equation of motion. If the
algorithm ends, one obtains a submanifold where there exist solutions of the system.
One also obtains the family of vector fields whose integral curves are the solutions of
the differential equation. This algorithm is indeed a generalization of the presymplectic
constraint algorithm [GNH 78].

In the first section of the chapter we review the main concepts and results introduced
in the cited works of Gràcia and Pons. The second section is devoted to the study of
Lagrangian systems and we show that they can be enclosed in the geometric setting of
linearly singular systems.

29
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3.1 Linearly singular systems

Let M be a manifold. We start by defining what we mean by “differential equation”
both implicit and explicit, and its solutions.

Definition 3.1 An implicit differential equation on M is a submanifold D ⊂ TM . A
path ξ: I → M is a solution of D when

ξ̇(I) ⊂ D. (3.1)

In coordinates, if the submanifold D is implicitly described by some equations
F a = 0 and the path ξ is represented by some functions x(t), then the local expression
of the implicit differential equation is

F a(x, ẋ) = 0. (3.2)

We have a particular case when D = X(M), with X a vector field on M . Then X

defines an explicit differential equation, and ξ is a solution iff

ξ̇ = X ◦ ξ. (3.3)

Now, if the vector field X is locally described as X = f i ∂
∂xi , then the local expression

of the explicit differential equation is

ẋi = f i(x). (3.4)

Now we will define the systems which are the main purpose of our discussion. These
are the systems whose solutions are determined by solving differential equations that
are affine in the velocities.

Definition 3.2 An autonomous linearly singular system on M is constituted by a
vector bundle π: F → M , a vector bundle morphism A: TM → F , and a section f :M →
F of π:

TM
τM

²²

A // F
π

}}zz
zz

zz
zz

M
f

==zzzzzzzz

(3.5)

We denote by (A: TM → F, f) this autonomous linearly singular system.

Taking local coordinates (xi, ẋi) on TM and (xi, uα) on F , the local expressions of
the maps are

π(xi, uα) = (xi), b(xi) = (xi, bα(xi)), A(xi, ẋi) = (xi, Aα
j (xi)ẋj).
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We say that a path γ: I → M is a solution path if

A ◦ γ̇ = b ◦ γ. (3.6)

Locally, Aα
j (γ(t))γ̇j(t) = bα(γ(t)).

The following diagram shows all these data:

TM

τM
²²

A // F
π

}}zz
zz

zz
zz

I
γ //

γ̇
=={{{{{{{{
M

f

==zzzzzzzz

From equations (3.1) and (3.6) it follows that a linearly singular system (A: TM →
F, f) is associated with the implicit differential equation defined by

D = A−1(f(M)) ⊂ TM, (3.7)

which has the same solutions as the linearly singular system.

Example 3.3 As we have said in the introduction, some mechanical systems can be
modelled with linearly singular systems. To illustrate this, let us consider a simple
(planar) pendulum of mass m and length R under constant gravity g. The equations
of motion that determine its evolution can be written (though it is not the usual way)
as:

ẋ = vx

ẏ = vy

v̇x = − τ

R
x

v̇y = − τ

R
y − g

0 = x2 + y2 −R2

where (x, y) are the position coordinates, (vx, vy) the velocities and τ denotes the string
tension. Thus, we take as configuration manifold of the system M = R5 with coor-
dinates (x, y, vx, vy, τ). Then, the equations of motion are those given by the linearly
singular system (A: TM → F, f), where the vector bundle F is M × R5 → M , the
section f is (vx, vy,− τ

Rx,− τ
Ry − g, x2 + y2 − R2) and the vector bundle morphism A

has coordinate matrix 


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




.

In chapter 4 we will see more examples of autonomous linearly singular systems.



32 CHAPTER 3. TIME INDEPENDENT SYSTEMS

The solutions of a linearly singular system can be equivalently described as integral
curves of vector fields. Let us remark that in general the solutions are restricted to a
submanifold S ⊂ M because the equation (3.6) may not have solutions passing through
every point x ∈ M . Therefore, the equation of motion can be written as an equation
for a vector field X and a submanifold S:

{
X tangent to S

A ◦X '
S

f,
(3.8)

where the notation '
S

means equality at the points of S. If X is a solution of (3.8),

then its integral curves are solutions of A. For this reason, the vector fields that are
solutions of (3.8) are called solution vector fields of the linearly singular system A.

Regular and surjective systems

In some situations, the solutions of a linearly singular system are easy to find. The
most evident case is when the differential equation is actually explicit.

Definition 3.4 An autonomous linearly singular system (A: TM → F, f) is regular
when A is a vector bundle isomorphism.

In this case, the differential equation associated with the linearly singular system is
explicit and it is given by the vector field X = A−1 ◦ f . Therefore, X is the (unique)
solution of (3.8) and it is not restricted to any submanifold S.

A system may not be regular but may still have solutions on the whole manifold M ,
as is the case in the following systems.

Definition 3.5 An autonomous linearly singular system (A: TM → F, f) is surjective
when A is a surjective vector bundle morphism.

Now, the solutions of (3.8) can be expressed as X◦+Γ, where X◦ is a particular solution
and Γ belongs to KerA. Again, since A is surjective, the solutions are defined on the
whole manifold.

Constraint algorithm

When a linearly singular system is not surjective, a recursive algorithm can be applied
to find its solutions. This algorithm is a generalization of the Gotay–Nester algo-
rithm [GNH 78] for presymplectic systems, which, in turn, is a geometric version of the
Dirac–Bergmann algorithm [BG 55, Dir 64] for systems with singular lagrangian. It is
designed to find the maximal submanifold S ⊂ M where (3.8) has solutions. In other
words, we want to obtain the maximal surjective subsystem of the original system.

Now we will explain to some detail the first step of the algorithm. We start noting
that, in order that a solution passes through a point x ∈ M , it is necessary that

f(x) ∈ ImAx, (3.9)
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so the solutions are necessarily contained in the primary constraint subset

M1 = {x ∈ M | f(x) ∈ Im Ax}, (3.10)

which will be assumed to be a closed submanifold. This is the case when the vector
bundle morphism A has constant rank. It can be seen that the primary constraint
submanifold M1 is locally described by the vanishing of the functions φα := 〈sα, b〉,
where (sα) is a local frame for Ker tA ⊂ F ∗.

We have that a vector field X in M , in order to be a solution of the system, must
satisfy the equation A ◦X '

M1

b. Vector fields satisfying this condition always exist and

are called primary vector fields. Given one primary vector field X0, the others have the
form X '

M1

X0+
∑

µ fµΓµ, where fµ are functions uniquely determined on M1 and (Γµ)

is a local frame for KerA.
The tangency to M1 forces the initial system to be restricted to (A1: TM1 → F1, f1),

where A1 = A|TM1
, F1 = F |M1

and f1 = f |M1
. Thus, the first step is completed and we

start with the second. A primary vector field X can be a solution of the system only if
it is tangent to M1, so we obtain the equation, for every constraint φα, (X ·φα)(x) = 0,
for x ∈ M1, or, equivalently, (X0 · φα)(x) +

∑
µ(Γµ · φα)(x)fµ(x) = 0. These equations

may provide new constraints that define the secondary constraint submanifold M2, and
may also determine some of the functions fµ.

The algorithm follows recursively and, assuming that throughout the process the
subsets Mi are always closed submanifolds, it ends with a final constraint submanifold S

such that f(S) ⊂ Im AS ; thus the system is surjective, so the equation

AS ◦X = fS (3.11)

for a vector field X tangent to S has solutions. These solutions will be the primary
vector fields determined through the process. Given a particular solution X◦, the set
of all the solutions of (3.8) can be described as X◦ + Ker AS , as we saw in the previous
section.

Symmetries

Symmetries of differential equations is a vast topic that has been studied from different
perspectives (see for instance [Olv 93]). For the case that interests us, symmetries
of linearly singular system were discussed in [GP 02]. We will define the concept of
symmetry for these systems following this paper.

Definition 3.6 A symmetry of an implicit differential equation D ⊂ TM , is a diffeo-
morphism ϕ of M that leaves D invariant, that is, (Tϕ)(D) ⊂ D.

Definition 3.7 A symmetry of a linearly singular system (A: TM → F, f) is a vector
bundle automorphism (ϕ,Φ) of π: F → M such that

f = Φ∗[f ] := Φ ◦ f ◦ ϕ−1, A = Φ∗[A] := Φ ◦A ◦ (Tϕ)−1. (3.12)
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It is easily seen that the base map ϕ of a symmetry (ϕ,Φ) of the linearly singular
system A is itself a symmetry of the associated implicit differential equation D =
A−1(f(M)). In [GP 02] is proved that, if A has constant rank, a kind of converse is also
true: every symmetry ϕ of D is locally the base map of a symmetry of (A: TM → F, f).

We will also give the infinitesimal counterparts of the previous facts. First we define
the concepts of infinitesimal symmetry that we will use.

Definition 3.8 An infinitesimal symmetry of an implicit differential equation D ⊂
TM is a vector field V on M such that its flow Fε

V is constituted by (local) symmetries
of D.

Or, equivalently, the canonical lift of V to TM , V T , is tangent to D.

Definition 3.9 An infinitesimal symmetry of a linearly singular system (A: TM →
F, f) is an infinitesimal automorphism (V, W ) of the vector bundle π: F → M such that
its flow (Fε

V ,Fε
W ) is constituted by (local) symmetries of the linearly singular differential

equation.

The last property is equivalent to the following conditions:

Tf ◦ V = W ◦ f, TA ◦ V T = W ◦A, (3.13)

which are the infinitesimal version of (3.12).
Then, given a linearly singular system (A: TM → F, f) and its associated implicit

differential equation D, and under the assumption that A has constant rank, a vector
field V on M is an infinitesimal symmetry of D if and only if there exists a vector
field W on F such that (V, W ) is an infinitesimal symmetry of the linearly singular
system.

3.2 Lagrangian systems

Here we present a standard geometric formulation of autonomous Lagrangian systems
that can be found in many reference books [AM78, LR89, Sou 97, JS 98].

The mathematical definition of Lagrangian system is very simple:

Definition 3.10 An autonomous Lagrangian system consists of an n-dimensional
manifold M , called the configuration space and a function on the tangent bundle of
M , L: TM → R, called the lagrangian of the system.

Although we may study Lagrangian systems independently of any physical inter-
pretation, it is generally assumed that a Lagrangian system is the mathematical model
of some physical system, so that the points of the configuration space M represent
possible configurations of the physical system, and the lagrangian L, which contains
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the dynamical information, should be chosen such that the solutions of the Lagrangian
system represent the real motions of the physical system. The tangent space TM is
also called velocity space and its elements (tangent vectors) correspond to the states of
the system.

Example 3.11 One of the most studied class of Lagrangian systems is that of simple
mechanical systems. They are characterized by the special form of its lagrangian:

L = T − U ◦ τM ,

where T : TM → R is the kinetic energy associated with a Riemannian metric g, that
is, T (vp) = g(vp, vp), and U :M → R is a function called potential energy.

Roughly speaking, the lagrangian of a system is a sort of “cost” function, so that
the solutions of the system are the curves on the configuration manifold that minimize
in some sense the lagrangian. We next give the precise mathematical development of
this idea, that leads to the Hamilton’s principle.

Euler–Lagrange equations

The solutions of a Lagrangian system (M, L) will be curves γ on the configuration
manifold. We require that the solutions are twice differentiable. Given two points p

and q of the configuration space and an interval [a, b] of R, consider

C2([a, b], p, q) = {γ: [a, b] → M | γ is C2, γ(a) = p, γ(b) = q},

the space of twice differentiable curves that are defined on [a, b] and that start at p

and end at q. This is the space of curves over which the minimization principle will be
stated.

The function of C2([a, b], p, q) to be minimized is the action functional associated
with the lagrangian L, that is, the function JL: C2([a, b], p, q) → R defined as

JL(γ) =
∫ b

a
L(γ̇(t))dt.

Now we have all the necessary ingredients to state the Hamilton’s principle: a curve
γ ∈ C2([a, b], p, q) is a solution of the Lagrangian system defined by L if it minimizes
JL. A necessary condition for a curve γ to be a minimizer of JL is that dJL(γ) = 0,
that is to say, that γ is an extremal of JL.

Remark 3.12 Sometimes [AM 78, MR 99] the Hamilton’s principle is formulated in
a different way, stating that the solutions of the system are all the extremals of JL,
not only the minimizers. It can be seen that if the matrix

(
∂2L/∂ẋi ∂ẋj

)
is positive

definite everywhere then all the extremals are minimizers. For instance, this is the case
of the simple mechanical systems of example 3.11. In this dissertation we will not be
concerned about this question.
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It is well-known (see [AM78]) that, locally, the equation dJL(γ) = 0 is equivalent
to the Euler–Lagrange equations for L,

d
dt

(
∂L

∂ẋi
◦ γ̇

)
− ∂L

∂xi
◦ γ̇ = 0, 1 ≤ i ≤ n. (3.14)

Symplectic formulation

There are different approaches to write the Euler–Lagrange equations in an intrinsic
way. We discuss here a classical one: the symplectic formulation of Lagrangian systems.

First we need to define some geometric objects associated with a Lagrangian system.
The energy of the system is the function on TM ,

EL = ∆(L)− L,

where ∆ is the Liouville vector field (2.2). Note that in the simple mechanical case
(example 3.11), where L = T−U , since the kinetic energy T is homogeneous of degree 2
and the potential energy U is homogeneous of degree 0, we have that EL = ∆(L)−L =
2T − (T − U) = T + U , an equation that shows that EL represents the classical total
energy of the mechanical system.

The other relevant objects are the Poincaré–Cartan forms. The Poincaré–Cartan
1-form θL ∈ Ω1(TM) is defined by

θL = tS ◦ dL,

where S is the vertical endomorphism (2.3), and the Poincaré–Cartan 2-form is

ωL = −dθL.

In local coordinates, the Poincaré–Cartan forms read as

θL =
∂L

∂ẋi
dxi,

ωL =
∂2L

∂ẋi ∂xj
dxi ∧ dxj +

∂2L

∂ẋi ∂ẋj
dxi ∧ dẋj .

Let us point out here that we can construct the Poincaré–Cartan forms following
another route. Consider the fibre derivative FL: TM → T∗M (recall equation (2.1))
of the lagrangian function. It is called the Legendre transformation. It locally reads
as FL(x, ẋ) = (xi, ∂L/∂ẋi(x, ẋ)). Now, recall the the canonical forms of the cotangent
bundle θM and ωM . It turns out that

θL = FL∗θM and ωL = FL∗ωM . (3.15)

We already have the geometric objects needed for the symplectic formulation. Since
ωL is closed, the triplet (M,ωL, dEL) is a presymplectic dynamical system. Consider
its associated equation, for vector fields X on TM ,

iXωL = dEL. (3.16)
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The discussion of this equation splits into two cases, according to whether the
Poincaré–Cartan 2-form ωL is nodegenerate or not. This characteristic is so important
that the Lagrangian systems are divided into two classes. We say that a lagrangian
function L (and the Lagrangian system that it defines) is regular if any of these equiv-
alent conditions hold:

• The Poincaré–Cartan 2-form ωL is nondegenerate (hence symplectic, since it is
closed by definition).

• The Legendre transformation FL is a local diffeomorphism.

• The fibre hessian of the lagrangian, F2L: TM → T∗M ⊗T∗M , is nondegenerate.

In coordinates, these conditions are equivalent to the regularity of the Hessian matrix
(

∂2L

∂ẋi ∂ẋj

)
.

The lagrangians (and Lagrangian systems) that are not regular are called singular.
Now, if the lagrangian is regular, since ωL is symplectic, equation (3.16) has a

unique solution, which we denote by ΓL. It can be seen that ΓL satisfies these two
properties:

1. It is a second order differential equation. We recall that this implies that its
integral curves ξ(t) are the velocities of curves on M : ξ(t) = (τM ◦ ξ).(t).

2. The curves γ(t) = (τM ◦ ξ)(t), where ξ(t) is and integral curve of ΓL, are the
solutions of the Euler–Lagrange equations (3.14).

On the other hand, if the system is singular (we refer to [Car 90] for a detailed dis-
cussion on singular lagrangian systems), the Poincaré–Cartan 2-form ωL is just presym-
plectic and equation (3.16) may be unsolvable or solvable only over a submanifold of M .
Furthermore, the equation (where solvable) may have multiple solutions, because sec-
tions of KerωL can be added to any solution of (3.16) to obtain more solutions.

Finally, it is not assured that the solutions are SODE as in the regular case. There-
fore, the equation

S(X) = ∆ (3.17)

should be added to equation (3.16) to get rid of the vector fields that are not a SODE.
In spite of all these problems, the SODE solutions of equation (3.16) are vector fields
(possibly defined only on a submanifold of M) whose integral curves are the velocities of
solutions of the Euler–Lagrange equations (3.14). In order to obtain these solutions, we
can apply the geometric algorithm of presymplectic systems proposed by Gotay, Nester
and Hinds [GNH 78] (see also [LR 89]). This algorithm is in fact the constraint algorithm
for linearly singular systems given in section 3.1 when we consider the presymplectic
system as a linearly singular system in the way that we will see later.
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Before this, we will see two different formulations for degenerate Lagrangian systems
where the second-order condition arises directly from the equations of motion.

Formulation with the operator K

There is an interesting alternative way to describe intrinsically the Euler–Lagrange
equations with makes use of the so-called time-evolution operator K. In local coor-
dinates, K was first introduced in [BGPR86] (see also [Car 90]) as a differential op-
erator K: C∞(T∗M) → C∞(TM). In [GP89] is presented as a vector field along the
Legendre transformation FL, that is, a map K: TM → T(T∗M) such that K(up) ∈
TFL(up)(T∗M), satisfying the two following properties that determine it completely:

{
TπM ◦K = idTM

(FL)∗(iKωQ) = dEL
.

The second equation, which involves operations with tensor fields along a map, it is
understood as follows: for every v ∈ TM , (t(TvFL) ◦ ω̂Q ◦K)(v) = dEL(v).

Its local expression in natural coordinates is

K(x, ẋ) =
(

xi,
∂L

∂ẋi
(x, ẋ); ẋi,

∂L

∂xi
(x, ẋ)

)
.

After some computations it can be seen that a path ξ: I → TM is the velocity of a
solution of the Euler–Lagrangre equations (3.14) if and only if T(FL) ◦ ξ̇ = K ◦ ξ.
Moreover, if a vector field X ∈ X(TM) is a solution of the equation

T(FL) ◦X = K, (3.18)

then it is automatically a SODE, so its integral curves are derivatives of curves on M

that, as we have just said, are solutions of the Euler–Lagrange equations. There-
fore, equation (3.18) is a good intrinsic way to write the Euler–Lagrange equations for
singular lagrangians. It is worth mentioning that the operator K it is useful in the
theory of singular lagrangians not only to express the equations of motion but also
to relate the Lagrangian and Hamiltonian formulation [BGPR86, CL 87, Pon 88], to
study symmetries [GP88, FP 90, GP 00] or to study Lagrangian systems with generic
singularities [PV00].

First-order formulation

Yet there is another formulation, developed geometrically by Skinner and Rusk [Ski 83,
SR 83] of the dynamical equations of singular systems. We can say that this approach
is a mixed velocity-momentum description of Lagrangian systems because the Euler–
Lagrange equations are seen to be equivalent to a first-order differential equation on
the Whitney sum T∗M ⊕ TM .
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Then let us consider the Whitney sum of T∗M and TM , which we denote by
W = T∗M ⊕TM . The natural projections of W on T∗M and TM are denoted by pr1
and pr2 respectively. We can define a presymplectic form on W as the pull-back of the
canonical symplectic form of T∗M :

ωW = pr∗1(ωM )

and the function EW ∈ C∞(W ),

EW = 〈pr1,pr2〉 − pr∗2(L).

In [Ski 83] it was shown that the equation

iZωW = dEW (3.19)

for a vector field Z ∈ X(W ) is equivalent to equation (3.16) together with the SODE

condition (3.17). More precisely, a solution Z of (3.19) is pr2-related to a SODE X

(that is, Tpr2 ◦ Z = X ◦ pr2) solution of (3.16). Therefore, the projection to M of
integral curves of Z are solutions of the Euler–Lagrange equations (3.14).

Since (3.19) is a presymplectic equation, the Gotay–Nester–Hinds algorithm [GNH 78]
can be applied. See [SR 83] for details and other procedures to generate the final con-
straint submanifold.

Hamiltonian formalism

Now we will briefly describe the Hamiltonian formalism of a Lagrangian system (M,L).
Its main general characteristics are that the dynamics take place at the cotangent
bundle T∗M , which is naturally endowed with a symplectic structure, and the equations
of motion locally take the form of the well-known Hamilton equations. An important
reason to have a Hamiltonian description of a system is that it is the first step towards
quantization. We will follow the exposition given in [Car 90].

The link between the Lagrangian and Hamiltonian formalism is the Legendre trans-
formation FL: TM → T∗M associated with the lagrangian L. Recall that the la-
grangian is regular if FL is a local diffeomorphism.

If FL is a global diffeomorphism we say that the lagrangian function L (and also the
Lagrangian system) is hyperregular. In this case, we can relate a Hamiltonian system on
T∗M (see section (2.2)) to the Lagrangian system as follows. We define the hamiltonian
function as H = EL ◦ FL−1 ∈ C∞(T∗M). Taking into account that ωL = FL∗ωM , the
Hamiltonian vector field XH , which is the solution of the Hamiltonian equation

iY ωM = dH, (3.20)

is FL-related to the solution ΓL of equation (3.16). Therefore, the solutions of the
Euler–Lagrange equations (3.14) are the curves γ(t) = (πM ◦ η)(t), where η(t) is an
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integral curve of XH . In natural coordinates (xi, pi) of T∗M , the equations for the
integral curves of XH are the Hamilton equations

dxi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂xi
.

If the lagrangian L is singular we can not construct a hamiltonian function in T∗M .
Nevertheless, in some cases we can obtain a system on the submanifold
P1 = FL(TM) ⊂ T∗M which is FL-related to the presymplectic system (TM, ωL,dEL).
We say that the lagrangian is almost-regular if FL is a submersion onto P1 and the
fibres FL−1(FL(v)) are connected for each v ∈ TM . This concept was introduced by
Gotay and Nester in [GN 79], where they prove that in this case the energy EL is FL-
projectable, that is, there exists a function H1 ∈ C∞(P1) such that H1 ◦FL = EL. Let
ω1 be the pull-back of ωM to P1. It is clear that (P1, ω1, dH1) is a presymplectic system
FL-related to the lagrangian one (TM, ωL,dEL). Thus, for almost-regular lagrangians
there is a hamiltonian formalism of the dynamics with equation

iY ω1 = dH1, (3.21)

for Y ∈ X(P1). As in the Lagrangian formalism, this equation may lead to constraints,
so the solutions (if exist) are found by means of the constraint algorithm.

Lagrangian systems and linearly singular systems

Now, realize that equation (3.16) is the equation for a vector field to be the solution of
the autonomous linearly singular system (ω̂L: T(TM) → T∗(TM), dEL):

T(TM)

²²

ω̂L // T∗(TM)

TM

dEL

88qqqqqqqqqq

. (3.22)

In fact, every presymplectic system (Q,ω, α) is equivalent to the linearly singular system
(ω̂: TQ → T∗Q,α).

Or, if the system is singular and we want to deal jointly with equation (3.16) and
the SODE problem, we can add equation (3.17) to the autonomous linearly singular
system (3.22) by means of a Whitney sum, obtaining the linearly singular system
(ω̂L ⊕ S: T(TM) → T∗(TM)⊕ T(TM), dEL ⊕∆):

T(TM)

²²

ω̂L⊕S // T∗(TM)⊕ T(TM)

TM
dEL⊕∆

44iiiiiiiiiiiiiiiiii

.
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The formulation for singular systems using the time-evolution operator K led to

equation (3.18), which is equivalent to the linearly singular system (
◦
T(FL): T(TM) →

T(T∗M)×FL TM,
◦
K):

T(TM)

²²

◦
T(FL)// T(T∗M)×FL TM

TM

◦
K

66mmmmmmmmmmmmm

,

where
◦
T(FL) = (T(FL), τTM ) and

◦
K = (K, idTM ). This maps are used because the

operator K is not the section of a bundle but a section along FL. Therefore, we use
the pull-back T(T∗M) ×FL TM as the vector bundle of the linearly singular system

and the section
◦
K and vector bundle morphism

◦
T(FL) corresponding to K and TFL.

Finally, the mixed formulation of Skinner and Rusk (equation (3.19)) is equivalent
to linearly singular system on W = T∗M ⊕ TM , (ω̂W : T(TW ) → T∗(TW ), dEW ):

TW

²²

ω̂W // T∗W

W

dEW

;;vvvvvvvvv

.

Therefore, the three alternative formulations of singular Lagrangian systems that
we have seen can be interpreted as linearly singular systems that are not consistent. We
should use the constraint algorithm of section (3.1) to obtain the maximal submanifold
where a solutions exist.

Also the Hamiltonian formalism that we have seen is equivalent to a linearly singular
system, since it leads to a presymplectic system (P1, ω1, dH1) (equation (3.21)). The
corresponding linearly singular system is

TP1

²²

ω̂1 // T∗P1

P1

dH1

;;wwwwwwwww

.

Forced systems

During this discussion, we have assumed that there are no “external forces” acting
on the system. In the context of Lagrangian systems, forces are represented by bundle
morphisms F : TM → T∗M , in other words, forces are 1-forms along τM . In coordinates,
a force is written as F (xi, ẋi) = Fi(xi, ẋi)dxi. It is usual to identify the force F with
the semibasic 1-form on TM given by (TτM )∗F ; it has the same local expression.

Without going into details, in presence of forces it is applied the so-called Lagrange–
d’Alembert principle, which states how a force affects the motion of a system. The
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resulting equations are the forced Euler–Lagrange equations

d
dt

(
∂L

∂ẋi
◦ γ̇

)
− ∂L

∂xi
◦ γ̇ = Fi ◦ γ̇, 1 ≤ i ≤ n.

The symplectic formulation of the forced equations has the simple form

iXωL = dEL + F. (3.23)

Viewed as linearly singular systems, the only difference between the unforced and forced
system is in the section of πTM . The forced system is equivalent to the linearly singular
system (ω̂L: T(TM) → T∗(TM), dEL + F ).



Chapter 4

Generalized nonholonomic

systems

The main goal of this chapter is to study the nonholonomic mechanical systems within
the framework of linearly singular differential equations.

A lagrangian system with nonholonomic constraints may be considered, thinking in
a more general way, as a singular differential equation defined by some constraints and
some multipliers:

ẋ = g(x) +
∑

µ

uµ hµ(x), φα(x) = 0.

Such an equation can be described geometrically as a linearly singular system, the type
of implicit differential equations that we discussed in the previous chapter, that is,
a differential equation where the velocities are not isolated because of a linear factor
multiplying them:

A(x)ẋ = b(x).

The idea of modelling mechanical systems as implicit differential equations is found in
earlier papers by Tulczyjew [MT 78, MMT 95], and it has also been used to deal with
nonholonomic constraints [Tul 86, ILMM 96].

In this chapter we see that a system with constraints and multipliers, and in par-
ticular any nonholonomic mechanical system, can be described as a linearly singular
system. Therefore, all the methods and results about linearly singular systems can be
applied directly to nonholonomic systems.

More precisely, the combination of two operations that can be performed on linearly
singular systems —restriction to a subsystem and projection to a quotient— can be
applied to obtain what we call a generalized nonholonomic system. We deal with the
regularity, consistency and equations of motion of these derived systems in section 4.3.
To prove some results of this section, previously we give some lemmas about linear
algebra in section 4.2

43
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In the previous chapter, we studied the symmetries of a linearly singular system.
Here in section 4.4 we discuss the relation between the symmetries of a system with
nonholonomic constraints and the symmetries of its original unconstrained system, both
modelled on linearly singular differential equations. We will also study their constants
of motion.

In section 4.5 we show how a lagrangian system with nonholonomic constraints can
be described in terms of a generalized nonholonomic systems. A system constituted by
a relativistic particle moving in spacetime under the action of an electromagnetic field
and a potential is studied in section 4.7, where we see that a nonholonomic constraint
can convert a singular lagrangian into a regular system. Two additional examples are
studied in section 4.8.

4.1 Nonholonomic Lagrangian systems

Consider a Lagrangian system (M,L) as defined in section 3.2. For different physical
reasons, that in principle are not related with the lagrangian L, it could happen that
some states of the system are impossible to attain. We say then that the system
has constraints. Here we will only deal with smooth constraints on the positions and
velocities of the system:

Definition 4.1 A constrained Lagrangian system is a Lagrangian system (M, L) on a
manifold M together with a submanifold C of TM , called the constraint submanifold.

Obviously, C represents the states that the physical system can reach. We will assume
that all the configurations are reachable, that is, τM (C) = M . If the constraint C

is derived from a constraint in the configuration space (that is, C = TN with N a
submanifold of M) we say that the constraint is holonomic. More generally, a semi-
holonomic constraint C is the total space of an integrable distribution, so through each
state v ∈ TM there passes a submanifold S of M such that TvS = Cv. Therefore, in
this case the constraint leads to some conservation laws and induces a foliation on M

by integral submanifolds.
In this dissertation we are interested in the remaining case, when the constraint C

is not integrable. In this case the constraint C is said to be nonholonomic.
Obviously, we can not expect that the constrained systems behaves as the free

system. One possible approach is to assume that there is a force, which we call the
constraint or reaction force, acting upon the free system in such a way that the solutions
of the forced system correspond to the motions of the constrained system. The question
is which force or set of forces have to be chosen in order to give a real description of
the physical system. In most cases, in particular when the constraints are generated
by interactions such as sliding and rolling between different components of the system,
it is used the rule proposed by Chetaev [Che 34], which can be expressed in geometric
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terms as follows: in a nonholonomic Lagrangian system (M,L, C), the constraint force
belongs to the vector subbundle tS((TC)`) ⊂ T∗(TM)|C . This subbundle is called the
Chetaev bundle. The Chetaev’s rule is a generalization of the so-called d’Alembert’s
principle, valid for linear or affine constraints (that is, when C is a vector subbundle or
an affine subbundle of TM). We remark that when the constraint is semi-holonomic (or
holonomic), the result of applying the d’Alembert’s principle is that on each integral
submanifold S the system behaves as the unconstrained system (S, L|S), as should be
expected.

We are not going to discuss these principles, we refer the reader to [Mar 98]. In
any case, we note that in some systems the Chetaev’s rule may not lead to the right
equations of motion; this is due to the fact that the reaction forces depend on the nature
of the constraints. If this is the case, we can consider more generally that the constraint
force belongs to a given vector subbundle F ⊂ T∗(TM)|C , called the bundle of forces.
In [ILMM96] is given a more general formulation, where the constraint forces are also
given independently of the constraint manifold and, furthermore, allows restrictions on
the accelerations of the system. See [CILM04] for an even more general discussion that
allows higher–order constraints.

There is another approach to constrained system, in which the dynamics are de-
rived from a variational principle (a certain natural generalization of Hamilton’s prin-
ciple). This model, originally proposed by Kozlov [Koz 83], is known with the name
of vakonomic mechanics (mechanics of variational axiomatic kind). This approach is
natural when dealing with some problems in engineering or economics, but we will
not follow it here. Some references on this topic are [Arn 83, LM 95, CLMM02]. Uni-
fied geometrical approaches to both nonholonomic and vakonomic mechanics are given
in [LMM 00, GMM 03].

Through this dissertation we will follow the nonholonomic approach to constrained
systems and, particularly, we will accept the Chetaev’s rule. Therefore, the systems
that we will discuss are the following:

Definition 4.2 A nonholonomic Lagrangian system is a constrained Lagrangian sys-
tem (M, L, C) such that τM (C) = M and the Chetaev’s rule provides the dynamics.

Since a nonholonomic Lagrangian system (M,L, C) is a forced system, the forced
equation (3.23) can be used to find the solutions. Recall that a solution of equa-
tion (3.23) is a vector field X of TM such that its integral curves are velocities of
solutions of the forced Euler–Lagrange equations. In this case, the only thing we know
about the force is that, on the constraint submanifold C, it belongs to the Chetaev
bundle, so equation (3.23) takes the form

(iXωL − dEL)|C ∈ tS((TC)`). (4.1)
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Of course, the velocity of a solution of the nonholonomic Lagrangian system must be
a curve in C. This is ensured by equation

X|C ∈ TC, (4.2)

so that an integral curve of X with initial condition in C it is a curve in C. The
value of X outside C is irrelevant in both equations, which agrees with the concept of
constrained system: since the points outside the constraint are unattainable, the value
of a solution vector field (which, roughly speaking, represent the accelerations) outside
C is not important. Therefore, it is more logical to consider the vector field as defined
only on C, that is, X ∈ X(C). Then, equations (4.1) and (4.2) sum up to

{
( ω̂L|C) ◦X − dEL|C ∈ tS((TC)`)
X ∈ X(C)

, (4.3)

where ω̂L|C denotes the restriction of ω̂L to T(TM)|C . If the constraint C is locally
defined by the vanishing of m constraint functions φα, then equations (4.3) have the
local expression

{
d
dt

(
∂L
∂ẋi ◦ γ̇

)− ∂L
∂xi ◦ γ̇ = λα

∂φα

∂ẋi ◦ γ̇, 1 ≤ i ≤ n

φα ◦ γ̇ = 0, 1 ≤ α ≤ m
, (4.4)

where λα (called Lagrange multipliers) are m functions to be determined. Thus, there
are m + n equations with m + n unknowns.

In case that the Chetaev’s rule is not valid but we have some information that
provides with a bundle of forces F ⊂ T∗(TM)|C , the equations of motion are formulated
as (4.3), replacing the Chetaev bundle tS((TC)`) by F .

4.2 Some lemmas about linear algebra

Here we present three lemmas about vector spaces and linear maps that are not widely
known and will be useful to prove some results of the next section. These lemmas are
stated and proved for vector spaces, but of course nothing changes essentially if vector
bundles are considered instead.

Lemma 4.3 Let f : E → F be a linear map between vector spaces, and E◦ ⊂ E and
F◦ ⊂ F vector subspaces. Denote j: E◦ → E the inclusion, p:F → F/F◦ the projection
to the quotient, and consider the composition f̄ = p ◦ f ◦ j. Then:

1. f̄ is injective iff E◦ ∩ f−1(F◦) = {0}.
Assuming f injective, this also amounts to f(E◦) ∩ F◦ = {0}.

2. f̄ is surjective iff f(E◦) + F◦ = F .
Assuming f surjective, this also amounts to E◦ + f−1(F◦) = E.
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3. When f is surjective, f̄ is bijective iff E◦ ⊕ f−1(F◦) = E.
When f is injective, f̄ is bijective iff f(E◦)⊕ F◦ = F .

Proof. First note that

Ker f̄ = E◦ ∩ f−1(F◦), Im f̄ = (f(E◦) + F◦)/F◦. (4.5)

These equalities are clear: the kernel is constituted by the vectors in E◦ mapped to F◦
by f , and the image of a subspace F ′ ⊂ F by p is (F ′+F◦)/F◦. This readily yields the
first assertions about injectivity and surjectivity.

Their equivalent formulations when f is injective [or surjective] can be proved using
the formulas for f(E1 ∩E2) and f−1(F1 ∩F2) [or for the sum], as well as f−1(f(E◦)) =
E◦ + Ker f , f(f−1(F◦)) = F◦ ∩ Im f .

Finally, the assertions about the bijectivity of f̄ are a trivial consequence of the
other ones.

The elements of this lemma are showed in this diagram:

E
f // F

p
²²²²

Eo

?Â
j

OO

f̄
// F/Fo

Now let us study a linear equation on E◦ defined as in the preceding lemma by f̄

and the class of an element b ∈ F . Recall that a linear equation f(x) = b is consistent
iff b ∈ Im f .

Lemma 4.4 The linear equation f̄(x) = b̄ is equivalent to the couple of equations
f(x) − b ∈ F◦, x ∈ E◦. It is consistent iff b ∈ f(E◦) + F◦; in this case the solution is
unique iff E◦ ∩ f−1(F◦) = {0}.

The proof of this lemma is straightforward.

Finally, let E ⊂ G be a subspace of a vector space. Recall that the annihilator (or
orthogonal) of E is the subspace

E` = {γ ∈ G∗ | (∀x ∈ E) 〈γ, x〉 = 0} ⊂ G∗.

This space has a close relationship with G/E. Indeed, the transpose map of G → G/E

defines a canonical isomorphism

δ: (G/E)∗ → E`,

such that, for α ∈ E` and z ∈ G, 〈δ−1(α), z + E〉 = 〈α, z〉.
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Lemma 4.5 Let E,F ⊂ G be vector subspaces. Let (α1, . . . , αp) be a basis for the an-
nihilator E` ⊂ G∗, and (v1, . . . , vq) a basis for F . Consider the matrix D = (Di

j) 1≤i≤p
1≤j≤q

with elements Di
j = 〈αi, vj〉. Then:

1. E + F = G iff rankD = p.

2. E ∩ F = {0} iff rankD = q.

3. E ⊕ F = G iff D is square invertible.

Proof. Consider the linear map ε: F → G/E defined as the composition of the inclusion
F ↪→ G and the projection to the quotient G ³ G/E. It is clear that E + F = G iff ε

is surjective, and E ∩ F = {0} iff ε is injective, so the only thing to prove is that the
given matrix is the matrix D of ε in appropriate bases: the basis (vj) for F , and the
basis (ᾱi), the dual basis of ᾱi = δ−1(αi), for G/E.

Then, if ε(vj) = ᾱi D
i
j , we have Di

j = 〈ᾱi, ε(vj)〉 = 〈αi, vj〉, which is what we
wanted to prove.

4.3 Generalized nonholonomic systems

The geometric setting

Among the various operations that can be performed with a linearly singular system
(B: TN → G, g), we are especially interested in the subsystem defined on a submanifold
j:M ↪→ N , and the projection p: G → G/G′ to a quotient with respect to a vector
subbundle G′ ⊂ G:

TN

²²

B // G

~~||
||

||
||

TM

²²

B|TM // G|M

{{xxxxxxxx
TN

²²

p◦B // G/G′

{{ww
ww

ww
ww

w

N

g

>>||||||||
M

g|M

;;xxxxxxxx
N

p◦g

;;wwwwwwwww

Suppose that the original system admits solutions Y on a submanifold Nf ⊂ N .
Then the subsystem on M has solutions on the submanifolds of M ∩Nf over which a
solution Y of the initial system is tangent.

On the other hand, the quotient system has, in general, more solutions than the
initial system: if Z is any vector field on N tangent to Nf with values in B−1(G′)
then Y + Z is a solution of the quotient system on Nf ; there may also exist solutions
defined on a submanifold greater than Nf .

The dynamics of systems with nonholonomic constraints is a mixture of both con-
structions: the presence of some constraints, combined with a certain degree of arbi-
trariness expressed through some multipliers. This combination may result advanta-
geous: though in general Y is not tangent to the submanifold M , it may happen that
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for some vector fields Z in B−1(G′) one has solutions Y + Z tangent to M , or at least
to a “big” submanifold of M .

We will call a generalized nonholonomic system the linearly singular system
(A: TM → F, f) defined from (B: TN → G, g) by a constraint submanifold M ⊂ N

and a subbundle of constraint forces G′ ⊂ G|M as follows:

• F = (G|M )/G′,

• A = p ◦ B|M ◦
◦
Tj, and

• f = p ◦ g|M ,

where p: G|M → (G|M )/G′ is the projection to the quotient, and
◦
Tj denotes the tangent

map of j with the image restricted to M . All this is shown in the following diagram:

TM

²²

◦
Tj //

A

&&
TN |M

²²

B|M // G|M
p // F = (G|M )/G′

M M

g|M
::uuuuuuuuu f

55kkkkkkkkkkkkkkkkkkk

Regularity and consistency

Before discussing the equations of motion, we want to study some general properties of
the generalized nonholonomic system (A: TM → F, f), namely, whether A is surjective
(we will also say that the system is surjective) or bijective (the system is regular), or
the equation A ◦X = f is everywhere consistent.

Let us denote

H = B−1(G′) ⊂ TN |M ,

which is a vector subbundle whenever the morphism B has constant rank.

Proposition 4.6 With the preceding notations, the generalized nonholonomic system
is surjective iff

B(TM) + G′ = G|M .

Assuming that the original system is surjective, the nonholonomic system is surjective
iff

TM + H = TN |M ,

and it is regular iff in addition

TM ∩H = {0}.
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Proof. We want to decide whether A = p◦B|M ◦
◦
Tj (the composition of an inclusion, a

morphism and a projection) is surjective or injective, and this is given by lemma (4.3).

The preceding result could be refined also in the case where B is injective, but this
does not seem so interesting. As an immediate consequence, we have:

Corollary 4.7 Suppose that the original system is surjective (or, more particularly,
regular). Then the generalized nonholonomic system is regular iff

TN |M = TM ⊕H.

These relations can be given a more concrete form in terms of constraints and
frames. Consider a local basis (Γµ)1≤µ≤m◦ of sections for the subbundle H ⊂ TN |M
(they are vector fields in N , but defined only on M). Consider also a set of a◦ constraints
φα, linearly independent at each point, that locally define the submanifold M ⊂ N .
Finally, consider the matrix

Dα
µ = 〈dφα|M ,Γµ〉 = Γµ · φα, (4.6)

whose elements are functions on M .

Proposition 4.8 With the preceding notations,

1. TM ∩H = 0 iff rank(Dα
µ) = m◦.

2. TM + H = TN |M iff rank(Dα
µ) = a◦.

3. TM ⊕H = TN |M iff (Dα
µ) is a square invertible matrix.

Proof. It is a consequence of lemma (4.5), since the dφα|M constitute a basis for the
annihilator of TM in (TN |M )∗.

The connection of such a matrix with the notion of regularity and consistency of a
constrained system was already noted in [CR93, LM96].

Equations of motion

From the definition of the generalized nonholonomic system (A: TM → F, f), it is clear
that a path ξ: I → N is a solution of the equation of motion iff it is contained in M

and
B ◦ ξ̇ − g ◦ ξ ∈ G′. (4.7)

If some sections ∆ν constitute a frame for G′, then this equation can be written as

B ◦ ξ̇ = g ◦ ξ +
∑

ν

vν ∆ν ◦ ξ, (4.8)

for some multipliers vν(t).
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In the same way, for a submanifold S ⊂ M and a vector field X on M tangent to S,
the equation of motion A ◦X '

S
f can be written as

B ◦X − g ∈
S

G′, (4.9)

where the equation must only hold on the points of S. This equation may be also
written as

B ◦X '
S

g +
∑

ν

vν∆ν , (4.10)

for some multipliers vν(x).
Of course, we can apply the constraint algorithm to find the solutions of this linearly

singular system. However, there is an alternative way to solve the problem when the
original problem is regular, or at least consistent. Under this hypothesis, let Y be a
vector field on N , solution of the equation of motion of the linearly singular system
(B: TN → G, g):

B ◦ Y = g.

(For most applications the original system is regular, and then the unique solution of
this equation is the vector field Y = B−1 ◦ g.)

Using Y , the equations of motion become

ξ̇ − Y ◦ ξ ∈ H (4.11)

for a path ξ in M , and
X − Y ⊂

S
H, (4.12)

for a vector field X on M that should be tangent to S.
These equations can be expressed in a more concrete form in terms of the local

basis (Γµ) of sections for the subbundle H ⊂ TN |M :

ξ̇ = Y ◦ ξ +
∑

µ

uµ Γµ ◦ ξ, (4.13)

for some functions uµ(t), and

X '
S

Y +
∑

µ

uµ Γµ, (4.14)

for some functions uµ on M .
Let us examine whether this last equation has solutions. The requirement for X of

being tangent to M is X · φα '
M

0, which reads

∑
µ

Dα
µ uµ + Y · φα '

M
0, (4.15)

where (Dα
µ) is the matrix defined by (4.6). From this it is clear that the generalized

nonholonomic system is regular iff the matrix (Dα
µ) is invertible on M , and in this
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case the equation (4.15) directly determines the functions uµ that give the solution X

expressed in (4.14). More generally, the nonholonomic system has solutions if the
matrix (Dα

µ) has rank a◦.
Geometrically, the decomposition TN |M = TM ⊕ H stated in Corollary 4.7 has

two associated projectors P, Q. Writing Y = P ◦Y +Q◦Y on M , the following result
is clear:

Proposition 4.9 With the preceding notations, if the original system is consistent,
with a solution Y , and the generalized nonholonomic system is regular, with solution X,
the latter can be obtained as

X = P ◦ Y |M . (4.16)

Such projectors were studied, in the context of nonholonomic lagrangian systems,
in [LM96].

4.4 Symmetries and constants of motion

Let us consider a generalized nonholonomic system (A: TM → F, f), obtained from a
linearly singular system (B: TN → G, g) by means of a restriction to a submanifold
M ⊂ N and a projection to the quotient p: G|M → (G|M )/G′, where G′ ⊂ G|M is a
vector subbundle.

Recall the definitions of symmetry and infinitesimal symmetry given in section 3.1.
Our aim is to study the relation between the symmetries of the original linearly singular
system on N and the symmetries of the generalized nonholonomic system on M . In the
next proposition, we give sufficient conditions on a symmetry of the original system in
order to define a symmetry of the constrained system:

Proposition 4.10 Let (ψ, Ψ) be a symmetry of (B: TN → G, g). Suppose that ψ leaves
the submanifold M ⊂ N invariant, and Ψ leaves the subbundle G′ ⊂ G|M invariant.
Then (ϕ,Φ), where ϕ = ψ|M , and Φ: (G|M )/G′ → (G|M )/G′ is the map induced on
the quotient from Ψ, is a symmetry of (A: TM → F, f).

Proof. We have

A◦Tϕ = p◦B ◦Tj ◦T(ψ|M ) = p◦B ◦Tψ ◦Tj = p◦Ψ◦B ◦Tj = Φ◦p◦B ◦Tj = Φ◦A,

and
f ◦ ϕ = p ◦ g ◦ ψ|M = p ◦Ψ ◦ g|M = Φ ◦ p ◦ g|M = Φ ◦ f,

so the two conditions for being a symmetry are satisfied.

We can obtain a similar result for infinitesimal symmetries, by making use of their
infinitesimal characterization (3.13):
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Proposition 4.11 Let (V, V̄ ) be an infinitesimal symmetry of (B: TN → G, g). Sup-
pose that V is tangent to the submanifold M ⊂ N , and V̄ is tangent to the subbun-
dle G′ ⊂ G|M . Then (U, Ū), where U = V |M and Ū : (G|M )/G′ → T((G|M )/G′)
is the vector field induced on the quotient from V̄ , is an infinitesimal symmetry of
(A: TM → F, f).

Proof. The proof runs as in proposition 4.10:

Tf ◦ U = Tp ◦ Tg ◦ V |M = Tp ◦ V̄ ◦ g|M = Ū ◦ p ◦ g|M = Ū ◦ f,

TA ◦ UT = Tp ◦ TB ◦ T(Tj) ◦ (V T )
∣∣
TM

= Tp ◦ TB ◦ V T ◦ Tj =

= Tp ◦ V̄ ◦B ◦ Tj = Ū ◦ p ◦B ◦ Tj = Ū ◦A.

We now consider constants of motion. Suppose that the original system has a
solution Y ∈ X(N), and let us consider a function h ∈ C∞(N) such that Y · h = 0.
Under which conditions is h|M a constant of motion of the generalized nonholonomic
system?

Suppose that both the original system and the nonholonomic system are regular,
so that TN |M = TM ⊕H; let P be the projector to the first factor, which, according
to proposition 4.9, relates the dynamics of both systems as X = P ◦ Y . Then we have
a simple characterization:

Proposition 4.12 With the preceding hypothesis, write X = Y − Γ, where Γ is a
section of H ⊂ TN |M . Let h be a constant of motion of the unconstrained system.
Then h|M is a constant of motion of the generalized nonholonomic system iff Γ ·h = 0.

Proof. It is straightforward:

X · h = (Y − Γ) · h = Y · h− Γ · h.

(Note that Y and Γ, considered as sections of TN |M , map functions on N to functions
on M .)

4.5 Nonholonomic Lagrangian systems revisited

In this section we will show that the dynamics of a nonholonomic lagrangian system
as described in section 4.1 falls into the class of generalized nonholonomic systems of
section 4.3. We will consider the case of the lagrangian being regular, which amounts
to ωL being a symplectic form.

Consider a nonholonomic lagrangian system (M, L, C). We will consider only the
case where the constraint submanifold C restricts the velocities, not the configuration
coordinates. In a more formal way, this is described by the conditions given in the next
proposition:
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Proposition 4.13 Let C ⊂ TM be a submanifold. The following conditions are equiv-
alent:

1. The projection C → M (restriction of the tangent bundle projection τM : TM →
M) is a submersion.

2. (TC)` ∩ Sb(TM)|C = 0.

3. The submanifold C ⊂ TM can be locally described by the vanishing of some
constraints φi whose fibre derivatives Fφi are linearly independent at each point
of C.

4. The submanifold C ⊂ TM can be locally described by the vanishing of some
constraints φi such that the 1-forms ∆i = tS ◦ dφi are linearly independent at
each point of C.

Proof.
1 ⇔ 2:
Let i: C ↪→ TM denote the inclusion and p :C → M denote the projection.
We have that, for v ∈ C ⊂ TM , (TvC)` = Ker T∗vi and Sbv(TM) = Im T∗vτM .

Since p = τM ◦ i, Tvp = TvτM ◦Tvi and, passing to the dual, T∗vp = T∗vi ◦T∗vτM . Using
this fact, it can be seen that KerT∗vi ∩ ImT∗vτM = T∗vτM (KerT∗vp).

So, (TvC)` ∩ Sbv(TM) = T∗vτM (Ker T∗vp), and, since T∗vτM is injective, (TvC)` ∩
Sbv(TM) = 0 if and only if Ker T∗vp = 0, or, passing to the dual, if and only if Tvp is
surjective.

This argument is valid for every v ∈ C, so (TC)` ∩ Sb(TM)|C = 0 if and only if p

is a projection.

2 ⇔ 4:
Take v ∈ C. We know that Sbv(TM) is the kernel of tSv: T∗v(TM) → T∗v(TM).

Hence, (TvC)`∩Sbv(TM) = (TvC)`∩Ker tSv = Ker( tS
∣∣
(TvC)`), so (TvC)`∩Sbv(TM) =

0 if and only if tS
∣∣
(TvC)` is injective.

Let φi be a set of functions such that dφi
v are linearly independent and C is locally

described around v by the vanishing of the φi. By theorem 2.4 such constraints functions
always exist and (TvC)` is generated by 〈dφi

v〉. Therefore, tS
∣∣
(TvC)` is injective if and

only if tS(dφi
v) are linearly independent.

Since we can prove this for every v ∈ C, (TvC)` ∩ Sbv(TM) = 0 if and only if
∆i = tS ◦ dφi are linearly independent at each point of C.

3 ⇔ 4:
For every vq ∈ TM , T∗vτM : T∗qM → Sbv(TM) is a linear isomorphism. Therefore,

since ∆i(v) = T∗vτM (Fφi(v)), the cotangent vectors ∆i(v) are linearly independent if
and only if the corresponding Fφi(v) are linearly independent.
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This holds, in particular, for v ∈ C.

In coordinates, these conditions mean that
(

∂φi

∂vk

)
has maximal rank.

Therefore, from now on, we assume that the projection C → M is a surjective
submersion.

For the sake of simplicity, we use the notation G′ = tS((TC)`) ⊂ Sb(TM)|C for
the Chetaev bundle and H = ω̂−1

L (G′) ⊂ V(TM)|C its image by ω̂−1
L . Suppose that

M ⊂ TQ is defined by the vanishing of some independent constraints φi as in the
preceding proposition. Then (TC)` is spanned by the dφi

∣∣
C
. We denote by ∆i and Γi

their corresponding images in G′ (through tS) and H (through ω̂−1
L ).

The following diagram shows all these objects:

TC
Â Ä // T(TM)|C

ω̂L //

S

²²

T∗(TM)|C
tS

²²

(TC)` = 〈dφi
∣∣
C
〉? _oo

〈Γi〉 = H Â Ä // V(TM)|C
ω̂L //

OO

Sb(TM)|C

OO

G′ = 〈∆i〉? _oo

So we have two subbundles TC, H ⊂ T(TM)|C . We have rankTC = m and rank(TC)` =
n−m; the conditions in proposition 4.13 imply also that rankH = rankG′ = n−m.

Theorem 4.14 The nonholonomic lagrangian system (M, L,C) is equivalent to the
generalized nonholonomic system defined from the lagrangian system (ω̂L: T(TM) →
T∗(TM),dEL) by the constraint submanifold C ⊂ TM and the Chetaev bundle G′ =
tS((TC)`) ⊂ T∗(TM)|C .

TC

²²

◦
Tj // T(TM)|C

²²

ω̂L|C // T∗(TM)|C // T∗(TM)|C/G′

C C

dEL|C

77ooooooooooooo

Proof. The equation of motion for a path ξ = γ̇ such that ξ(t) ∈ M is

ξ̇ = XL ◦ ξ +
∑

i

ui Γi ◦ ξ. (4.17)

Instead, let us write the equations of motion for vector fields: according to (4.9), for a
second-order vector field X on TM , tangent to C, the equation is

iXωL − dEL ∈
C

G′, (4.18)

which is equation (4.3).

If, in addition to (TC)` ∩ Sb(TM)|C = 0, we have TC ∩H = 0, then T(TM)|C =
TC ⊕H, and so there is a unique solution X of the equation of motion, which can be
obtained from Y through the projector to TC as described by proposition 4.9.
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4.6 Implicit hamiltonian systems

In this section we will show that implicit hamiltonian systems can be considered as gen-
eralized nonholonomic systems. Thus we can apply the techniques and results studied
so far to this kind of systems.

Firstly, we will introduce the basic concepts regarding implicit hamiltonian systems
and its underlying geometric structures: the Dirac structures. For more details we refer
to [Bla 00, Cou 90, DS 99, Dor 93].

Dirac structures

Let M be a manifold with dimension n. Consider a vector field X ∈ X(M) and a
one-form α ∈ Ω1(M). We say that the pair (X, α) belongs to a vector subbundle
D ⊂ TM ⊕ T∗M (denoted (X, α) ∈ D) if (X(x), α(x)) ∈ D(x) for every point x in M .

A Dirac structure on M is a vector subbundle D ⊂ TM ⊕T∗M such that D = D⊥,
where

D⊥ = {(Y, β) ∈ TM ⊕ T∗M | 〈α, Y 〉+ 〈β,X〉 = 0, for all (X, α) ∈ D}.
The notation D⊥ is justified by the fact that D⊥ is the orthogonal to D with respect
to the symmetric pairing 〈〈·, ·〉〉 on TM ⊕ T∗M defined by

〈〈(X, α), (Y, β)〉〉 = 〈α, Y 〉+ 〈β,X〉, (X, α), (Y, β) ∈ TM ⊕ T∗M.

Let us remark that in [Bla 00, DS 99], this is called a generalized Dirac structure,
and keep the nomenclature “Dirac structure” only for those that satisfy some closedness
(or integrability) condition.

It can be seen that a Dirac structure has constant dimension n. The next two
examples of Dirac structure show the connection with symplectic and Poisson systems:

Example 4.15 Let ω ∈ Ω2(M) be a nondegenerate two-form on M (in case that ω is
closed, it is a symplectic form). Then

D = {(X, α) ∈ TM ⊕ T∗M | α = iXω}
is a Dirac structure on M .

Example 4.16 Let Λ be a bivector field on M (i.e., an antisymmetric (2, 0)-tensor
field). Then

D = {(X, α) ∈ TM ⊕ T∗M | X = iαΛ}
is a Dirac structure on M .

Recall that Λ defines an almost-Poisson bracket by

{f, g} = Λ(df,dg).

This is a Poisson bracket (satisfies the Jacobi identity) if [Λ, Λ] = 0, where [·, ·] denotes
the Schouten-Nijenhuis bracket [Vai 94].
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A Dirac structure D defines the following distributions and codistributions:

• G0 = {X ∈ X(M) | (X, 0) ∈ D}

• G1 = {X ∈ X(M) | ∃α ∈ Ω1(M) such that (X,α) ∈ D}

• P0 = {α ∈ Ω1(M) | (0, α) ∈ D}

• P1 = {α ∈ Ω1(M) | ∃X ∈ X(M) such that (X,α) ∈ D}

We define the annihilator of a distribution G as

annG = {α ∈ Ω1(M) | 〈α, X〉 = 0 for all X ∈ G},

and the kernel of a codistribution P as

kerP = {X ∈ X(M) | 〈α, X〉 = 0 for all α ∈ P}.

It follows that G0 = kerP1 and P0 = annG1. Moreover, G1 = kerP0 and P1 = annG0,
with equality if and only if G1, respectively P1, is constant dimensional.

Implicit hamiltonian systems

As a second ingredient (together with a Dirac structure) to define an implicit hamilto-
nian system we need a function H ∈ C∞(M), called the Hamiltonian function, which
represents the energy of the system.

The implicit hamiltonian system on M corresponding to D and H is specified by
the equation

(γ̇(t),dH(γ(t))) ∈ D(γ(t)), for each t ∈ I, (4.19)

where the solutions are paths γ: I → M with domain an interval I ⊂ R.
It is clear that if it exists a solution of the implicit hamiltonian system passing

through a point x ∈ M , then dH(x) belongs to the co-distribution P1. This is an
algebraic constraint which defines a submanifold of M :

M1 = {x ∈ M | dH(x) ∈ P1(x)}.

We have then a system with some constraints and certain degree of arbitrariness
expressed by equation (4.19). Therefore, an implicit hamiltonian system is a generalized
nonholonomic system, as the following proposition states.

Proposition 4.17 The implicit hamiltonian system on a manifold M corresponding
to a Dirac structure D and a Hamiltonian H is equivalent (has the same solutions) to
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the generalized nonholonomic system defined from the linearly singular system (id ⊕
0:TM → TM ⊕ T∗M, 0⊕−dH)

TM

²²

id⊕0 // TM ⊕ T∗M

M

0⊕−dH

88qqqqqqqqqqq

by the submanifold M1 = {x ∈ M | dH(x) ∈ P1(x)} and the subbundle D ⊂ TM⊕T∗M .

Proof. We use the notation p: TM ⊕ T∗M → (TM ⊕ T∗M)/D for the projection. A
path ξ: I → M1 is solution of the generalized nonholonomic system if

p ◦ (id⊕ 0) ◦ ξ̇ = p ◦ (0⊕−dH) ◦ ξ,

which is equivalent to
p ◦ (ξ̇ ⊕ (dH ◦ ξ)) = 0,

or
(ξ̇, dH ◦ ξ) ∈ D.

This is equation (4.19) plus the requirement that the path is in the submanifold M1.
Since we have already seen that all the solutions of the implicit hamiltonian system are
in M1, the result is proved.

The generalized nonholonomic system equivalent to the implicit hamiltonian system
is shown in the diagram:

TM1

²²

//

(p◦( id⊕0))|M1

++

TM |M1

²²

(id⊕0)|M1 // (TM ⊕ T∗M)|M1

p // ((TM ⊕ T∗M)|M1
)/D

M1 M1

(0⊕−dH)|M1

44jjjjjjjjjjjjjjjjjj
(p◦ (0⊕−dH))|M1

44

(4.20)
Let us now prove a result about regularity of implicit hamiltonian systems, given

in [vdS 98], using the theory of generalized nonholonomic systems.

Proposition 4.18 Consider the implicit hamiltonian system (M,D,H). Assume that
P1 is constant dimensional and {Γ1, . . . , Γm} is a basis of vector fields for G0.

Then the implicit hamiltonian system reduces to an explicit one on M1 if and only
if the matrix (Γi · Γj ·H(x))i,j=1,...m is invertible for all x ∈ M1.

Proof. The implicit hamiltonian system reduces to an explicit one on M1 if and only
if the system has one and only one solution passing through every point in M1. Tak-
ing into account the equivalence stated in proposition (4.17), that is to say that the
generalized nonholonomic system (4.20) is regular.
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Therefore, we can use the results of section 4.3. With the notations of that section,
the vector subbundle H is

H = (id⊕ 0)−1(D) = G0,

and a basis of sections of H is (Γi)1≤i≤m.
Since the manifold M1 is defined by the equation dH ∈ P1, kerP1 = G0 and

{Γ1, . . . , Γm} is a basis of vector fields for G0, a set of linearly independent constraints
defining M1 is

φj = Γj ·H, 1 ≤ j ≤ m.

Thus, the matrix (4.6) is in this case

Dj
i = Γi · Γj ·H

and the result follows directly from proposition 4.8 and corollary 4.7.

In [BS 01] is shown that, under the assumption that the distribution G1 is constant
dimensional, a Dirac structure D on a manifold M induces a Dirac structure D̄ on every
submanifold M̄ of M such that G1(x̄) ∩ Tx̄M̄ , x̄ ∈ M̄ , is constant dimensional. This
restricted Dirac structure is given by

D̄ = {(X̄, ᾱ) ∈ TM̄ ⊕ T∗M̄ | ∃X such that X̄ ∼ι X and
∃α such that ᾱ = ι∗α with (X,α) ∈ D},

where ι denotes the inclusion M̄ ⊂ M .
We remark that when the constraint algorithm is applied to the generalized non-

holonomic system (4.20), the equations obtained on M1 and the successive constraint
submanifolds that may appear, in general do not correspond to an implicit hamiltonian
system associated with the restricted Dirac structures or any other Dirac structures on
the constraint submanifolds.

4.7 Relativistic particle with a nonholonomic constraint

In this section we study the motion of a relativistic particle as a nonholonomic con-
strained system. We will consider two possible lagrangian functions, a regular one
(deeply studied in [KM01]) and a singular one.

Let us consider a particle with mass m and charge e moving in spacetime. We
model spacetime as a 4-dimensional manifold Q, endowed with a metric tensor g of
signature (1, 3). Suppose furthermore that the particle is subject to the action of an
electromagnetic field F = dA, where A ∈ Ω1(Q), and a potential U ∈ C∞(Q).

Recall that there are some relevant objects associated with the metric g, namely, the
isomorphism ĝ: TQ → T∗Q (we will denote X[ = ĝ◦X)), the Levi-Civita connection ∇,
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the differential forms θg = ĝ∗(θQ) ∈ Ω1(TQ) and ωg = ĝ∗(ωQ) = −dθg ∈ Ω2(TQ), the
energy Eg(uq) = 1

2g(uq, uq) ∈ C∞(TQ), and the geodesic vector field Sg, which satisfies
iSgωg = dEg. We denote v =

√
2Eg.

We will study two different lagrangian functions, namely

L1(uq) = −mcg(uq, uq)1/2 − e

c
〈A(q), uq〉 − U(q),

and

L2(uq) = −1
2
mg(uq, uq)− e

c
〈A(q), uq〉 − U(q).

Forgetting the potential, L1 is the singular lagrangian commonly used in relativistic
mechanics to describe a particle in an electromagnetic field; it is defined only on the open
set of time-like vectors of TQ (that is, the tangent vectors uq such that g(uq, uq) > 0).
The lagrangian L2 appears in [KM01]. Our aim is to compare both systems, and to
introduce the nonholonomic constraint v2 = c2 to them.

The lagrangians L1 and L2 have, respectively, associated Lagrange’s 1-forms:

θ1 = tJ ◦ dL1 = −mc

v
θg − e

c
τ∗QA

and

θ2 = tJ ◦ dL2 = −mθg − e

c
τ∗QA;

the Lagrange’s 2-forms are

ω1 = −dθ1 = −mc

v
ωg − c

v2
dv ∧ θg +

e

c
τ∗QF

and

ω2 = −dθ2 = −mωg +
e

c
τ∗QF ;

and the lagrangian energies are

E1 = ∆ · L1 − L1 = U

and

E2 = ∆ · L2 − L2 = −1
2
mv2 + U.

The symplectic formulation of the equations of motion for the lagrangians L1 and L2

are, respectively,

iXω1 = dE1, (4.21)

and

iXω2 = dE2, (4.22)

for second-order vector fields X. For any 2-form ω, we will also denote iXω by ω̂(X).
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It is worth writing down the Euler–Lagrange equations of motion for a path γ,
which are, for lagrangians L1 and L2:

mc

g(γ̇, γ̇)1/2

(
(∇tγ̇)[ − g(γ̇,∇tγ̇)

g(γ̇, γ̇)
γ̇[

)
+

e

c
iγ̇F − dU = 0, (4.23)

and
m(∇tγ̇)[ +

e

c
iγ̇F − dU = 0. (4.24)

Let us now consider equations (4.21) and (4.22).
As ω̂1 is not surjective, equation (4.21) could have no solutions. We denote by

T = q̇i ∂
∂qi the natural vector field along τQ and ξ∨ the vertical lift of a vector field

ξ: TQ → TQ along τQ. We have that Kerω1 = 〈∆, Σ〉, where

Σ = Sg − ev

mc2
((iT F )])∨. (4.25)

We can see that ω̂1( v
mc(gradU)∨) = dU − ( 1

v2 iT dU)θg and that θg 6∈ Im ω̂1. There-
fore equation (4.21) has solutions if and only if iT dU = 0, that is, the potential U is
constant, which, in practice, is the same as taking U equal to 0.

Since Σ is a second-order vector field, in absence of potential the solutions of equa-
tion (4.21) are X1 = Σ + µ∆, where µ is an arbitrary function. If, in addition, there is
no electromagnetic field, then the solutions are Sg + µ∆, and their integral curves are
reparametrized geodesics.

On the other hand, equation (4.22) is regular, and its solution is

X2 = Sg +
1
m

(gradU)∨ − e

mc
((iT F )])∨. (4.26)

This can be proved making use of the relations iZ∨ωg = −τ∗Q(Z[) for vector fields Z

along τQ, and iS(τ∗QF ) = τ∗Q(iT F ). In this case, in absence of electromagnetic field and
potential, the solutions are the geodesics of g.

Now we introduce the nonholonomic constraint

φ(uq) := g(uq, uq)− c2 = 0, (4.27)

which defines a submanifold M ⊂ TQ.
The subbundle of constraint forces is 〈tJ(dφ)〉∣∣

M
= 〈θg〉|M , therefore, according to

equation (4.18), the equations of motion for both lagrangians become

iXω1 '
M

dE1 + λθg, (4.28)

and
iXω2 '

M
dE2 + λθg, (4.29)

for second-order vector fields X tangent to M .
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Note that if a path γ satisfies the constraint then it also satisfies the equation

0 =
d
dt

g(γ̇, γ̇) = 2g(γ̇,∇tγ̇), so looking at equations (4.23) and (4.24) we realize that
the two constrained systems have the same equations of motion:

{
m(∇tγ̇)[ +

e

c
iγ̇F − dU = λγ̇[,

g(γ̇, γ̇) = c2.
(4.30)

The multiplier λ can be found by contracting the equation with γ̇, which gives λ =

− 1
c2

iγ̇dU .
We are going to see this equivalence of the solutions of both Euler–Lagrange equa-

tions by computing the solutions of equations (4.28) and (4.29).
First let us analyse equation (4.29). From ∆ · φ = 2v2 '

M
2c2 6= 0 and i∆ω2 = mθg,

it follows that TM ⊕ ω̂−1
2 (〈θg〉|M ) = (TQ)|M , so, by proposition 4.6, the system is

regular. Its solution is X = X2 + λ
m∆, where the multiplier λ is found by imposing

that X is tangent to M :

0 = X · φ = X2 · φ +
λ

m
∆ · φ '

M

2
m

iT dU + 2
λ

m
c2. (4.31)

Therefore, the solution of the second system is

X = Sg +
1
m

(gradU)∨ − e

mc
((iT F )])∨ − 1

mc2
(iT dU)∆. (4.32)

Now let us analyse equation (4.28). Since Y = 1
m(gradU)∨ − 1

mc2
(iT dU)∆ is a

vector field tangent to M and ω̂1(Y ) '
M

dU − ( 1
c2

iT dU)θg, the system is consistent.

We can see that

TM ∩ ω̂−1
1 (〈θg〉|M ) = TM ∩Ker ω̂1 = 〈Σ〉|M , (4.33)

so the system is not regular. Then, the solutions of the equation are Y + µΣ. Since Y

is vertical, in order to be a second-order vector field the function µ must be equal to
one, so the solution is Y + Σ '

M
X, exactly the same as for the lagrangian L2.

4.8 Examples

Example 1

Consider the differential equation on N = R2 defined by the vector field Y = ∂
∂x +y ∂

∂y .
We restrict this system to a generalized nonholonomic one by means of the construction
of section 4.3, taking the submanifold M = R × {a} ⊂ N and the subbundle C =
〈x ∂

∂x + ∂
∂y 〉 ⊂ TN |M .

In this case TN |M = TM⊕C and the projectors associated with this decomposition
are

P: ∂
∂x 7−→ ∂

∂x
∂
∂y 7−→ −x ∂

∂x ,
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Q: ∂
∂x 7−→ 0
∂
∂y 7−→ x ∂

∂x + ∂
∂y .

Thus X = P ◦ Y |M = (1 − ax) ∂
∂x

∣∣
M

is the solution of the generalized nonholonomic
system.

Let us study the infinitesimal symmetries of both systems. We can see that a
vector field V ∈ X (N) is an infinitesimal symmetry of the unconstrained system if it
has the form V = V 1(ye−x) ∂

∂x + exV 2(ye−x) ∂
∂y , where V 1 and V 2 are arbitrary smooth

functions.
On the other hand, since the constrained system is one-dimensional, its infinitesi-

mal symmetries are the vector fields U = kX, with k ∈ R. Observe that, in princi-
ple, an infinitesimal symmetry of Y does not lead to an infinitesimal symmetry of X

by restriction to M , even when Y |M ∈ X(M). Nevertheless, if we also require that
V T (C) ⊂ TC, then we obtain V 1(t) = k(1 + a ln(t/a)) and V 2(t) = 0, so that actually
V |M = k(1− ax) ∂

∂x

∣∣
M

is an infinitesimal symmetry of X.

Example 2

Here we discuss an example of a particle with a nonholonomic constraint, due to Rosen-
berg [Ros 77]. This example has been discussed in some papers about reduction, as for
instance [BGM96, BKMM 96, BŚ 93, CL 99]. Consider a particle moving in R3 with
lagrangian function

L =
1
2
(ẋ2 + ẏ2 + ż2)

subject to the nonholonomic constraint

φ = ż − yẋ.

Using the notation of section 4.5, we have N = TR3, ωL = dx∧ dẋ + dy ∧ dẏ + dz ∧ dż

and dEL = ẋdẋ + ẏdẏ + żdż, so the unconstrained dynamics is the well-known free
dynamics described by the vector field

XL = ω̂−1
L (dEL) = ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
.

The constraint submanifold is M = {ż=yẋ}, with tangent bundle

TM = Ker(dφ) =
〈

∂

∂x
,

∂

∂y
+ ẋ

∂

∂ż
,

∂

∂z
,

∂

∂ẋ
+ y

∂

∂ż
,

∂

∂ẏ

〉∣∣∣∣
M

,

and the vector subbundle C ⊂ TN |M is

C = 〈ω̂−1
L (tJ(dφ))〉 =

〈
y

∂

∂ẋ
− ∂

∂ż

〉∣∣∣∣
M

.
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Note that TN |M splits as TN |M = TM ⊕C, so the only solution X of the constrained
lagrangian system is the projection of XL|M to TM according to this decomposition:

X =
(

ẋ
∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
− yẏẋ

y2 + 1
∂

∂ẋ
+

ẏẋ

y2 + 1
∂

∂ż

)∣∣∣∣
M

.

We choose (x, y, z, ẋ, ẏ) as coordinates on M . With this system of coordinates, the
vector field X reads as

X = ẋ
∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− yẏẋ

y2 + 1
∂

∂ẋ
.

Now let us look for the symmetries and constants of motion of both systems. For
the free particle, the constants of motion are the functions g on N that are invariant
by XL, XL · g = 0. The solutions of this partial differential equation have the form
G(ẋ, ẏ, ż, ẋy− ẏx, ẏz− ży), where G is an arbitrary function with five variables. On the
other hand, the infinitesimal symmetries are the vector fields V that commute with XL,
[V, XL] = 0. They are linear combinations of the six vector fields ∂

∂x , ∂
∂y , ∂

∂z , x ∂
∂x + ẋ ∂

∂ẋ ,
y ∂

∂y + ẏ ∂
∂ẏ and z ∂

∂z + ż ∂
∂ż , with constants of motion as coefficients.

For the constrained particle, the constants of motion (written in coordinates of M),
have the form

F
(
ẏ, ẋ

√
y2 + 1, ẏx− arcsinh(y)ẋ

√
y2 + 1, ẏz − ẋ(y2 + 1)

)
, (4.34)

and the infinitesimal symmetries are linear combinations of the five vector fields

∂

∂x
,

∂

∂z
, ẋ

∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− ẋẏy

y2 + 1
∂

∂ẋ
,

arcsinh(y)
ẏ

∂

∂x
+

√
y2 + 1
ẏ

∂

∂z
+

1√
y2 + 1

∂

∂ẋ
,

ẋ(y − arcsinh(y)
√

y2 + 1)
ẏ2

∂

∂x
+

y

ẏ

∂

∂y
− ẋ

ẏ2

∂

∂z
− ẋy2

ẏ(y2 + 1)
∂

∂ẋ
+

∂

∂ẏ
,

with constants of motion as coefficients.
Finally, we can illustrate proposition 4.12, and show the relation between the con-

stants of motion of both systems. Consider a constant of motion g = G(ẋ, ẏ, ż, ẋy −
ẏx, ẏz − ży) of XL; its restriction to M will be a constant of motion of X iff Z · g = 0,
where Z is the section of C

Z = XL|M −X =
ẋẏ

y2 + 1

(
y

∂

∂ẋ
− ∂

∂ż

)∣∣∣∣
M

.

The condition implies that

g|M = H
(
ẏ,

√
ż2 + ẋ2, ż + ẏx− ẋy − arcsinh(ż/ẋ)

√
ż2 + ẋ2, ẏz − ży − ẋ

)
,

and we see that g|M coincides with (4.34).



Chapter 5

Vector hulls of affine spaces and

affine bundles

Every affine space A has a canonical immersion A ↪→ Â as a hyperplane in a vector
space, the vector hull of A. This immersion satisfies a universal property with respect to
the vector-valued affine functions defined on A. In addition, any affine map f : A → B

between affine spaces has a canonical prolongation to a linear map f̂ : Â → B̂ between
their vector hulls, which we call the vector prolongation of f . Both constructions indeed
define a functor from the category of affine spaces to the category of vector spaces.

These facts are not widely known, but they are greatly clarifying, both for affine
geometry and its applications.

We devote the first sections to perform a systematic study of the properties of the
vector hull, regardless of its explicit definition. As we will show, the fact that A ⊂ Â is a
hyperplane and the universal property it satisfies are enough to obtain many interesting
results. After this, we study a functorial construction of the vector hull of A in terms
of a certain set of affine vector fields on A. This set is used in several references as
the definition of the vector hull, but we give a very simple characterisation of it that
enlightens its vector space structure. This definition of the vector hull is compared
with other different ones that can be found in the literature. As we will show, there
are several different but equivalent vector hull functors.

To show the interest of this study, we give some applications of the vector hull in
linear algebra. Some results about barycentric calculus, the linear representation of an
affine group and the projective completion of an affine space can be easily proved and
understood using vector hulls.

In addition to affine spaces, we will also study affine bundles. In the same way
as functors on vector spaces give raise to functors on vector bundles, the vector hull
functor can be applied to an affine bundle A, yielding a vector bundle Â over the same
base space, together with an affine bundle inclusion A → Â; of course, this is called the
vector hull of A. The properties of the vector hull in the framework of affine bundles

65
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follow closely those of affine spaces.
Important examples of affine bundles are provided by jet manifolds. As an example,

the jet space J1M of a bundle M → R is an affine bundle over M , modelled on the
vertical tangent bundle VM . There is a canonical affine immersion of J1M in the
tangent bundle TM , and it turns out that this bundle is a model of the vector hull
of J1M [MMS02]. The example of the first jet bundle can be extended to other jet
bundles, namely higher-order jet bundles and jet bundles over an arbitrary base.

These results can be applied to the geometric study of differential equations, as we
will see in the next chapter.

The chapter is organised as follows. In section 5.1 we set some basic notations and
give an account of some useful properties of hyperplanes in a vector space. In section 5.2
we describe the vector hull as a solution to a universal problem for affine maps; we also
define the vector prolongation of an affine map. Section 5.3 gives a brief description
of some geometric applications of the vector hull that, in our opinion, justify giving
it its due importance. In section 5.4 we provide with an explicit construction of the
vector hull of A in terms of certain vector fields on it. In section 5.5 we review other
constructions of the vector hull that can be found in the bibliography and we discuss the
essential uniqueness of the vector hull construction. Section 5.6 considers the vector
hull of affine bundles. The cases of jet bundles over R and over an arbitrary base
are considered in sections 5.7 and 5.8. Finally, in section 5.9 we consider a particular
interesting case, that of the second-order tangent bundle of a manifold.

5.1 Some facts about affine spaces

We assume that the reader is acquainted with the basics about affine spaces, which can
be found in many books on linear algebra and linear geometry —see especially [Fre 73]
[Ber 77]. In this section we will fix the notation, and also point out some specific results
that will be needed later on. We don’t suppose the spaces to be finite-dimensional unless
stated otherwise. Throughout the paper K denotes a field, which is the ground field of
all vector spaces considered, unless stated otherwise.

Given a vector space E (over K), an affine space A modelled on E is defined by an
action of E on A, denoted by (u, p) 7→ p + u. This action is simply transitive, which
means that the equation q = p + u determines a unique vector u, which is denoted by
−→pq = q − p.

For any vector u ∈ E, the bijections Tu: A → A given by Tu(p) = p + u are
called translations, and they form a vector space ~A that may be canonically identified
with E. On the other hand, the choice of a point p ∈ A defines a bijection ϕp: ~A → A,
u 7→ p + u. With this bijection, A acquires a vector space structure that depends on
the point chosen. In the opposite way, any vector space is trivially an affine space.
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A map f : A → B between affine spaces is called an affine map if there exists an
associated linear map ~f : ~A → ~B, called the linear part of f , such that f(p + u) =
f(p) + ~f(u), for any p ∈ A and u ∈ ~A. Note that f is injective [or surjective] iff ~f also
is.

We denote by A (A,B) the set of affine maps between the affine spaces A and B.
We also denote by L (E, F ) the set of linear maps between two vector spaces E and F ;
in particular, the dual space of E is E∗ = L (E, K).

The assignment of the linear part, f 7→ ~f , defines a surjective map A (A,B) ³
L ( ~A, ~B).

Let A be an affine space modelled on E. A subset A′ ⊂ A is an affine subspace if
there exists a vector subspace E′ ⊂ E such that A′ = p + E′ for a certain point p ∈ A′.
Then A′ is clearly an affine space modelled on E′, and the inclusion A′ ↪→ A is an affine
map, whose associated linear map is nothing but the inclusion E′ ↪→ E.

Let S be a set. If F is a vector space, the set F (S, F ) of maps from S to F is a
vector space. If B is an affine space, then F (S, B) is an affine space modelled on the
vector space F (S, ~B).

Instead of S, consider an affine space A. Then the subset of affine maps is a vector
subspace A (A,F ) ⊂ F (A,F ).

Now consider the set of affine maps between two affine spaces, A (A,B) ⊂ F (A, B).
It is an affine subspace modelled on the vector space A (A, ~B). Indeed, if g: A → B

and V : A → ~B are affine, then g +V also is. And if g: A → B is a given affine map and
g′: A → B is another one, then g′ − g is an affine map g′ − g:A → ~B.

Hyperplanes

We will be especially interested in hyperplanes of a vector space E, that is, affine
subspaces of codimension 1. A hyperplane H ⊂ E will be called proper if it does not
contain 0, otherwise it will be called a vector hyperplane. As usual, we denote by 〈S〉
the vector subspace spanned by a subset S ⊂ E.

Our first statement is a trivial but useful decomposition:

Lemma 5.1 Let E be a vector space, H ⊂ E a proper hyperplane. If p ∈ H, then

E = 〈p〉 ⊕ ~H.

Now we note that giving a proper hyperplane in E amounts to giving a non-vanishing
linear form on E:

Proposition 5.2 Let E be a vector space. If w: E → K is a non-vanishing linear
form, then H = w−1(1) is a proper hyperplane of E; moreover, ~H is identified with
Kerw = w−1(0). Conversely, given a proper hyperplane H ⊂ E, there exists a unique
non-vanishing linear form w: E → K such that H = w−1(1).
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Proof. The first statement is trivial. Let us prove the converse. Given p ∈ H, we have
the decomposition E = 〈p〉⊕ ~H; then we can define w(cp+v) = c for (cp,v) ∈ 〈p〉× ~H.
Any other decomposition E = 〈p′〉 ⊕ ~H yields the same linear form, since cp + v =
cp′ + (c(p− p′) + v).

This linear form w, associated with H (and E) in this way, will be called the weight
function. A point in E belongs to H iff it has unit weight.

As a first application, we have another useful decomposition:

Corollary 5.3 Let E be a vector space, H ⊂ E a proper hyperplane. If x ∈ E then
either x ∈ ~H or x can be uniquely written as x = λp, where λ 6= 0 and p ∈ H.

In other words, one has the disjoint union

E = ~H t K×H,

where K× = K − {0}.

Proof. Let w: E → K be the weight function associated with H. If w(x) = 0 then
x ∈ ~H, otherwise x = w(x) x

w(x) .

Proposition 5.4 Consider a linear map T :E → F between vector spaces, and an
affine subspace H ⊂ E. The map T is determined by its restriction T |H iff H = E or
H is a proper hyperplane.

Proof. Clearly T is determined by T |H iff 〈H〉 = E (otherwise one could extend the
linear map in different ways).

Proposition 5.5 Let H ⊂ E be a proper hyperplane in a vector space, w:E → K its
weight function, and h: H → F an affine map with values in another vector space.
There exists a unique linear map h̄: E → F prolonging h, and is defined by

h̄(x) =

{
~h(x) if w(x) = 0

w(x)h
(

x
w(x)

)
if w(x) 6= 0

Proof. Uniqueness of the prolongation is a consequence of the preceding proposition.
By lemma 5.1, every x ∈ E has a unique decomposition as x = λp + u. Taking into
account that w(λp + u) = λ, one computes

h̄(λp + u) = λh(p) + ~h(u).

Using this formula it is clear that h̄ is a prolongation of h and that it is a linear map.
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5.2 A universal problem for affine maps

The vector hull

Let A be an affine space. Consider a vector space V , and an affine map j: A → V

satisfying the following universal property for affine functions:

for every vector space F and affine function h: A → F , there exists a unique
linear function ĥ :V → F such that h = ĥ ◦ j.

A
j //

h ÂÂ@
@@

@@
@@

V

ĥ
²²

F

Proposition 5.6 A couple (V, j) satisfies the universal property iff j is injective and
j(A) ⊂ V is a proper hyperplane.

Proof. Affine functions h: A → F separate points, therefore the map j is necessarily
injective. The subset j(A) ⊂ V is an affine subspace. According to proposition 5.4,
ĥ is determined iff j(A) is either a proper hyperplane or the whole space V ; the later
possibility cannot occur, since a constant function h 6= 0 is affine but can never be linear.
The existence (and explicit construction) of ĥ is a consequence of proposition 5.5.

Definition 5.7 The couple (V, j) is called a vector hull of A.

As usual in universal problems, the solution is unique, up to isomorphism, but let us
write the proof anyway. Consider a second vector hull, j′: A → V ′, of A. The universal
property for the first one and the linear map j′ yields a linear map f : V → V ′ such
that j′ = f ◦ j. The only thing to prove is that f is an isomorphism. But reversing the
role of both vector hulls, the same reasoning leads to g: V ′ → V such that j = g ◦ j′.
Therefore j = g ◦ f ◦ j, which leads to g ◦ f = IdV , and similarly in the reverse order,
which shows that g is the inverse of f .

On the existence of the vector hull, we shall see later on that it can be given several
explicit constructions. However, in practice we will find the vector hull directly from
an analysis of a certain vector space, as expressed in the following corollary:

Corollary 5.8 Let V be a vector space, w: V → K a nonzero linear form. If A1 =
w−1(1) and A0 = w−1(0), then A1 is an affine space modelled on the vector space A0,
and the inclusion j: A1 ↪→ V is a vector hull of A1.

From now on we shall denote by j: A → Â (any construction of) the vector hull
of A. We will often identify A with its image j(A) ⊂ Â in the vector hull; with this
identification, the function ĥ is a prolongation of h; we call it the homogenisation of h.
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We know (proposition 5.2) that there is a unique linear form w: Â → K (the weight
function) such that j(A) = w−1(1). So, in the same way as A, its translation space ~A

can also be identified with a subspace of Â, namely w−1(0).
With these identifications, the right-hand side of the equality q = p + u can be

interpreted as an addition in the vector hull; in the same way, −→pq = q−p is a subtraction
in the vector hull.

In addition, the weight function w is nothing but the homogenisation of the constant
function equaling 1 on A: w = (1A)̂ .

Let us summarise all this in a diagram:

0 // ~A
iA // Â

wA // K // 0

A
?Â

jA

OO Â
ĥ // F

A
?Â

jA

OO

h

??~~~~~~~~

Here we have put a subscript A to indicate, if needed, which is the initial affine space.
As a comment on notation, we are denoting by ĥ a certain prolongation of an affine

function; later on we will denote by ĥ a certain prolongation of an affine map; both will
be closely related but different objects. (This has some reminiscence of the distinction
between the differential df of a function on a manifold and the tangent map Tf .)

Proposition 5.9 Let A be an affine space. For any vector space F , the homogenisation
map

A (A, F ) → L (Â, F ), h 7→ ĥ ,

is a linear isomorphism.
In particular, A (A,K) ∼= Â∗, and A (A,K) ∗ ∼= Â ∗∗.

Proof. The linearity of the map h 7→ ĥ is a consequence of the uniqueness of the
homogenisations: (h + k)̂ and ĥ + k̂ coincide on j(A), therefore coincide everywhere;
a similar argument holds for λh.

The map h 7→ ĥ is injective since different functions h have necessarily different
prolongations. And it is surjective since every linear map Â → F restricts to an affine
map A → F of which it is a prolongation.

Note that in finite dimension we obtain that Â is isomorphic to A (A,K)∗.

We finish the study of the homogenisation with the following result, whose proof is
straightforward:

Proposition 5.10 Let h:A → F an affine function, ĥ : Â → F its homogenisation.

• ĥ is surjective iff the affine subspace h(A) ⊂ F spans F .

• ĥ is injective iff h is injective and nowhere vanishing.

• ĥ is bijective iff h is injective and h(A) ⊂ F is a proper hyperplane.
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The vector prolongation

Up to now, we have immersed every affine space in its vector hull. Now we examine
whether we can assign a linear map to a morphism of affine spaces.

Proposition 5.11 Given an affine map f : A → B, there is a unique linear map f̂ : Â →
B̂ such that f̂ ◦ jA = jB ◦ f .

Proof. Application of the universal property of the vector hull (Â, jA) of A to the
affine function jB ◦ f : A → B̂ yields the desired map f̂ = (jB ◦ f )̂ .

AÄ _

jA

²²

f // BÄ _

jB

²²

Â
f̂ // B̂

We call f̂ the vector prolongation of f since, considering the affine spaces as subsets of
their vector hulls, f̂ is actually a prolongation of f . The fact that f̂(A) ⊂ B implies,
more generally, that f̂ preserves the weight:

wB ◦ f̂ = wA.

Proposition 5.12 The vector prolongation satisfies ÎdA = Id
Â

and ĝ ◦ f = ĝ ◦ f̂ .

Proof. The uniqueness of the vector prolongation is used to prove both statements.
The first one is obvious. For the second one, consider the diagram

AÄ _

jA

²²

f // BÄ _

jB

²²

g // CÄ _

jC

²²

Â
f̂ // B̂

ĝ // Ĉ

Proposition 5.13 Let f : A → B be an affine map. The map f is injective [or surjec-
tive] iff f̂ also is. In particular, f is an affine isomorphism iff f̂ is a linear isomorphism.

Proof. We first prove the direct implications.
As in the category of vector spaces and linear maps, if an affine map f is injective

then it has a left-inverse, that is to say, an affine map g:B → A such hat g ◦ f = IdA.
Then by the preceding proposition ĝ◦f̂ = Id

Â
, which shows that f̂ also has a left-inverse,

and thus it is injective.
In a similar way, if f is surjective then it has a right-inverse g: B → A, which

satisfies f ◦ g = IdB. The proof goes on in the same way.
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The converse statements are almost immediate: if f̂ is injective, then its restriction f

also is; and if f̂ is surjective, taking into account that it preserves weights, we conclude
that its restriction f also is.

Remark 5.14 This result may be useful to identify vector hulls of some affine spaces.
If A is an affine subspace of B, then proposition 5.13 shows that the vector hull Â can
be identified as a vector subspace of B̂. Moreover, if A is an affine subspace of a vector
space F , and A does not contain the zero vector, then proposition 5.10 shows that the
vector hull Â can be identified as a vector subspace of F .

This is illustrated by the following proposition, where we identify the vector hull of
the set of affine maps from A to B.

Proposition 5.15 Let A, B be affine spaces. Consider the vector prolongation map

Vh:A (A, B) → L (Â, B̂), f 7→ f̂ .

1. Vh is an affine injection.

2. The image of Vh is the set {T ∈ L (Â, B̂) | T (A) ⊂ B}.
3. The vector hull of A (A,B) is identified with {T ∈ L (Â, B̂) | T ( ~A) ⊂ ~B}.

Proof. The map Vh is injective since obviously two different maps f, f ′ cannot have
the same vector prolongation.

Remember that A (A,B) has an affine space structure, modelled on the vector space
A (A, ~B). The affinity of the vector prolongation is a consequence of

f̂ + h = f̂ + iB ◦ ĥ ,

for affine maps f : A → B and h: A → ~B. By proposition 5.4, to prove this equality it
is enough to show that these linear maps agree on the hyperplane A:

(f̂ + iB ◦ ĥ ) ◦ jA = f̂ ◦ jA + iB ◦ ĥ ◦ jA = jB ◦ f + iB ◦ h = jB ◦ (f + h) = (f̂ + h) ◦ jA.

The second statement is obvious: a linear map T : Â → B̂ restricts to an affine map
A → B iff the inclusion T (A) ⊂ B holds.

For the third statement, consider the linear form w: {T ∈ L (Â, B̂) | T ( ~A) ⊂ ~B} →
K defined by w(T ) = wB(T (a)), that is, the weight of T is the weight of any of its
images. This map is well defined, is linear, and its value is 1 iff T (A) ⊂ B. We conclude
by applying corollary 5.8.
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The vector hull of a vector space

Here we describe the particular, but important, case where where the affine space is a
vector space E. Due to the characterisation (proposition 5.6) of the vector hull, it can
be canonically identified with:

• the vector space Ê = K ×E, with

• the affine inclusion jE(u) = (1, u);

then the weight function is wE(λ, u) = λ.

Consider an affine map h:E → F between vector spaces: h(u) = h0 + h1 · u, where
h0 ∈ F and h1: E → F is linear. Then we have that ĥ :K × E → F is the linear map
ĥ (λ, u) = h0λ + h1 · u, which justifies calling it homogenisation.

K ×E = Ê
ĥ // F

E
?Â

jE

OO

h

??ÄÄÄÄÄÄÄÄ

Now let us see how is the vector prolongation. Given an affine map h: A → F , its
vector prolongation ĥ: Â → F̂ = K × F is given by ĥ = (wA, ĥ ). So we must carefully
distinguish between ĥ and ĥ. Let us show this in a (noncommutative) diagram:

Â
ĥ //

ĥ

!!B
BB

BB
BB

B F̂

A
?Â

jA

OO

h // F
?Â

jF =(1,IdF )

OO

This can be applied in particular to an affine map h: E → F between vector spaces,
h(u) = h0 + h1 · u. Its vector prolongation is the map ĥ:K × E → K × F given by
ĥ(λ, u) = (λ, h0λ + h1 · u).

Remark 5.16 Consider a vector space F and an affine subspace A ⊂ F , with inclusion
h: A ↪→ F . If 0 6∈ A then, by proposition 5.10, one can consider Â as a subspace of F

via ĥ : Â ↪→ F . On the other hand, if 0 ∈ A then Â can not be identified with subspace
of F , but applying proposition 5.13, which gives ĥ: Â ↪→ F̂ = K × F , it can always be
considered as a subspace of F̂ .

Coordinate description

Consider a point a0 ∈ A. Identifying A and ~A as subsets of Â, ~A ⊂ Â is a hyperplane
and a0 is not in ~A, and we have the decomposition Â = 〈a0〉 ⊕ ~A.
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Cartesian coordinates

Write e0 = a0, and consider a basis (ei)i∈I of ~A. Then, putting Î = {0}∪ I, we see that
(eµ)µ∈Î is a basis for Â; thus every point in Â can be uniquely written as x = x0e0+xiei.

It is clear that w(x) = x0; therefore a point x ∈ Â belongs to A iff x0 = 1, and belongs
to ~A iff x0 = 0.

Now we shall use these coordinates to express the homogenisation and the vector
prolongation.

Besides the coordinates on A, consider a vector space F , with a basis, and an affine
map h: A → F given in the corresponding coordinates of A and F by yj = bj + T j

i x
i.

Then its homogenisation is the linear map ĥ : Â → F given by (x0;xi) 7→ (bjx0 +T j
i x

i).
Now consider another affine space B, and an affine map f : A → B given in the same

type of coordinates as yj = bj + T j
i x

i. Then its vector prolongation is the linear map
f̂ : Â → B̂ given by yν = T ν

µxµ, with T j
0 = bj , T 0

0 = 1, T 0
i = 0. So the matrix of f̂ in

this basis is 


1 0

bj T j
i


 .

Barycentric coordinates

In addition to the preceding basis (e0; ei) for Â, one can also work with another one
that only consists of points of A: if ai = a0 + ei, then the family (aµ)µ∈Î is another

basis of Â. If x = λµaµ, now w(x) =
∑

λµ; thus x ∈ A iff
∑

λµ = 1, and x ∈ ~A iff∑
λµ = 0.
In geometric terms, one can say that the first basis is a cartesian frame for A, the

second basis is an affine frame for A.

•
©©©©©©

©©©©©©

~A = w−1(0) - e1©©* e2

〈a0〉

©©©©©©

©©©©©©

A = w−1(1) - a1©©* a2

6
a0

¢
¢
¢
¢
¢̧

£
£
£
£
£
£±

Two basis for Â

5.3 Some geometric applications of the vector hull

Barycentric calculus

In affine geometry one defines the notion of barycentre of some points p1, . . . , pN ∈ A

with masses (or weights) λ1, . . . , λN ∈ K, with
∑

λk = 1. This is the point p such that
−→op = λ1

−→op1 + . . . λN
−−→opN , where o is an arbitrary fixed origin. Of course, one needs to

show that this notion does not depend on the origin choosed.
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Within the vector hull Â the barycentre is simply p = λ1p1 + . . . λNpN , which
belongs to A because its weight is w(p) =

∑
λk = 1. For instance, if K = R the middle

point of the segment [p, q] is (p + q)/2.
Therefore, working in the vector hull of A provides with a neat presentation of

barycentric calculus. As an example, we can easily prove an interesting characterisation
of affine functions:

Proposition 5.17 A map f :A → B between affine spaces is affine iff it preserves
barycentres, in the sense that f(

∑
λkpk) =

∑
λkf(pk) for any finite family of points

pk ∈ A and scalars λk ∈ K adding up to 1.

Proof. The direct implication is immediate: if f is affine, then its vector prolongation
f̂ is linear, therefore working in Â and B̂ we have f̂(

∑
λkpk) =

∑
λkf̂(pk); all the f̂

can be replaced by f since all their arguments are in A.

To prove the converse, consider an affine frame (aµ) of A. This is also a basis of Â,
therefore there exists a unique linear map F : Â → B̂ that coincides with f on the set
{aµ}: F (aµ) = f(aµ). Any point in A is λµaµ with

∑
λµ = 1. Then

F (λµaµ) = λµF (aµ) = λµf(aµ) = f(λµaµ),

where we have used that f preserves barycentres. This shows that F coincides with f

everywhere on A. Since F is linear, f is affine.

The converse statement can be given an alternative proof that does not need the
usage of an affine frame. To prove it, we must show that, for every p, the map
f(p + u)− f(p) is a linear function of u —this will be ~f(u). Consider the barycentre of
three points p, q, r with masses 1−λ−µ, λ, µ. By hypothesis f((1−λ−µ)p+λq+µr) =
(1− λ−µ)f(p) + λf(q) + µf(r). Thinking inside the vector hulls this can be rewritten
as f(p + λ(q − p) + µ(r − p)) = f(p) + λ(f(q)− f(p)) + µ(f(r)− f(p)), and also

f(p + λu + µv) = f(p) + λ(f(p + u)− f(p)) + µ(f(p + v)− f(p)).

We apply this equation in two particular instances. Taking µ = 0 we have f(p + λu)−
f(p) = λ(f(p + u) − f(p)), that is, homogeneity. And taking λ = µ = 1 we have
f(p + u + v)− f(p) = (f(p + u)− f(p)) + (f(p + v)− f(p)), that is, additivity. Both
properties show the linearity.

The linear representation of the affine group

Consider the affine group GA(A), whose elements are the affine automorphisms f of A.
By proposition 5.13, their vector prolongations f̂ are linear automorphisms of Â, and
from proposition 5.12 we conclude:

Proposition 5.18 Let A be an affine space. The map f 7→ f̂ defines an injective group
homomorphism GA(A) ↪→ GL(Â).
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For a vector space E we have GA(E) ↪→ GL(K×E), and more particularly, taking
E = Kn, we obtain the well-known linear representation of the affine group in one more
dimension, GAn(K) ↪→ GLn+1(K).

The projective completion of an affine space

In courses on projective geometry it is explained that an affine space admits a projective
completion, that is to say, it can be attached a projective hyperplane at infinity such
that the whole stuff is a projective space. This can be done by adding an additional
coordinate, but many authors seem to be unaware that there is a canonical way to
perform this operation.

First recall that the projective space P(E) of a vector space E can be defined as the
quotient E−{0}/∼, where x ∼ y iff they are linearly dependent; P(E) is also the set of 1-
dimensional subspaces of E, so that its points are the lines 〈x〉 ⊂ E, where x ∈ E−{0}.
If f :E → F is an injective linear map then for x 6= 0, f(〈x〉) = 〈f(x)〉 6= {0}, therefore
one obtains an injective map between the projective spaces, P(f):P(E) → P(F ), called
a projective linear map. (If f is not injective, the domain of P(f) has to be changed
to P(E)−P(Ker f) instead of all the space.)

Let A be an affine space, with vector hull j: A ↪→ Â. Let a ∈ A; j(a) is not zero, the
subspace 〈j(a)〉 ⊂ Â is a point in the projective space, 〈j(a)〉 ∈ P(Â). Moreover, given
two different points a, a′ ∈ A, we have 〈j(a)〉 6= 〈j(a′)〉. Therefore we have defined an
inclusion

A
k

↪→ P(Â), a 7→ 〈j(a)〉.
Consider also the inclusion i: ~A ↪→ Â. Since it is an injective linear map, it passes to
the projective spaces and yields another inclusion

P( ~A)
P(i)
↪→ P(Â), 〈u〉 7→ 〈i(u)〉.

We will identify A and P( ~A) with their images in P(Â).

Proposition 5.19 P(Â) = A t P( ~A) (disjoint union).

Proof. Let w be the weight function associated with the proper hyperplane A ⊂ Â. A
point in the projective space is the linear span of a certain x ∈ Â − {0}. If w(x) = 0
then x ∈ ~A and 〈x〉 ∈ P( ~A). If w(x) 6= 0 then x/w(x) ∈ A and 〈x〉 ∈ k(A) ∼= A.

Remark 5.20 The identification of points in A with one-dimensional subspaces of Â

not contained in ~A is indeed more general: non-empty affine subspaces of A correspond
to vector subspaces of Â not contained in ~A.

The space AP = P(Â) is called the projective completion (or projective closure)
of A. It has the same dimension as A, and can be understood as the result of attaching
to A a projective hyperplane A∞ = P( ~A), called the hyperplane at infinity.
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©©©©©©

©©©©©©
~A P = L1 ∩ L2

©©©©©©

©©©©©©
A L1

L2
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D
D
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D
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Two parallel lines in A meet at a
point in A∞ = P( ~A)

Proposition 5.21 Any injective affine map f : A → B between affine spaces has a
prolongation fP: AP → BP to their projective completions, which is a projective linear
map.

Proof. First we consider the vector prolongation, which is an injective linear map
f̂ : Â → B̂. Then we take as fP the corresponding projective linear map P(f̂):P(Â) →
P(B̂).

5.4 A construction of the vector hull

Homothetic vector fields

Let A be an affine space of dimension > 0, that is, not reduced to a point.
The set of maps X: A → ~A is a vector space F (A, ~A). We call any of these maps

a vector field. (Of course, the terminology is justified since, when A is real and finite-
dimensional, the tangent bundle of A (as a smooth manifold) is trivial, TA = A × ~A,
and its sections are maps p 7→ (p,X(p)).)

In this space, the subset of affine maps X: A → ~A is a vector subspace A (A, ~A).
We call any of these maps an affine vector field.

As an affine map, X has an associated linear map ~X: ~A → ~A. If this endomorphism
is a homothety (i.e., a multiple of the identity), let us call X a homothetic vector field.
In this section, let us denote by Â the set of homothetic vector fields on A.

Proposition 5.22 The set Â of homothetic vector fields of A is a vector subspace of
A (A, ~A), and the map w: Â → K defined by

~X = −w(X)Id

is a nonzero linear form.

Proof. The proof is immediate, as illustrated by the following diagram.

ÂÄ _

²²

−w // // KÄ _

²²

A (A, ~A) // // L ( ~A, ~A)

X
Â // ~X
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(The minus sign in the definition of w will be explained later.)
Now consider the following special vector fields on A:

• Constant vector field Yu(p) = u, where u ∈ ~A.

• Central vector field Zλ
a (p) = λ−→pa = −λ−→ap, where λ ∈ K× = K−{0} and a ∈ A.

They are homothetic, and indeed they exhaust all the homothetic vector fields on A:

Proposition 5.23 Let X ∈ Â be a homothetic vector field. If w(X) = 0, then X is a
constant vector field Yu. If w(X) = λ 6= 0, then X is a central vector field Zλ

a .

Proof. Suppose that ~X = 0. Then X(p + v) = X(p) + ~X(v) = X(p), so that X takes
a constant value u.

Now suppose that ~X = −λ Id ~A. First, note that X necessarily vanishes somewhere:
its value in a certain point, X(p + v) = X(p) − λv, may be set to zero by taking
v = λ−1X(p). Let a ∈ A such that X(a) = 0; then X(a + v) = X(a)− λv = −λv, so
that X(p) = −λ−→ap, that is, X = Zλ

a .

Therefore we have shown that the vector space Â of homothetic vector fields is the
disjoint union of constant vector fields (which can be identified with ~A) and central
vector fields (which can be identified with K××A). This can be written as

Â = ~A t (K××A).

The following rules of calculus can be easily checked:

Proposition 5.24 The homothetic vector fields satisfy the following relations:

1. λYu = Yλu

2. Yu + Yv = Yu+v

3. λZµ
a = Zλµ

a

4. Zλ
a + Zµ

b = Zλ+µ
c if λ + µ 6= 0, where c = (λa + µb)/(λ + µ) = a + µ

λ+µ

−→
ab

5. Zλ
a + Z−λ

b = Y
λ
−→
ba

6. Zλ
a + Yu = Zλ

a+λ−1u

Note in particular that Yu is a linear function of u, and also the special cases

3’. λZ1
a = Zλ

a

5’. Z1
a + Z−1

b = Y−→
ba

6’. Z1
a + Yu = Z1

a+u

The last one shows that Z1
a is an affine function of a, with associated linear function Y .

So, we have also proved the following:
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Proposition 5.25 The map given by

i: ~A ↪→ Â, i(u) = Yu

is linear, and its image coincides with w−1(0).
The map given by

j: A ↪→ Â, j(a) = Z1
a

is affine, and its image coincides with w−1(1).

Let us remark that the choice of a sign in w as well as in the definition of the central
vector fields is necessary to describe A as w−1(1) and to have ~ = i.

Gathering the preceding results, and according to corollary 5.8, we have shown that:

Corollary 5.26 The couple (Â, j) is a vector hull of A.

Associated with concrete constructions Â of the vector hull of affine spaces, we have
defined the vector prolongations f̂ of affine maps, which can be essentially described
from propositions 5.5 and 5.11. Now that we identify the vector hull with the space
of homothetic vector fields, and each point a ∈ A is mapped to the central vector field
j(a) = Z1

a , we want to see how is the vector prolongation of an affine map in this
construction.

Indeed, it is straightforward. Let f : A → B be an affine map. Since f maps a

to f(a), its vector prolongation f̂ maps Z1
a to Z1

f(a); therefore, using λZ1
a = Zλ

a and the

linearity of f̂ , we have f̂(Zλ
a ) = Zλ

f(a). In the same way, f̂(Yu) = Y~f(u)
. This completes

the description of f̂ .

The vector hull functor

Proposition 5.27 The assignment A Ã Â, f Ã f̂ , is a covariant functor from the
category of K-affine spaces Aff to the category of K-vector spaces Vect.

Proof. It is a consequence of proposition 5.12.

The case of a vector space

The special case of a vector space E can be studied. Vector fields on E are maps
X: E → E. The affine ones have the form X(u) = a + T (u) where T is linear. And
the homothetic ones have the form X(u) = a− λu. So, denoting this one by Xλ,a, we
obtain a bijection

K × E → Ê, (λ, a) 7→ Xλ,a,

which reproduces the results from section 5.2. For λ = 0 we obtain the constant vector
fields. For λ 6= 0 we obtain the central vector field Zλ

λ−1a.
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The case of a point

In this section we have implicitly used that dimA > 0. If the affine space is reduced to
a point, A = {a}, then the only vector field on A is the zero constant, and the weight
function of proposition 5.22 is not well-defined. In this case one takes as the vector hull
Â = Ka.

5.5 Other constructions of the vector hull

Constructions of the vector hull that are different from that given in the preceding
section are seen in the literature. We will give a short review of them and show that
all the constructions are equivalent.

Bibliographic review

Here we have a look at some definitions of the vector hull that can be found in the
bibliography. We use our own notations.

A construction of the vector hull of an affine space A appears as an exercise of
Bourbaki’s Algèbre [Bou 70]. Indeed, this is already found in the third edition of its
second chapter [Bou 62], and to our knowledge this is the first appearance of the vector
hull. There Â is constructed as the quotient K(A)/N , where K(A) is the vector space
having all the points of A as a basis, and N is the subspace generated by all the relations

[p + u]− [p]− [q + u] + [q], [p + λu]− [p]− λ[q + u] + λ[q],

with p, q ∈ A, u ∈ ~A, λ ∈ K. Then the map j:A → Â, p 7→ [p], is a solution to the
universal problem for affine functions.

In Frenkel’s book on geometry [Fre 73] the vector hull of A is constructed directly
as the union D(A) = C (A) ∪ C ′(A) of constant vector fields and central vector fields
—the homothetic vector fields in proposition 5.23— and is identified with the set Â =
~A ∪ (K× × A). Of course, one needs to show that this is a vector space —this is the
contents of our proposition 5.24. The vector hull, which is not given a name, is widely
used to study barycentres, the vector prolongation, the projective completion. . . This
exposition is acknowledged to Glaeser.

In the article [BB 75] (included in the book [Sch 75]) Bamberger and Bourguignon
define “equiprojective k-vector fields” on an affine space A: they are maps X:A → Λk ~A

such that, for each p, q ∈ A, X(p)∧−→pq = X(q)∧−→pq. After a short study of some general
properties, they consider the particular case of equiprojective vector fields, Eq(A),
which again coincide with homothetic vector fields, thus giving another definition of Â.
This space there is called the vectorialised of A.

Published in the same year by the IREM of Strasbourg there is a book devoted to
barycentric calculus and its applications [IREM75], where the vector hull is defined as
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Â = ~A ∪ (K× × A), and identified with the homothetic vector fields as in Frenkel’s
book. Shortly after, the well-known book on geometry by Berger [Ber 77] appeared,
following the same presentation; in this book the vector hull, called universal space, is
widely used in affine and projective geometries.

The definition Â = ~A∪ (K××A) can be found subsequently in a few textbooks, as
for instance Tisseron’s [Tis 83], where one can also find Â = A (A,K)∗, the dual space
of affine functions. As we have shown, this construction is equivalent to the other ones
in finite dimension, otherwise the space obtained in this way is “too big”.

The vector hull also appears in an article with applied scope by Ramshaw [Ram 89]:
if A is an affine space, a vector space Â with a linear form w: Â → K (the weight) such
that A = w−1(1) is called the homogenisation of A. However, no explicit construction
of Â is given. The vector hull and the vector prolongation are essentially used to
homogenise affine maps and polynomial maps in view of applications to computer-
aided geometric design.

A vector field X: A → ~A defines a map fX :A → A, given by fX(p) = p + X(p),
and conversely. This induces a bijection between homothetic vector fields and their
associated maps, and these maps constitute the definition of the vector hull in Gal-
lier’s book [Gal 01] on geometry and applications: the homogenisation Â is defined as
the (disjoint) union of the translations Tu together with the dilatations Ha,λ, where
Ha,λ(x) = a + λ−→ax. However, the vector space structure is not quite clear without
the consideration of the vector fields themselves. But indeed the affine space A (A, A)
has a privileged point, the identity map IdA, therefore this space also has a canonical
structure of vector space, which can be used to define the vector hull as pointed out
recently by Bertram [Ber 04].

Vector hulls are considered in an article by Mart́ınez, Mestdag and Sarlet [MMS 02],
devoted to algebroid constructions in the affine framework. In these reference the vector
hull is defined as the dual space of affine functions, A (A, K)∗, and is called the bidual
of A. This also appears in Mestdag’s thesis [Mes 03], which develops explicitly the case
of an affine bundle, and also uses the term vector hull.

Finally, another construction very similar to Bourbaki’s has appeared in a recent
paper by Grabowska, Grabowski and Urbański [GGU 03] devoted to affine-valued dif-
ferential geometry. In this paper the vector hull is defined as the quotient K(A)/N ,
where N is the subspace generated by the relations

[p + λ(p′ − p′′)]− [p]− λ[p′] + λ[p′′].

In this paper affine bundles are also considered.

Besides these constructions, from a more elementary viewpoint one can take Â =
K ⊕ ~A. This can be found in several textbooks on geometry aiming to construct the
projective completion of an affine space. The main drawback of this construction is
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that, opposite to all the preceding ones, the inclusion j: A ↪→ Â depends on the choice
of a privileged point in A.

Equivalence of the vector hull functors

Given several constructions of a “same” object, one may wonder if all them are equiv-
alent. Of course, two vector hulls of A are isomorphic —A is immersed as a proper
hyperplane— but the question goes further on. In the preceding paragraphs we have
pointed out that there are several vector hull functors. Are they equivalent?

In general, if two functors solve a universal problem they are equivalent. More
precisely, there exists a natural equivalence between them.

For the vector hull this means the following. Suppose we have two vector hull
functors A Ã Â, f Ã f̂ and A Ã Ã, f Ã f̃ , which give solutions to the universal
problem for affine functions. Then they are equivalent, in the following sense: for each
affine space A there exists a vector space isomorphism ϕA: Â → Ã such that, for each
affine map f : A → B, this diagram is commutative:

Â
f̂ //

ϕA

²²

B̂

ϕB

²²

Ã
f̃ // B̃

that is to say, the isomorphisms ϕA also relate the vector prolongations defined by both
functors.

The construction of these isomorphisms and checking this property is just a matter
of applying the universal property. Let us sketch the proof. The inclusion kA: A → Ã

of A in the second vector hull, Ã, is an affine map that, under the first vector hull
functor, has a homogenisation from Â to Ã: this is ϕA. Reversing both functors yields
an inverse ψA, since one has for instance ψA ◦ ϕA = Id

Â
:

A
jA //

kA ÁÁ=
==

==
==

= Â

ϕA=(kA)̂
²²

Ã

A
kA //

jA ÁÁ=
==

==
==

= Ã

ψA=(jA)̃
²²

Â

As for the commutativity of the preceding square diagram, both f̃ ◦ ϕA and ϕB ◦ f̂ are
easily shown to coincide with the homogenisation of kB ◦ f : A → B̃ with respect to the
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vector hull jA: A → Â, therefore they coincide:

A
jA

zzuuuuuu kA

$$IIIIII

f

²²

Â

f̂

²²

ϕA

// Ã

f̃

²²

BjB

zzuuuuuu kB

$$IIIIII

B̂ ϕB

// B̃

We can give a more abstract picture of this natural equivalence —see for in-
stance [Mac 71]. Consider any choice of the vector hull functor V :Aff → Vect, and also
the forgetful functor U :Vect → Aff , which sends every vector space to its underlying
affine space. They are adjoint functors —V is left-adjoint to U and U is right-adjoint
to V — since there is an isomorphism HomVect(V (·), ·) ∼= HomAff (·, U(·)). In more
concrete terms, this is a consequence of the isomorphisms given by proposition 5.9,
L (Â, E) ∼= A (A,E), together with the two naturality conditions on A and E, which

read (h◦f )̂ = ĥ ◦ f̂ for affine maps A
f→ B

h→ E, and (T ◦S)|A = T ◦S|A for linear maps
Â

S→ E
T→ F . Since any two left-adjoints of U are naturally isomorphic, this shows the

essential uniqueness of the vector hull functor.

Equivalence between homothetic fields and the dual of affine functions

Let A be an afine space of finite dimension. Write Â for the homothetic vector fields
and Ã = A (A, K)∗. As we have seen, both can be considered as models for the vector
hull of A. We want to give explicitly the map that gives the equivalence between both
functors.

Let X ∈ Â. For an affine function h: A → K, define

X̄(h) = ~h ◦X + w(X)h,

which is another function X̄(h):A → K. This function is constant, and therefore can
be identified with a scalar. Moreover, the expression X̄(h) is clearly linear in h. In this
way, we have defined a linear form X̄: A (A,K) → K. It turns out that the map

Â → Ã, X 7→ X̄,

is an isomorphism of vector spaces.

5.6 The vector hull of an affine bundle

Until now we are talked about vector spaces and affine spaces. We will see that the
previous discussion can be naturally extended to vector bundles and affine bundles over
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a manifold. Recall section 2.4 for the definitions and basic properties of vector bundles
and affine bundles.

Let π: A → M be an affine bundle modelled on the vector bundle ~π: ~A → M . For
each m ∈ M , Am is an affine space modelled on ~Am. Consider its vector hull

jm: Am → Âm

and define
Â :=

⊔

m∈M

Âm,

π̂: Â −→ M

âm 7−→ m

,

and
j: A −→ Â

am 7−→ jm(am)
.

Proposition 5.28 The set Â has a differentiable structure such that π̂: Â → M is a
vector bundle and j is an injective affine morphism.

Proof. For each m ∈ M , its fibre π̂−1(m) is the vector space Âm.
Each local trivialisation of π will yield a local trivialisation of π̂ in the following

way. Consider a local trivialisation Φ:π−1(U) → U ×Rn of the affine bundle π over
an open subset U ⊂ M . At each point m ∈ U , Φm = pr ◦ Φ|Am

: Am → Rn is an affine
isomorphism, so its vector prolongation Φ̂m: Âm → R̂n = Rn+1 is a linear isomorphism.
Therefore,

Φ̂: π̂−1(U) −→ U ×Rn+1

âm 7−→ (m, Φ̂m(am))

is a trivialisation of π̂ on U .
Let Φ and Ψ be two trivialisations of π around m. The transition function Φ ◦

Ψ−1(m):Rn → Rn is an affine isomorphism with expression sα 7→ bα(m) + Tα
β (m)sβ.

The transition function Φ̂ ◦ Ψ̂−1(m):Rn+1 → Rn+1 between the corresponding triviali-
sations of π̂ is equal to the vector prolongation of Φ ◦Ψ−1(m), so it has the expression
(s0, sα) 7→ (s0, bα(m)s0 +Tα

β (m)sβ). Thus we see that the transition functions between
two trivialisations of π̂ take values in linear isomorphisms of Rn+1 and are smooth.

Once we have these trivialisations of π̂, it is a standard fact (see for instance [Sau 89])
that they provide Â with a differentiable structure such that π̂ is a vector bundle.

Finally, since each jm is an injective affine map, it is clear that j is an injective
affine morphism.

The key fact is that the vector hull functor A Ã Â from the category of affine spaces
to the category of vector spaces is a smooth functor, that is, the assignment f Ã f̂ is a
smooth map A (A,B) → L (Â, B̂). Therefore, the vector hull functor can be extended
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to the categories of affine bundles and vector bundles. This is discussed in [KMS93]
in the context of functors between vector spaces (like the duality functor or the tensor
product functor), but can be easily adapted to include affine spaces.

Of course, the vector bundle π̂: Â → M is called the vector hull of the affine bundle
π: A → M . Inherited from the affine space case, the basic properties also hold for affine
bundles and its vector hulls. We are going to explicitly state some of them.

Let E → M be a vector bundle. For each affine bundle morphism f : A → E there
exists an unique vector bundle morphism f :̂ Â → E such that fˆ◦ j = f :

A
Â Ä j //

f ÂÂ@
@@

@@
@@

Â

fˆ

²²Â
Â
Â

E

This vector bundle morphism fˆ is given, in relation with the affine maps fm on the
fibers, by fˆ(â) = (fπ̂(â))̂ (â).

We can define the form w: Â −→ M ×R
âm 7−→ (m,wm(âm))

, which gives the identifica-

tions

w−1(M × {0}) = ~A, w−1(M × {1}) = A

and the exact sequence

0 // ~A
~ //

((

Â
w //

##

M ×R //

²²

0

A
?Â

j

OO

// M

There is a kind of converse statement which allows us to prove that a fixed vector
bundle is the vector hull of a given affine bundle. It is the extension of corollary 5.8 to
the context of bundles.

Proposition 5.29 Let A → M be an affine bundle and W → M be a vector bundle.
Suppose that exists an exact sequence of vector bundle morphisms

0 // ~A
α // W

w // M ×R // 0

Then w−1(1) is an affine bundle modelled on ~A (so it is isomorphic to A), and W

is canonically isomorphic to the vector hull of w−1(1).

In sections 5.7 and 5.8 we will regularly use this proposition to identify a vector bundle
as the vector hull of a given affine bundle.
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Let B → M be an affine bundle. For each affine bundle morphism f : A → B there
exists an unique vector bundle morphism f̂ : Â → B̂ such that f̂ ◦ jA = jB ◦ f :

A

f
²²

Â Ä jA // Â

f̂

²²
B

Â Ä

jB

// B̂

We will call f̂ the vector extension of f . As it would be expected, f̂ restricted to a fiber
is the vector extension of the restriction of f to that fiber. That is: f̂(â) = (̂fπ̂(â))(â).

An affine bundle π: A → M has special coordinate systems called affine bundle
coordinate systems, each of them defined by a vector bundle coordinate system (xi, uα)
on ~π and a local section o:M → A of π (recall section 2.4).

Every affine bundle coordinate system on A induces a vector bundle coordinate
system on its vector hull Â in the following way. Consider the local frame (~eα) of ~π

associated with the coordinates (xi, uα). We can define the local sections

e0 := j ◦ o: M → Â,

and
eα := ~ ◦ ~eα: M → Â.

Then, (e0, eα) is a basis of local sections of π̂ that, jointly with the local coordinates
(x1, . . . , xm) on M , induce a system (xi, y0, yα) of local coordinates on Â.

It is worth noting that the coordinate y0 is always the same, no matter from which
affine coordinate system on A is induced. The images of A and ~A in Â are respectively
j(A) = {y0 = 1} and ~ ( ~A) = {y0 = 0}.

Let us see which are the transformations between coordinates. If (xi, yα) and (rj , sβ)
are two affine bundle coordinate systems on A, related by

{
xi(rj , sβ) = xi(rj)
yα(rj , sβ) = Tα

0 (rj) + sβTα
β (rj)

,

then the respectively induced coordinate systems on Â, (xi, y0, yα) and (rj , s0, sβ), are
related by 




xi(rj , s0, sβ) = xi(rj)
y0(rj , s0, sβ) = s0

yα(rj , s0, sβ) = s0Tα
0 (rj) + sβTα

β (rj)
.

5.7 Vector hulls of jet bundles over R

In this and the following section we will deal with jet bundles. Our aim is to study the
vector hull of those jet bundles which are affine bundles. Recall section 2.4 for a basic
account of the theory of jet bundles; in any case we will repeat the most relevant facts
when they are needed.
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First order

Let ρ: M → R be a bundle with base the real numbers. Consider its first order jet
manifold J1ρ, which is fibred over M and R with the canonical projections

J1ρ
ρ1,0 //

ρ1 !!B
BB

BB
BB

B M

ρ

²²
R

We take local coordinates (t, qi) on M , with t the canonical coordinate of R, i.e., the
identity. The induced coordinates on J1ρ are denoted by (t, qi, vi).

We are interested in the affine bundle ρ1,0, which is modelled on the vertical vector
bundle of ρ, Vρ = Ker Tρ ⊂ TM . The vertical bundle Vρ is locally generated by the
vector fields { ∂

∂qi }.
There is a canonical embedding (equation (2.4)) of J1ρ into TM :

ι: J1ρ → TM

j1t ξ 7→ ξ̇(t) .

In local coordinates, this embedding reads as ι(t, qi, vi) = (t, qi; 1, vi), which shows that
ι is an affine bundle morphism. We have an exact sequence

0 → Vρ
~ι−→ TM

dt−→ M ×R → 0,

where ~ι is the vector bundle morphism associated with the affine bundle morphism ι

and, by abuse of notation, dt denotes the contraction of tangent vectors with the
differential form dt.

Now, by proposition 5.29,
Ĵ1ρ = TM.

It is worth noting that the adapted coordinates (t, qi, vi) on J1ρ and (t, qi, ṫ, q̇i)
on TM , induced in the usual way by the coordinates (t, qi) on M , are the affine and
linear coordinates related with these coordinates (t, qi), the section vi(t, qi) = 0 of ρ1,0

and the basis of local sections { ∂
∂qi } of Vρ in the way described in the preceding section.

Higher order

Consider now the k-th order jet manifold Jkρ of the bundle ρ: M → R. Fibred co-
ordinates (t, qi) of ρ induce natural local coordinates on Jkρ, which we denote by
(t, qi

(0), q
i
(1), . . . , q

i
(k−1), q

i
(k))

The manifold Jkρ has canonical projections to the lower-order jet manifolds, but
we are especially interested in

Jkρ

ρk,k−1

²²
Jk−1ρ
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The bundle ρk,k−1 is affine and it is modelled on the vertical vector bundle of ρk−1,k−2,
which is Vρk−1,k−2 = KerTρk−1,k−2 ⊂ TJk−1ρ. This bundle is locally generated by the
vector fields { ∂

∂qi
(k−1)

}.
There exists a canonical embedding of Jkρ into TJk−1ρ:

ιk: Jkρ −→ TJk−1ρ

jkt ξ 7−→ (jk−1ξ).(t)

In local coordinates:

ιk(t, qi
(0), q

i
(1), . . . , q

i
(k−1), q

i
(k)) = (t, qi

(0), q
i
(1), . . . , q

i
(k−1); 1, qi

(1), . . . , q
i
(k)).

Note that TJk−1ρ can be identified as the vector hull of ρk,k−1 only if k = 1 (the
first-order case discussed above), since the dimension of the fibers are, respectively,
nk +1 and n. Our aim is to identify the vector hull of ρk,k−1 with a suitable subbundle
of T(Jkρ).

The Cartan distribution on Jk−1ρ is the distribution generated by the vectors tan-
gent to (k − 1)-jet prolongations of sections of ρ. We denote it by Cρk−1,k−2, and it is
locally generated by the n + 1 vector fields { ∂

∂t +
∑k−2

l=0 qi
(l+1)

∂
∂qi

(l)

, ∂
∂q1

(k−1)

, . . . , ∂
∂qn

(k−1)
}.

It is easily seen that Im(ιk) ⊂ Cρk−1,k−2, and that

0 // Vρk−1,k−2
~ιk // Cρk−1,k−2

dt // Jk−1ρ×R // 0

is an exact sequence.
Therefore,

Ĵkρ = Cρk−1,k−2.

5.8 Vector hull of jet bundles over an arbitrary base

First order

Let π:M → B be a bundle. We consider here its first-order jet bundle J1π:

J1π
π1,0 //

π1 !!CC
CC

CC
CC

M

π

²²
B

We take local coordinates (xi) on B, (xi, uα) on M and (xi, uα, uα
i ) the induced coor-

dinates on J1π.
The bundle π1,0 is affine and it is modelled on the vector bundle Vπ⊗π∗(T∗B) → M .

This can be seen by immersing both bundles into the vector bundle Hom(π∗TB, TM) →
M in the following way:
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• First, there is an inclusion

Vπ ⊗ π∗(T∗B) ' Hom(π∗TB, Vπ) ⊂ Hom(π∗TB, TM).

Note that this inclusion is characterized by

Vπ ⊗ π∗(T∗B) = {A ∈ Hom(π∗TB, TM) | Tπ ◦A = 0} (5.1)

• On the other hand, each j1bφ ∈ J1π induces a homomorphism

(π∗TB)m −→ TmM

(m, vb) 7−→ Tbφ(vb)
,

where m = φ(b). Therefore, we have the inclusion

J1π ⊂ Hom(π∗TB, TM),

which is characterized by

J1π = {A ∈ Hom(π∗TB, TM) | Tπ ◦A = IdTB}. (5.2)

By means of these inclusions, we can add an element of (Vπ⊗ π∗(T∗B))m to a jet j1bφ,
obtaining another jet in (J1π)m. It is clear that with this operation, J1π has the
structure of affine bundle with associated vector bundle Hom(π∗TB, TM).

Taking into account equations (5.1) and (5.2), it is natural to choose the vector
bundle

{A ∈ Hom(π∗TB, TM) | ∃λ ∈ R such that Tπ ◦A = λ IdTB}
as candidate for vector hull of J1π. We temporarily denote this vector bundle by W .

It turns out that this sequence of vector bundle morphisms is exact:

0 // Vπ ⊗ π∗(T∗B) // W
w // M ×R // 0 ,

where w(A) = (m,λ) if A belongs to the fiber over m and Tπ ◦ A = λ IdTB. Since we
then have that J1π = w−1(1), the vector hull of J1π is W , that is:

Ĵ1π = {A ∈ Hom(π∗TB, TM) | ∃λ ∈ R such that Tπ ◦A = λ IdTB}.

Another construction of the vector hull of J1π can be performed, obtaining the
identification of Ĵ1π with the dual of the so-called extended multimomentum bundle
Mπ [CCI 91] [EMR00] as follows.

The multimomentum bundle Mπ → M is the bundle of m-forms on M vanishing
by contraction with two vertical vector fields. A form ω ∈Mπ has the local expression
ω = p dmx + pi

αduα ∧ dm−1xi, where dmx = dx1 ∧ . . . ∧ dxm and dm−1xi = dx1 ∧ . . . ∧
d̂xi ∧ . . . ∧ dxm. Therefore, we can take (xi, uα, p, pi

α) as a system of local coordinates
on Mπ. Denote the dual coordinates on the dual M∗π of the multimomentum bundle
by (xi, uα, s, sα

i ).
Now we show canonical inclusions of J1π and its associated vector bundle intoM∗π:
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• We define the inclusion i: J1π ↪→ M∗π by, for each jet j1bφ ∈ J1π and form ω ∈
Mπ,

〈i(j1bφ), ω〉 = α if (φ∗ω)(b) = α (dmx)b.

In local coordinates, this amounts to 〈i(xi, uα, uα
i ), (xi, uα, p, pi

α)〉 = p+uα
i pi

α and,
subsequently,

i(xi, uα, uα
i ) = (xi, uα, 1, uα

i ). (5.3)

• The inclusion ~ı: Vπ ⊗ π∗(T∗B) →M∗π is defined by

〈~ı(ξ), ω〉 = α if iξω = α (dmx)b,

where b is the base point in B. This locally reads as 〈~ı(xi, uα, ξα
i ), (xi, uα, p, pi

α)〉 =
ξα
i pi

α so
~ı(xi, uα, ξα

i ) = (xi, uα, 0, ξα
i ). (5.4)

In view of expressions (5.3) and (5.4), it is clear that

Ĵ1π 'M∗π.

Higher order

Now we will study the most general case: the k-th order jet bundle πk,k−1: Jkπ → Jk−1π

of a bundle π:M → B. Note that this case includes the cases studied in section 5.8
(when k = 1) and section 5.7 (when B = R).

We will use the multi-index notation (xi, uα, uα
I ) (see section 2.7) for the coordinates

on Jkρ.
It is known that πk,k−1 is an affine bundle (but the remaining πk,l are not). The

corresponding vector bundle is the bundle whose fiber over a jet jk−1
b φ is isomorphic

to SkT∗bB ⊗Vφ(b)π, where SkT∗bB denotes the symmetric product of k copies of T∗bB.
That is, the vector bundle associated with πk,k−1 is the pullback of SkT∗B ⊗ Vπ over
Jk−1π: π∗k−1(SkT∗B) ⊗ π∗k−1,0(Vπ) → Jk−1π. A proof of this fact using coordinates
can be found in [Sau 89] and a more intrinsic one in [KMS 93], where jets of maps in
general, not only maps that are sections of a given bundle, are studied. Alternatively,
the process that we will follow to find a vector hull also proves it, because the affine
and the vector bundles are embedded into a bigger vector bundle where we can add
points (jets of Jkπ) and vectors (elements of SkT∗B ⊗Vπ).

We will use two steps to embed the bundle πk,k−1 into a vector bundle. First, we
use the map ι1,k−1: Jkπ → J1πk−1, defined by

ι1,k−1(jkbφ) = j1b(j
k−1φ).

The notation ι1,k−1 is that used in [Sau 89] (in fact, there exist maps ιr,s: Jr+sπ → Jrπs

for each pair (r, s)). The map ι1,k−1 is an embedding and it is fibered over Jk−1π, so we
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can consider πk,k−1: Jkπ → Jk−1π as a subbundle of (πk−1)1,0: J1πk−1 → Jk−1π. Taking
coordinates (xi, uα, uα

I ; uα
;j , u

α
I;j) on J1πk−1 defined by

uα
;j(j

1
bψ) =

∂ψα

∂xj

∣∣∣∣
b

,

uα
I;j(j

1
bψ) =

∂ψα
I

∂xj

∣∣∣∣
b

,

the embedding ι1,k−1 is written in coordinates as

uα
;j ◦ ι1,k−1 = uα

j ,

uα
I;j ◦ ι1,k−1 = uα

I+1j
.

Thus we see that ι1,k−1(Jkπ) is the submanifold of J1πk−1 where the derivative coordi-
nates are totally symmetric, that is,

if I + 1j = I ′ + 1j′ then uα
I;j = uα

I′;j′ . (5.5)

The second step lies in using the results of the previous subsection, in this case
with the bundle πk−1 as a starting point. As we saw, there is an inclusion J1πk−1 ⊂
Hom(π∗k−1TB, T(Jk−1π)), which turns (πk−1)1,0 into an affine subbundle of the vector
bundle Hom(π∗k−1TB, T(Jk−1π)) → Jk−1π. We will denote the projection of this vector
bundle simply by τk−1. Combining the two embeddings, we obtain that Jkπ can be
viewed as an affine subbundle of Hom(π∗k−1TB, T(Jk−1π)). Let us denote this embed-
ding by homk: Jkπ ↪→ Hom(π∗k−1TB, T(Jk−1π)). The linear map corresponding to a jet
jkbφ is

homk(jkbφ) = Tb(jk−1φ): TbB → T(jk−1
b φ)J

k−1π.

If the jet jkbφ has coordinates (φi, φα, φα
I ), then the corresponding linear map homk(jkbφ)

is described by
∂

∂xj

∣∣∣∣
b

7→ ∂

∂xj

∣∣∣∣
jk−1
b φ

+
k−1∑

|I|=0

φα
I+1j

∂

∂uα
I

∣∣∣∣
jk−1
b φ

. (5.6)

Let us denote the components of the matrix of a linear map A: TbB → T(jk−1
b φ)J

k−1π

by (Ai
,j , A

α
,j , A

α
I,j), defined by A( ∂

∂xj

∣∣
b
) = Ai

,j
∂

∂xi

∣∣
jk−1
b φ

+Aα
,j

∂
∂uα

∣∣
jk−1
b φ

+
∑k−1
|I|=1 Aα

I,j
∂

∂uα
I

∣∣∣
jk−1
b φ

.

Taking into account equation (5.6), we see that the fibre Jk
(jk−1

b φ)
π of πk,k−1 over a

jet jk−1
b φ is identified with the affine subspace of linear maps A: TbB → T(jk−1

b φ)J
k−1π

whose matrix has components

Ai
,j = δi

j , Aα
,j = φα

j , Aα
I,j = φα

I+1j
for |I| < k − 1, (5.7)

and, as a consequence of condition (5.5) on the coordinates of a jet of Jkπ, such that
the remaining components Aα

I,j (for |I| = k− 1) are symmetric on the lower indices, in
the sense that

Aα
I,j = Aα

I′,j′ if I + 1j = I ′ + 1j′ . (5.8)
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For the sake of shortness, we will say that a linear map A ∈ Hom(TbB, T(jk−1
b φ)J

k−1π)
is symmetric if condition (5.8) holds.

Note that the set of equations (5.7) is equivalent to homk−1(τk−1(A)) = Tπk−1,k−2◦
A. Therefore, we can describe homk(Jkρ) as the subbundle of τk−1 whose fiber over a
jet jk−1

b φ is

{A ∈ Hom(TbB, T(jk−1
b φ)J

k−1π) |Tπk−1,k−2 ◦A = homk−1(jk−1
b φ) and A is symmetric}.

(5.9)
Let us consider now the vector bundle π∗k−1(SkT∗B) ⊗ π∗k−1,0(Vπ) → Jk−1π. Its

fiber over a jet jk−1
b φ is isomorphic to SkT∗bB ⊗ Vφ(b)π. We know that Jk−1

(jk−2
b φ)

π =

(πk−1,k−2)−1(jk−2
b φ) is an affine space with associated vector space S(k−1)T∗bB⊗Vφ(b)π.

Therefore, since jk−1
b φ ∈ Jk−1

(jk−2
b φ)

π ⊂ Jk−1π, we have that

S(k−1)T∗bB ⊗Vφ(b)π w T(jk−1
b φ)(J

k−1

(jk−2
b φ)

π) ⊂ T(jk−1
b φ)J

k−1π.

Given that SkT∗bB ⊗Vφ(b)π ⊂ Hom(TbB, S(k−1)T∗bB ⊗Vφ(b)π), there is an inclusion

SkT∗bB ⊗Vφ(b)π ⊂ Hom(TbB, T(jk−1
b φ)J

k−1π)

for each jk−1
b φ ∈ Jk−1π. And these inclusions in each fiber sum up to an inclusion of

π∗k−1(SkT∗B)⊗ π∗k−1,0(Vπ) → Jk−1π as a vector subbundle of τk−1.
The previous process shows that an element of SkT∗bB ⊗ Vφ(b)π can be considered

as a linear map A: TbB → T(jk−1
b φ)J

k−1π whose image are πk−1,k−2-vertical vectors. In
coordinates, this amounts to

Ai
,j = 0,

Aα
,j = 0,

Aα
I,j = 0,

for |I| < k−1. Furthermore, as for the jets, the matrix components Aα
I,j for |I| = k−1

are symmetric on the lower indices, see equation (5.8). Therefore, SkT∗bB ⊗ Vφ(b)π is
identified with the vector subbundle of τk−1 whose fiber over a jet jk−1

b φ is

{A ∈ Hom(TbB, T(jk−1
b φ)J

k−1π) |Tπk−1,k−2 ◦A = 0 and A is symmetric}. (5.10)

Considering (5.9) and (5.10), it is clear that the vector hull Ĵkπ can be identified
with the vector subbundle of τk−1

{
A ∈ Hom(π∗k−1TB, TJk−1π) | A symmetric and ∃λ ∈ R such that

Tπk−1,k−2 ◦A = λ · homk−1(τk−1(A))

}
.



5.9. THE VECTOR HULL OF A SECOND-ORDER TANGENT BUNDLE 93

5.9 The vector hull of a second-order tangent bundle

In this section we will study the second order tangent bundle T2M of a manifold M

(recall section 2.8). This case, aside from being interesting by itself, has a particular
feature: as in the previous cases, the second order tangent bundle, as a fibration over
TM , is an affine bundle naturally included into a vector bundle, but in this case the
vector hull can not be embedded into the same vector bundle. As we will see, this fact
is related to remark 5.16.

We will use the common notation (xi, ẋi, ẍi) for the natural coordinates on T2M

induced by the local coordinates (xi) on M .
The manifold T2M is fibred over M and TM . The second fibration, τ2,1: T2M →

TM , is an affine bundle. Its associated vector bundle is the vertical bundle of TM :

V(TM) = Ker TτM =
〈

∂

∂ẋi

〉
⊂ T(TM).

There exists a canonical inclusion ι1,1: T2M ↪→ T(TM), defined by ι1,1(γ̈(t)) = (γ̇).(t);
in coordinates, ι1,1(xi, ẋi, ẍi) = (xi, ẋi; ẋi, ẍi).

In spite of having included T2M into a vector bundle, we can not continue in the
same way as with the affine bundles that we have previously discussed. This is because
T̂2M is not a subbundle of T(TM), since the homogenisation (ι1,1)̂ : T̂2M → T(TM) is
not injective along the fibres where 0 ∈ Im(ι1,1). These are the fibres whose base point
is a zero tangent vector of M . Therefore, we are forced to construct the vector hull by
means of the vector prolongation of ι1,1, obtaining

T̂2M ⊂ T̂(TM) ' T(TM)⊕R.

Denoting by (xi, ẋi; vi, v̇i; s) the coordinates of the vector bundle T(TM)⊕R, T̂2M is
described as a vector subbundle by the relation vi = s ẋi. In geometric terms,

T̂2M = {(w, s) ∈ T(TM)⊕R | TτM (w) = s τTM (w)}.
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Chapter 6

Time-dependent systems

The purpose of this chapter is to extend the concepts and results of chapter 3 to the
time-dependent case.

We study the geometric framework of time-dependent first-order implicit differential
equations,

F (t, x, ẋ) = 0,

and the linearly singular case, when F is affine in the velocities,

A(t, x)ẋ = b(t, x),

where A is a matrix that is generically singular. We see the geometric formulation
of these equations and propose constraint algorithms to find their solutions. We also
discuss their relation to time-independent equations, especially in the linearly singular
case, where the known constraint algorithm (see section 6.2) for autonomous systems
will be useful to the find solutions for time-dependent systems. Let us describe these
items in more detail.

First we should point out that our model for the time-dependent configuration
space, rather than a trivial product M = R × Q, is a fibre bundle ρ: M → R, where
the base R contains the time variable. Such an M is isomorphic to a product R ×
Q, but in practical applications there may not be a privileged trivialization, and a
possible extension to deal with field theory of course should not be based on a trivial
bundle. Some references about time-dependent lagrangian systems are [EMR 91, CF93,
CLM94] in the product case and [Kru 97, MPV03, MS 98, LMMMR 02] in the fibre
bundle case; see also references therein. Time-dependent systems in general are studied
in many books, as for instance [AM 78, Olv 93].

The basic difference between the formulation of the autonomous and the non-
autonomous case is the use of tangent bundles and jet bundles respectively. To describe
an autonomous differential equation on a configuration space Q we use the tangent bun-
dle TQ, which is a vector bundle. On the other hand, to describe a non-autonomous
differential equation on a time-dependent configuration space M , we use its jet bundle

95
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J1ρ, which is an affine bundle over M . Naturally, we will use affine morphisms defined
on this affine bundle to describe a linearly singular equation on M .

We also propose a constraint algorithm for time-dependent singular systems. This
algorithm is the natural generalization of the algorithm for the autonomous case —both
in the general implicit [RR 94, MMT 95] and linearly singular cases [GP91, GP 92a].
The case of an implicit equation in a product M = R×Q has already been discussed
in [Del 04]. It is worth noting that constraint algorithms for some particular time-
dependent systems have been described in several recent works, as for instance [CF 93,
CLM94, ILMM99, LMM96, LMMMR 02, Vig 00]. Since all these systems are of linearly
singular type, they are included within our framework. Their various algorithms are
also particular instances of the general constraint algorithms that we will study here.
So, there is a general procedure that can be applied to these several systems, and their
particular details are secondary with respect to the algorithm followed to obtain their
solutions.

When studying a time-dependent differential equation, sometimes it is useful to
convert it into an equivalent time-independent one. This is even more interesting for
implicit equations; for instance, the constraint algorithm for the autonomous case is
easier to implement than for the non-autonomous case, because of the fact that vector
fields instead of jet fields are used to obtain the constraint functions.

Therefore, we will examine the possibility of associating an autonomous linearly
singular system with a time-dependent one, so that the solutions of both systems will
be in correspondence. Essentially, we use the canonical inclusion of J1ρ into TM . In
order to perform this association, we propose two different strategies. One possibility
is to choose a connection on the jet bundle to induce a splitting of the tangent bundle.
The other possibility, which does not make use of any choice, is based on the notion
of vector hull that we studied in the previous chapter The main idea is that any affine
space A can be canonically embedded as a hyperplane in a vector space Â —the vector
hull of A; with this immersion affine maps can be homogenized, that is, converted into
linear maps.

Since our main motivation for studying these systems comes from Euler–Lagrange
equations and mechanical systems, where equations of motion are of second order, it
is natural to extend the preceding study to second-order implicit and linearly singular
equations:

F (t, x, ẋ, ẍ) = 0, A(t, x, ẋ)ẍ = b(t, x, ẋ).

It is also of interest to study time-dependent differential equations with constraints
and multipliers, of the form

A(t, x)ẋ = b(t, x) +
∑

µ

uµ hµ(t, x), φα(t, x) = 0,
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which are the time-dependent version of the differential equations studied in chap-
ter 4, the kind of equations that arise from a nonholonomic system. Therefore, we
will introduce the concept of time-dependent generalized nonholonomic system, which
generalizes the construction presented in chapter 4 to the time-dependent case.

As applications of the formalism, we give two descriptions of time-dependent me-
chanical systems, in the form of time-dependent singular lagrangian systems and in
the mixed velocity-momentum description (sometimes called Skinner–Rusk formula-
tion [Ski 83, SR 83]) of time-dependent mechanics [CMC 02]. As a concrete example,
we also study a pendulum of variable length.

The chapter is organized as follows. In section 6.1 we study the geometric for-
mulation of time-dependent differential equations, either in the implicit and in the
linearly singular case. In section 6.2 we describe constraint algorithms for both cases.
In section 6.3 we present two constructions of an autonomous system associated with
a given time-dependent system, and an example to illustrate the procedure is given
in section 6.4. The extension to second-order equations is presented in section 6.5.
Applications to singular lagrangian mechanics are presented in section 6.6. Finally, in
section 6.7 we introduce the time-dependent generalized nonholonomic systems.

6.1 Time-dependent systems

In this section we discuss first-order time-dependent singular differential equations. As
a model of time-dependent configuration space, we take a fibre bundle ρ: M → R over
the real line (though more general settings could also be considered).

The appropriate geometric framework to deal with derivatives is that of jet bundles,
recall the facts and notation given in section 2.7.

Implicit systems

In general, a (time-dependent) implicit differential equation is defined by a submanifold
D ⊂ J1ρ. A local section ξ: I → M of ρ is a solution of the differential equation if

j1ξ(t) ∈ D (6.1)

for each t. If the subset D is locally described in coordinates by some equations
Fα(t, qi, vi) = 0, then the differential equation reads Fα(t, ξi(t), ξ̇i(t)) = 0.

Suppose that D is the image of a jet field, that is, of a section X: M → J1ρ. Then
the solutions of the differential equation are the integral sections of X, which are the
solutions of the explicit differential equation

j1ξ = X ◦ ξ.

In coordinates, if X(t, qi) = (t, qi, Xj(t, qi)), the differential equation reads ξ̇i(t) =
Xi(t, ξj(t)).
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Consider again D ⊂ J1ρ. Given a jet field X, its integral sections are solutions of
the implicit equation defined by D iff

X(M) ⊂ D. (6.2)

So, in a certain sense, solving this equation is equivalent to solving the implicit equa-
tion (6.1).

For an explicit differential equation there always exist solutions, and each initial
condition x ∈ M defines a unique maximal solution. For an implicit differential equation
existence and uniqueness may fail; in this case one is lead to study the subset of points
covered by solutions, and the multiplicity of solutions.

Linearly singular systems

A (time-dependent) linearly singular system on M is defined by a vector bundle π:E →
M and an affine bundle morphism A: J1ρ → E:

J1ρ
A //

ρ1,0

²²

E

π
~~}}

}}
}}

}}

M

(6.3)

For the sake of brevity, we will refer to this linearly singular system simply as A.
The system A has an associated implicit system given by

D = A−1(0) ⊂ J1ρ, (6.4)

provided that this subset is a submanifold —this can be assured, for instance, when A
has constant rank. A local section ξ: I → M is a solution of D, equation (6.1), iff it is
a solution of the linearly singular differential equation

A ◦ j1ξ = 0. (6.5)

In local coordinates, the bundle morphisms are given by

π(t, qi, uα) = (t, qi), A(t, qi, vi) = (t, qi,Aα
j (t, qi)vj + cα(t, qi)),

thus the differential equation reads

Aα
j (t, ξi(t)) ξ̇j(t) + cα(t, ξi(t)) = 0.

As before, it may be convenient to describe the solutions of the differential equation
as integral sections of jet fields. A jet field X:M → J1ρ is a solution jet field of D,
equation (6.2), iff

A ◦X = 0. (6.6)
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Then its integral sections are solutions of the differential equation defined by A.
Locally, X(t, qi) = (t, qi, Xi(t, qi)) is a solution jet field of A when

Aα
j (t, qi)Xj(t, qi) + cα(t, qi) = 0.

Let us remark that, instead of a vector bundle, we could have considered an affine
bundle E with a section b and an affine bundle morphism A: J1ρ → E. This slight
generalization does not seem too relevant for applications, and indeed the section b

endows E with a vector bundle structure.

6.2 Constraint algorithm

In general, an implicit system does not have solution jet fields, and does not have solu-
tion sections passing through every point in M . We want to find a maximal subbundle
ρ′: M ′ → R of ρ (over R for simplicity, but more general situations could occur) where
there exist solution jet fields X: M ′ → J1ρ′ and solution sections ξ: I → M ′ through
every point in M ′.

To this end, we can adapt the constraint algorithms of the time-independent case,
both for implicit systems [RR 94] [MMT 95] and linearly singular systems [GP91,
GP92a], to the time-dependent case. A constraint algorithm for a time-dependent
implicit equation in a product M = R×Q has been recently discussed in [Del 04].

Implicit systems

Let D ⊂ J1ρ be an implicit system. We say that a 1-jet y ∈ D is integrable (or locally
solvable) if there exists a solution ξ: I → M of D such that j1ξ passes through y. One
of the purposes of the constraint algorithm is to find the set Dint of all integrable 1-jets.

If a solution passes through a point x ∈ M , necessarily x belongs to the subset

M(1) := ρ1,0(D). (6.7)

Denote by ρ(1): M(1) → R the restriction of ρ to M(1). To proceed with the algorithm,
we will assume that ρ(1) is a subbundle of ρ. In this case, the inclusion i(1): M(1) ↪→ M

has a 1-jet prolongation, j1i(1): J1ρ(1) ↪→ J1ρ. By means of this inclusion, we can define

D(1) := J1ρ(1) ∩ D. (6.8)

Since the solutions of D lay on M(1), the integrable jets of D must be contained in D(1).
If this is a submanifold, we have obtained a new implicit system, now on M(1).

This procedure can be iterated: from M(0) = M and D(0) = D, and assuming
that at each step one obtains subbundles and submanifolds, one may define M(i) :=
ρ1,0(D(i−1)) and D(i) := J1ρ(i) ∩ D(i−1). The algorithm finishes when, for some k, we
have M(k+1) = M(k). In this case, since ρ1,0(D(k)) = M(k), if we suppose for instance
that the projection D(k) → M(k) is a submersion, we have that Dint = D(k).
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Linearly singular systems

LetA: J1ρ → E be a time-dependent linearly singular system as described in section 6.1.
We can proceed by applying the preceding algorithm for implicit systems, and also by
adapting the algorithm for time-independent linearly singular systems.

So we begin with D = A−1(0), which we assume to be a submanifold. As before, the
configuration space must be restricted to M(1) := ρ1,0(D), which can also be described
as

M(1) = {x ∈ M | 0x ∈ ImAx};

note that 0x ∈ ImAx is the necessary consistency condition for (6.6) to hold on a given
point x ∈ M .

As above, we assume that ρ(1):M(1) → R is a subbundle of M .
Let us restrict all the data to M(1): A(1) := A|J1ρ(1)

, E(1) := E|M(1)
, and π(1) :=

π|M(1)
. So we obtain a linearly singular system on M(1):

J1ρ(1)

A(1) //

(ρ(1))1,0

²²

E(1)

π(1)||xxxxxxxx

M(1)

(6.9)

It is clear that the implicit system defined by A(1) coincides with the implicit system
D(1) obtained above, (6.8), that is,

A−1
(1)(0) = J1ρ(1) ∩ D. (6.10)

Thus, if we assume for instance that each M(i) is a subbundle of M(i−1), we obtain
a constraint algorithm for the linearly singular case:

M(i) := {x ∈ M(i−1) | 0x ∈ Im(A(i−1))x},

A(i) := A(i−1)

∣∣
J1ρ(i)

,

E(i) := E(i−1)

∣∣
M(i)

,

π(i) := π(i−1)

∣∣
M(i)

.

When the algorithm finishes, we arrive to a final system which is integrable everywhere.

J1ρ(k)

A(k) //

(ρ(k))1,0

²²

E(k)

π(k)||xxxxxxxx

M(k)
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6.3 From non-autonomous to autonomous systems

It is usual to convert a time-dependent system into a time-independent one by consider-
ing the evolution parameter as an new dependent variable. From a geometric viewpoint,
this is easily done with an implicit system D ⊂ J1ρ by means of the canonical inclusion
ι: J1ρ → TM : its image E = ι(D) is a submanifold of TM , so it defines an autonomous
implicit equation. The equivalence between both equations is immediate:

Proposition 6.1 A map ξ:R → M is a solution section of the time-dependent system
D iff it is a solution path of the autonomous system E such that ρ(ξ(t0)) = t0 for any
arbitrarily given t0.

Now let us focus on the case of a time-dependent linearly singular system A:

J1ρ
A //

ρ1,0

²²

E

π
~~}}

}}
}}

}}

M

(6.11)

We will also relate this system to an autonomous one. The main motivation for finding
such a relation is that the constraint algorithm described in the preceding section is
easier to implement in the autonomous case. The reason is that, instead of jet fields,
vector fields can be used to obtain constraint functions that define the submanifolds in
the constraint algorithm, as will be shown later on.

Two constructions to achieve our goal will be proposed. In the first one, we use a
connection to define a complement of Vρ in TM . In the second construction, we use
the vector hull functor described in the previous chapter to define vector bundles and
morphisms from affine bundles and morphisms.

Jet field construction

Consider the linearly singular system given by (6.11). Let us choose an arbitrary jet
field Γ:M → J1ρ. This jet field Γ induces in a natural way a connection Γ̃ on ρ (see
section 2.7). We define the section of π

bΓ := −A ◦ Γ:M → E,

and the vector bundle morphism

AΓ := ~A ◦ vΓ: TM → E,

where ~A: Vρ → E is the vector bundle morphism associated with the affine map A.
With these objects we can construct a time-independent linearly singular system:

TM
AΓ⊕dt//

τM

²²

E ⊕R

M

bΓ⊕1

::uuuuuuuuu

(6.12)
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where E ⊕R denotes the Whitney sum of the vector bundle π: E → M and the trivial
bundle M ×R → M .

This system is equivalent to the time-dependent system (6.11) in the sense of the
following proposition.

Proposition 6.2 Consider the time-dependent system given by (6.11). Given any jet
field Γ:M → J1ρ, we have:

i) A map ξ:R → M is a solution section of the time-dependent system (6.11) if, and
only if, it is a solution path of the autonomous system (6.12) such that ρ(ξ(t0)) =
t0 for any arbitrarily given t0.

ii) A map X: M → J1ρ is a solution jet field of the time-dependent system (6.11) if,
and only if, considered as a vector field in M , it is a solution vector field of the
autonomous system (6.12).

(Note that we are using the embedding ι: J1ρ → TM defined in section 2.7 to identify
jet fields as vector fields.)
Proof. It is immediate, taking into account the local expressions of the equations
defined respectively by both systems:

• Aα
j (t, qi) vj + cα(t, qi) = 0

•
{
Aα

j (t, qi) (q̇j − ṫ Γj(t, qi)) = −Aα
j (t, qi) Γj(t, qi)− cα(t, qi)

ṫ = 1

Vector hull construction

Here we will apply the vector hull functor described in the previous chapter. The affine
bundle morphism A in (6.11) induces a vector bundle morphism Â between the vector
hulls of J1ρ and E:

J1ρ Â Ä //

A
²²

Ĵ1ρ

Â
²²

E Â Ä

i
// Ê

The 0 section of π: E → M also induces a section 0̂ of π̂: Ê → M , defined by 0̂ = i ◦ 0.
Recall that, since π is a vector bundle, we have the identification Ê = R ⊕ E, with
0̂ = (1, 0).

Using the canonical identification of Ĵ1ρ with TM , we can construct the following
linearly singular system:

TM
Â //

τM

²²

Ê

M
0̂

=={{{{{{{{

(6.13)
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This system is equivalent to the time-dependent system (6.11) in the sense of the
following proposition.

Proposition 6.3 Consider the time-dependent system given by (6.11).

i) A map ξ:R → M is a solution section of the time-dependent system (6.11) if,
and only if, it is a solution path of the associated autonomous system (6.13) such
that ρ(ξ(t0)) = t0 for any arbitrarily given t0.

ii) A map X: M → J1ρ is a solution jet field of the time-dependent system (6.11) if,
and only if, considered as a vector field in M , it is a solution vector field of the
associated autonomous system (6.13).

Proof. Again we can prove the result in local coordinates, where the equations of the
systems (6.11) and (6.13) read, respectively,

• cα(t, qi) +Aα
j (t, qi)vj = 0

•
{

ṫ = 1
cα(t, qi)ṫ +Aα

j (t, qi)q̇j = 0

We have used the local coordinates (t, qi, u0, uα) on Ê induced by the coordinates
(t, qi, uα) and the 0 section of π (see section 5.6).

6.4 An example: a simple pendulum of given variable

length

In this section we present an example to illustrate the conversion of a time-dependent
system into a time-independent one (in this case we will use the jet field construction)
with the intention of applying the time-independent constraint algorithm to it.

Consider a simple pendulum whose length is given by a time-dependent func-
tion R(t). Its equation of motion can be written as [GP92a]





ẋ = vx

ẏ = vy

v̇x = −τx

v̇y = −τy − g

x2 + y2 = R2(t)

,

where g is the gravitational acceleration and τR(t) is the string tension per unit mass.
This system can be described as a time-dependent linearly singular system in the

following way. Take M := R6, with coordinates (t, x, y, vx, vy, τ), as a configuration
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manifold fibred over R, with coordinate t. The product M × R5 is a trivial vector
bundle over M , and the affine bundle morphism A: J1ρ → M ×R5 defined by

A(ẋ, ẏ, v̇x, v̇y, τ̇)p = (ẋ− vx, ẏ − vy, v̇x + τx, v̇y + τy + g,−(x2 + y2 −R2(t)))p,

where p = (t, x, y, vx, vy, τ) ∈ M, models the system.
Choosing the connection Γ̃ = dt ⊕ ∂

∂t , as described in section 6.3, we can convert
this system into an autonomous linearly singular system on M , which can be written
as 



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0







ṫ

ẋ

ẏ

v̇x

v̇y

τ̇




=




vx

vy

−τx

−τy − g

x2 + y2 −R2(t)
1




We solve this autonomous linearly singular system by means of the constraint al-
gorithm for the autonomous case that we explained in section 3.1. In this case, three
steps are needed to solve the system. We give here only the constraint functions φi and
manifolds Mi obtained at each step:

1. φ1 = x2 + y2 −R2(t),
M1 = {φ1 = 0},
and the possible solution vector fields are of the form

X '
M1

∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
− τx

∂

∂vx
− (τy + g)

∂

∂vy
+ f

∂

∂τ
,

where f ∈ C∞(M1) is a function to be determined.

2. φ2 = X · φ1 '
M1

xvx + yvy −RR′,

M2 = {φ1 = φ2 = 0}.

3. φ3 = X · φ2 '
M2

v2
x + v2

y − τR2 − (RR′′ + (R′)2),

M3 = {φ1 = φ2 = φ3 = 0}.

4. φ4 = X · φ3 '
M3

−4τRR′ − 3vyg − (RR′′′ + 3R′R′′)− fR2.

The equation φ4 = 0 determines the function f ∈ C∞(M3), so it is not a new
constraint and the system is solved.

Using polar coordinates (t, r, ϕ, vr, vϕ, τ), defined by




x = r cosϕ

y = r sinϕ

vx = vr cosϕ− vϕr sinϕ

vy = vr sinϕ + vϕr cosϕ

,
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we see that the final submanifold M3 is diffeomorphic to R×TS1, and it is embedded
in M by (t, ϕ, vϕ) → (t, R(t), ϕ,R′(t), (v2

ϕR(t) − g sinϕ − R′′(t))/R(t)). The (unique)
solution vector field is

X =
∂

∂t
+ vϕ

∂

∂ϕ
− 2R′(t)vϕ + g cosϕ

R(t)
∂

∂vϕ
.

6.5 The second-order case

The results of section 6.3 can be extended to consider higher-order implicit and lin-
early singular differential equations. Of course, the most important case, due to its
applications to mechanics, is that of second-order equations, to which we devote this
section.

Second-order implicit and linearly singular systems

Similar to the first-order case, a second-order implicit differential equation is defined
by a submanifold D ⊂ J2ρ. A local section ξ: I → M is a solution of the differential
equation if j2ξ(t) ∈ D for each t. In coordinates, this equation can be expressed as
Fα(t, ξi(t), ξ̇i(t), ξ̈i(t)) = 0. Like in the first-order case, if D is the image of a section
X: J1ρ → J2ρ, the equation can be written in normal form.

Now let us consider the linearly singular case. A time-dependent second-order lin-
early singular system is defined by a vector bundle π: E → J1ρ and an affine bundle
morphism A: J2ρ → E:

J2ρ
A //

ρ2,1

²²

E

π
ÄÄ~~

~~
~~

~~

J1ρ

(6.14)

Its solution sections are sections ξ of ρ such that

A ◦ j2ξ = 0.

Locally this reads

Aα
j (t, ξi(t), ξ̇i(t)) ξ̈j(t) + cα(t, ξi(t), ξ̇i(t)) = 0. (6.15)

A second-order jet field, that is, a section X of ρ(2,1): J2ρ → J1ρ, is a solution jet field
if

A ◦X = 0;

locally this reads Aα
j (t, qi, vi)Xj(t, qi, vi) + cα(t, qi, vi) = 0.

In a similar way of what we did in the previous section, it is interesting to convert the
singular system given by (6.14) into a first-order autonomous linearly singular system.
As before, we present two constructions of this.
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Jet field construction

Choose an arbitrary second-order jet field Γ: J1ρ → J2ρ. Again this determines a
splitting of the tangent bundle of J1ρ as a direct sum TJ1ρ = Vρ1,0 ⊕ HΓ, with as-
sociated projections vΓ and hΓ. If the local expression of the jet field is Γ(t, qi, vi) =
(t, qi, vi, Γi(t, qi, vi)) then the two projections are locally given by

vΓ(t, qi, vi; ṫ, q̇i, v̇i) =
(

t, qi, vi; 0, 0, v̇i − ṫ Γi(t, qi, vi)− 1
2
(q̇j − ṫvj)

∂Γi

∂vj

)
,

hΓ(t, qi, vi; ṫ, q̇i, v̇i) =
(

t, qi, vi; ṫ, q̇i, ṫΓi(t, qi, vi) +
1
2
(q̇j − ṫvj)

∂Γi

∂vj

)
.

Now we define a section of π

bΓ := −A ◦ Γ: J1ρ → E

and a vector bundle morphism

AΓ := ~A ◦ vΓ: TJ1ρ → E.

With these definitions, we obtain an autonomous first-order linearly singular system
on the manifold J1ρ:

TJ1ρ

²²

AΓ⊕S⊕dt // E ⊕Vρ1,0 ⊕R

J1ρ
bΓ⊕0⊕1

55kkkkkkkkkkkkkkkk

(6.16)

A result quite similar to proposition 6.2 can be formulated, in the sense that this
system is equivalent to the original time-dependent second-order system (6.14). This
can be readily seen by comparing the local expression (6.15) with that of the equation
defined by system (6.16). We skip the details.

Vector hull construction

As opposite to the first-order case, the vector hull of J2ρ can not be identified with a
tangent bundle, but rather with a tangent subbundle. As it was shown in the previous
chapter, Ĵ2ρ can be identified with the Cartan distribution Cρ1,0 on J1ρ. Then, as in
section 6.3, if we homogenize the system (6.14) we obtain the following:

Cρ1,0
Â //

τJ1ρ

²²

Ê

J1ρ

0̂

=={{{{{{{{

(6.17)

This is an autonomous linearly singular system on J1ρ, except for the fact that there is
only a subbundle Cρ1,0 ⊂ TJ1ρ instead of the whole tangent bundle. The interpretation
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of this system is the same as in the ordinary case, but with the additional requirement
that, for a path η: I → J1ρ, its derivative η̇ must lie in Cρ1,0 —which is a natural
condition if η has to be the lift j1ξ of a section of ρ. In coordinates, if η = (t, qi, vi),
this requirement amounts to

q̇i = ṫ vi.

Assuming that η̇ ⊂ Cρ1,0, the local equations for the path η to be a solution of the
system (6.17) are {

ṫ = 1
ṫ cα(t, qi, vi) + v̇jAα

j (t, qi, vi) = 0

Comparing these three equations with equation (6.15), we see that systems (6.14)
and (6.17) are equivalent.

Finally, we will show that the system (6.17) can be expressed as a linearly singular
system, provided we have an appropriate extension of A. Since E is a vector bundle,
we have a canonical identification Ê = R ⊕ E, and the vector extension Â can be
written Â = dt ⊕ Â . Suppose that we have an extension Ā: T(J1ρ) → E of the
map Â :Cρ1,0 → E; in some applications (see next section) there exists a natural
extension Ā. Then the system (6.17) can be described as the following linearly singular
system:

TJ1ρ

²²

dt⊕Ā⊕S // R⊕E ⊕Vρ1,0

J1ρ

1⊕0⊕0

55kkkkkkkkkkkkkkkk

(6.18)

The only thing to be noted is that Cρ1,0 is the kernel of S, see (2.7).

6.6 Some applications to mechanics

Time-dependent Lagrangian systems

Recall the concept of autonomous Lagrangian system studied in section 3.2. Those
systems were appropriate to model physical systems whose dynamics are independent
of time. However, there are physical systems whose characteristics depend on time.
We can model these time-dependent physical systems with a time-dependent version
of the Lagrangian systems. The following formulation is standard and it can be found
for instance in [CPT84, LR89, CF93].

Definition 6.4 A time-dependent Lagrangian system consists of a fibre bundle ρ: M →
R over the real numbers and a function on the first order jet bundle of ρ, L: J1ρ →
R. The total space M is called the time-dependent configuration space and L is the
lagrangian of the system.
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Naturally, the real line R represents the time and a fibre Mt of ρ represents the
possible positions of the system at time t. Thus, the Lagrangian L is a function
that depends on the positions, the velocities and the time. We note that sometimes
(see [Sau 89, EMR 96, GMS 97, LMMMR02]) the dynamical information is given by a
ρ1-semibasic 1-form L ∈ Ω1(J1ρ), called the lagrangian density. This is done because
the formulation of time-dependent mechanics can then be easily extended to field the-
ories. In this case, the lagrangian function is the function L ∈ C∞(J1ρ) such that
L = Ldt.

Now, the Hamilton’s principle for time-independent systems states that the motions
of the system are the extremal sections ξ: I → M of the functional action given by

JL(ξ) =
∫

I
(j1ξ)∗(Ldt).

It can be seen that an extremal section of JL must be a solution of the Euler–
Lagrange equations, which in local coordinates (t, qi, vi) of J1ρ read as

d
dt

(
∂L

∂vi
◦ j1ξ

)
− ∂L

∂qi
◦ j1ξ = 0. (6.19)

The Euler–Lagrange equations can be written in an intrinsic way, using the Poincaré–
Cartan forms, defined as

ΘL = tS ◦ dL + Ldt ∈ Ω1(J1ρ), (6.20)

ΩL = −dΘL ∈ Ω2(J1ρ),

where S is the vertical endomorphism of J1ρ (recall equation (2.6)). By contraction,
ΩL defines a morphism Ω̂L: T(J1ρ) → T∗(J1ρ). With the notation p̂i = ∂L/∂vi, the
Poincaré–Cartan forms locally read as

ΘL = p̂i(dqi − vidt) + Ldt,

ΩL = (dqi − vidt) ∧ dp̂i − ∂L

∂qi
dqi ∧ dt.

Now, given a vector field X ∈ X(J1ρ), we can compute

iXΩL =
(

(X ·qi)− vi(X ·t)
)

dp̂i−
(

(X ·p̂i)− ∂L

∂qi
(X ·t)

)
dqi+

(
(X ·p̂i)vi − ∂L

∂qi
(X ·qi)

)
dt.

(6.21)
Consider the case where X is a second-order vector field,

X =
∂

∂t
+ vi ∂

∂qi
+ Ai(t, q, v)

∂

∂vi
.

Recall that every integral curve η: I → J1ρ of a second order vector field is the
prolongation j1ξ of a curve ξ: I → M . The second-order vector fields can be globally
characterized as the vector fields X verifying the two equations:

iXdt = 1, S ◦X = 0. (6.22)
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For a second-order vector field, expression (6.21) simplifies to

iXΩL =
(

(X ·p̂i)− ∂L

∂qi

)
(vidt− dqi).

Since the Euler–Lagrange equations (6.19) can be written as dp̂i/dt = ∂L/∂qi, the
integral curves of a second order vector field X are prolongations of a solution of the
Euler–Lagrange equations iff

iXΩL = 0.

Thus, the three equations 



iXdt = 1
S ◦X = 0
iXΩL = 0

(6.23)

constitute an intrinsic formulation of the Euler–Lagrange equations (6.19).
A lagrangian L ∈ C∞(J1ρ) (and the associated time-dependent Lagrangian system)

is said to be regular if any of the following equivalent statements hold:

• The (2n + 1)-form dt ∧ Ω∧n
L is a volume form.

• KerΩL is a 1-dimensional distribution generated by a second-order vector field
ΓL.

In coordinates, these conditions are equivalent to the regularity of the Hessian matrix
(

∂2L

∂vi ∂vj

)
.

The lagrangians (and Lagrangian systems) that are not regular are called singular or
degenerate.

It is clear that if the Lagrangian is regular, the second-order vector field ΓL that gen-
erates Ker ΩL, called the Euler–Lagrange vector field, is the unique solution of (6.23).
Therefore, a regular Lagrangian system has solution in every point and the dynamical
motions are the curves ξ = ρ1,0(η), where η is an integral curve of ΓL. Aside with
the formulation given here, several geometric formulations of time-dependent regular
systems have been proposed, all of them equivalent in the sense that they lead to the
Euler–Lagrange equations. A review of these alternative formulations can be found
in [EMR 91].

On the other hand, if the Lagrangian is singular, equations (6.23) have no solution in
general, and, if it exists it will be generally not unique. Following the pattern of Gotay
and Nester algorithm for autonomous systems, some procedures have been developed
to obtain a constraint submanifold where solutions exist. Cariñena and Fernández-
Núñez [CF 93] have studied the case when the configuration space is a trivial product
M = R×Q and ρ is the trivial bundle R×Q → R. This case is also discussed by de León
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and coworkers in [CLM94], where the authors use the notion of cosymplectic structure.
The results of this paper are extended to fibre bundles ρ: M → R (not trivial in general)
in [LMM96], and a more detailed review of singular lagrangian system on jet bundles
can be found in [LMMMR02]. In particular, it is used an auxiliary connection to give an
exhaustive description of the constraint functions. O. Krupková [Kru 94] uses another
framework, based on the notion of Lepagean form, for time-dependent Lagrangian
systems on a trivial bundle R × Q → R. Higher order dynamics are also considered
and the constraint algorithm developed in this paper allows general constraint spaces
(not necessarily submanifolds). Finally, Vignolo [Vig 00] has studied the constraint
algorithm for the gauge-invariant formulation of time-dependent mechanics developed
by Massa and coworkers [MPL00].

Now we will see that equations (6.23) are those of a linearly singular system of the
kind studied in the previous sections. Recall (see equation (2.5)) the affine inclusion
ι2: J2ρ ↪→ TJ1ρ, which identifies jet fields J1ρ → J2ρ with second-order vector fields
on J1ρ. It is clear that the lagrangian dynamics may be described by the following
second-order linearly singular system on Q:

J2ρ
Ω̂L◦ι2 //

ρ2,1

²²

T∗J1ρ

τ∗
J1ρ||xxxxxxxx

J1ρ

(6.24)

Using the vector hull construction described in the preceding section, we can convert
this system into a first-order autonomous system on J1ρ:

TJ1ρ

²²

dt⊕Ω̂L⊕S // R⊕ T∗J1ρ⊕Vρ1,0

J1ρ
1⊕0⊕0

55jjjjjjjjjjjjjjjjjj

and note that its equations of motion are precisely (6.23).
If the lagrangian is regular, then this linearly singular system is regular; otherwise,

the system is singular and the constraint algorithm for linearly singular systems can be
applied to obtain the dynamics.

First-order formulation of time-dependent mechanics

As we saw in section 3.2, a mixed lagrangian-hamiltonian formulation of time-independent
mechanics was studied geometrically in a series of papers by Skinner and Rusk [Ski 83,
SR 83]. Recently, the time-dependent case has been studied in [CMC 02]. We will show
how this can be described in our formalism.

Consider a time-dependent Lagragian system defined on a bundle ρ:E → R with
lagrangian L: J1ρ → R. In this formulation, the dynamics is represented by a first-order
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system on the manifold M := T∗E ×E J1ρ. Denote the several projections as in the
following diagram:

M :=T∗E ×E J1ρ
pr2 //

&&LLLLLLLLLLL
pr1

²²

GF ED
π

²²

J1ρ

ρ1,0

²²

ρ1

ÃÃA
AA

AA
AA

A

T∗E
τ∗E

// E ρ
// R

We can define the following function on M :

H = 〈pr1, pr2〉 − pr∗2L,

where 〈 , 〉 denotes the natural pairing between vectors and covectors on E, and the
2-form on M

ΩH = pr∗1ωE − dH ∧ dt,

where ωE is the canonical symplectic form on T∗E.
With these definitions we can write the equations of the dynamics in the Skinner-

Rusk formulation, which are {
iZΩH = 0
iZdt = 1

(6.25)

for a vector field Z ∈ X(M). In [CMC 02] it is shown that this first-order formulation is
equivalent to the standard one seen in the previous section. More precisely, a solution Z

of (6.25) projects under pr2 onto a vector field X solution of (6.23). The solution
of (6.25), if exists, it is not unique because kerΩH∩ker dt is not equal to 0. Nevertheless,
if the lagrangian L is regular, (6.25) has solutions and all of them projects under pr2
onto the Euler–Lagrange vector field ΓL. If the lagrangian es singular, a constraint
algorithm is applied and, in the best case, there is a final constraint submanifold Mf

where solutions of (6.25) exist that projects under pr2 onto solutions of (6.23) defined
on the submanifold pr2(Mf ).

It is clear that equations (6.25) are those of the time-dependent linearly singular
system on M defined by the following diagram:

J1π
(Ω̂H)|

J1π //

π1,0

²²

T∗M

τ∗Mwwnnnnnnnnnnnnn

M

6.7 Time-dependent generalized nonholonomic systems

In chapter 4 we studied the generalized nonholonomic systems in the time-independent
case. Recall that a generalized nonholonomic system is a particular of linearly singular
system, obtained from another linearly singular system by performing two operations:
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restriction to a submanifold and projection to a quotient. We showed that nonholo-
nomic mechanical systems can be included in this framework.

In this section we present the time-independent version of the generalized nonholo-
nomic systems introduced in section 4.3.

Let B: J1ρ → G be a time-dependent linearly singular system on the bundle ρ:N →
R.

A subsystem of B is defined by a subbundle ρ|M : M → R of ρ:

J1(ρ|M )

²²

B◦j1i // G|M

zztttttttttt

M

where i denotes the inclusion M ⊂ N , which is a bundle morphism over idR whose
prolongation j1i defines an inclusion J1(ρ|M ) ⊂ J1ρ. If the system B has an associated
implicit system given by D = B−1(0), then the subsystem on M has an associated
implicit system given by (B ◦ j1i)−1(0) = J1(ρ|M )

⋂D. Then, the solution sections of
the subsystem are the sections γ: I → M of ρ|M that are solutions of the system B.

On the other hand, a quotient system of the system B is given by a vector subbun-
dle G′ ⊂ G:

J1ρ

²²

p◦B // G/G′

{{xxx
xx

xx
xx

N

where p is the projection G ³ G/G′. Now, the implicit system associated with this
quotient system is given by the submanifold B−1(G′). This implies that if Y is a solution
jet field of the system B defined on certain submanifold Nf and Z is any section of G′|Nf

,
then Y + Z is a solution jet field of the quotient system.

These two operations can be combined to obtain another system that we will call
time-dependent generalized nonholonomic system. The reason of this name is clear
since this construction is a time-dependent version of the generalized nonholonomic
systems studied in chapter 4.

Definition 6.5 Let B: J1ρ → G be a time-dependent linearly singular system on the
bundle ρ: N → R, ρ|M :M → R a subbundle of ρ and G′ ⊂ G|M a vector subbundle.
The time-dependent generalized nonholonomic system defined from B by the subbun-
dle ρ|M and the vector subbundle G′ is the time-dependent linearly singular system
A := p ◦ B|M ◦ j1i: J1(ρ|M ) → (G|M )/G′, where i denotes the inclusion M ⊂ N .

The manifold M is called the constraint submanifold and the vector subbundle G′

is called the subbundle of constraint forces
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The following diagram shows the construction of a time-dependent generalized non-
holonomic system

J1(ρ|M )

²²

j1i //

A

''
(J1ρ)

∣∣
M

²²

B|M // G|M
p //

zztttttttttt
F = (G|M )/G′

uukkkkkkkkkkkkkkkkkkkk

M M

The implicit system associated with the time-dependent generalized nonholonomic
system is A−1(0) = J1(ρ|M ) ∩ B−1(G′). Therefore, it is clear that a section γ: I → N

is a solution of A if and only if it is contained in the constraint submanifold M and

B ◦ j1γ ∈ G′. (6.26)

Let φα be a set of functions linearly independent at each point, that locally define
M , and ∆ν a frame for G′. If the affine bundle morphism B has local expression
B(t, qi, vi) = (t, qi,Bl

j(t, q
i)vj + cl(t, qi)) then equation (6.26) in local coordinates reads

as {
φα(γ(t)) = 0
Bl

i(γ(t))γi(t) + cl(γ(t)) = λν(t)∆l
ν(γ(t))

,

for a section γ(t) = (t, γi(t)) of ρ and multipliers λν(t).
A jet field X of ρ|M is a solution jet field of the time-dependent generalized non-

holonomic system A if
B ◦X ⊂ G′;

in local coordinates,

Bl
i(t, q

j)Xi(t, qj) + cl(t, qj) = vν(t, qj)∆l
ν(t, q

j),

for some multipliers vν(t, qj).
In order to find the solutions of the time-dependent generalized nonholonomic sys-

tem we can use the procedures of sections 6.2 and 6.3.

Now we present an example to illustrate the modelling of time-dependent nonholo-
nomic systems in this framework.

Example 6.6 Homogeneous sphere on a rotating table
This example of time-dependent nonholonomic system is studied in the book by Neimark
and Fufaev [NF 72]. Consider an homogeneous sphere, of mass m and radius r, rolling
without slipping on a horizontal plane which rotates about a fixed vertical axis with
non constant angular velocity Ω(t). We assume that there are no external forces apart
from the constant gravitational force.
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We choose a fixed cartesian frame such that the z-axis is the rotation axis. The
configuration of the sphere is specified by the coordinates (x, y) of the point of contact of
the sphere with the plane and the Eulerian angles (φ, θ, ψ). Therefore, the configuration
space of the system is the bundle ρ:Q → R, where Q = R2 × SO(3)×R and ρ is the
projection on the third factor, which parametrizes the time.

The lagrangian is the kinetic energy of the sphere,

L =
1
2

(
m(ẋ2 + ẏ2) + I(φ̇2 + θ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ)

)
,

where I is the moment of inertia of the sphere about a diameter. The associated
Poincaré–Cartan 2-form is

ΩL = m(dx− ẋdt) ∧ dẋ + m(dy − ẏdt) ∧ dẏ + I(dφ− φ̇dt) ∧ d(φ̇ + ψ̇ cos θ)+
I(dθ − θ̇dt) ∧ dθ̇ − Iφ̇ψ̇ sin θdθ ∧ dt + I(dψ − ψ̇dt) ∧ d(ψ̇ + φ̇ cos θ)

The condition of rolling without slipping is expressed by the two constraints

Φ1 = ẋ− (r sinφ)θ̇ + (r sin θ cosφ)ψ̇ + Ω(t)y = 0,

Φ2 = ẏ + (r cosφ)θ̇ + (r sin θ sinφ)ψ̇ − Ω(t)x = 0.

These affine constraints define a subbundle M of ρ1: J1ρ → R. According to d’Alembert’s
principle, the constraint force belongs to the subbundle G′ := tS((TM)`) of T∗(J1ρ)

∣∣
M

,
generated by the 1-forms

α1 = (dx− ẋdt)− (r sinφ)(dθ − θ̇dt) + (r sin θ cosφ)(dψ − ψ̇dt),
α2 = (dy − ẏdt) + (r cosφ)(dθ − θ̇dt) + (r sin θ sinφ)(dψ − ψ̇dt).

Now we have all the elements to construct the time-dependent generalized nonholo-
nomic system

J1(ρ1|M )

²²

p◦Ω̂L◦ι // T∗(J1ρ)
∣∣
M

/G′

uujjjjjjjjjjjjjjjjj

M

,

where p denotes the projection of T∗(J1ρ)
∣∣
M

to the quotient and ι the composition of
inclusions J1(ρ1|M ) ⊂ J1ρ1 ⊂ T(J1ρ). The solution sections γ: I → M of this linearly
singular system that are holonomic (that is, γ = j1(ρ1,0 ◦ γ)) are prolongations of
solutions of the physical system.
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[JS 98] J.V. José and E. J. Saletan, Classical dynamics, Cambridge University Press,
Cambridge, 1998.



BIBLIOGRAPHY 119

[KM98] W.S. Koon and J. E. Marsden, “Poisson reduction for nonholonomic mechan-
ical systems with symmetry”, Rep. Math. Phys. 42 (1998) 101–134.
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